SlideShare a Scribd company logo

Pregel In Graphs - Models and Instances

An introduction to Google's large scale graph computing model Pregel. Tons of system design graphs are provided along with a real world application instance.

1 of 45
Download to read offline
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Pregel In Graphs
Models & Instances
Chase Zhang
Strikingly
March 16, 2018
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table of Contents
Computing Model
Examples
System Design
Instance: User Tracking System
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
What is Pregel?
▶ Published by Google at 20091
▶ Distributed graph computing system at large scale
▶ Implemented by open source solutions like Spark’s GraphX2
1
https://kowshik.github.io/JPregel/pregel_paper.pdf
2
https://spark.apache.org/graphx/
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
Superstep
N1
N2
N3
2
1
3
Message
Vertex
Edge/Attribute
attr
attr
N Active N Inactive
Figure: Basic Model
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
N1N1
1
3
2
N1
3
3
3
3
Receive Combine Dispatch
3
Figure: Pregel is vertex oriented
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
N Active
N Inactive
N N Inactive
N N Active
No Messages
Received
Vote to halt
Received
Messages
Reactivate
Figure: Vertice have states
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
▶ Pregel is a vertex oriented computing model.
▶ Map runs upon each vertex (other than edges)
▶ Each vertex only knows its out-going edges during each superstep
▶ Pregel depends on message sending to iteratively computing the result
▶ Each vertex receives messages from prior step
▶ After one step, vertices send messages to adjacent vertices
▶ Vertices have states
▶ Only active vertices will send message to the others
▶ Program terminates once there is no active vertices
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
Problem
Sending message through network is costly.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
network
N2
N3
N4
2
1
4
N1
3
N1
4
Figure: Passing messages
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
network
N2
N3
N4
2
1
4
N1
3
N1
4
4
Figure: Solution: Combiner
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
Problem
Some iterative graph algrithms require graph-wide results and metrics.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
Superstep
N1
Superstep
N1
Superstep
N1
value value value
Aggregator Aggregator Aggregator
N2 N2 N2
Figure: Solution: Aggregator
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
Problem
Some graph algorithms require modifying topology during iteration.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
N1
N2
N3
Remove
E1
Remove
N3
E1
Figure: Solution: Sending modification messages
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Computing Model
▶ Pregel provides combiner for reducing network traffic
▶ Pregel provides aggregator for recording graph-wide values and metrics
▶ Vertices in Pregel can send topology modification requests as messages to target
vertices
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Problem
Find connected components of a directed graph.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Solution
(Single machine) Union-Find3
.
3
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Solution
(Pregel) Emit max(min) message received until no active vertex.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
N2
N3
2
1
3
Superstep
N1
N2
N3
2
3
3
Superstep
N1
N2
N3
3
3
3
Superstep
N1
N2
N3
3
3
3
Figure: Connected Components in Pregel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Problem
Find shortest path from a single source to the other vertices.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Solution
(Single machine) Dijkstra4
, Bellman-Ford5
, A*6
.
4
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
5
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
6
https://en.wikipedia.org/wiki/A*_search_algorithm
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Solution
(Pregel) BFS, emitting current shortest cost from source vertex to current vertex plus edge
cost.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
N2
N3
0
INF
INF
10
3
6
Superstep
N1
N2
N3
0
3
10
10
3
6
0 + 3
0 + 101 1
Figure: Shortest Path: Step 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
N2
N3
0
3
10
10
3
6
Superstep
N1
N2
N3
0
3
9
10
3
6
3 + 6
10 + 1
1 1
Figure: Shortest Path: Step 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
N2
N3
0
3
9
10
3
6
Superstep
N1
N2
N3
0
3
9
10
3
6
9+ 1
1 1
Figure: Shortest Path: Step 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Problem
PageRank7
7
https://en.wikipedia.org/wiki/PageRank
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
|V| vertices number
|E(v)| edges number of vertex v
val(v) current message value of v
sum(v) sum of messages received of v in last superstep
▶ Initial messages: 1
|V|
▶ Emit messages: val(v)
|E(v)|
▶ Update value: sum(v) · 0.85 + 0.15
|V|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
Superstep
N1
Superstep
N1
NA 0.5 0.2125
Aggregator Aggregator Aggregator
N2 N2 N2
0.5
0.5
0.2875
0.7125
0.1972
0.8028
Step-0 Step-1
Figure: PageRank
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Examples
Superstep
N1
Superstep
N1
Superstep
N1
0.2125 0.09 0.04
Aggregator Aggregator Aggregator
N2 N2 N2
0.1972
0.8028
0.1588
0.8412
Step-3Step-2
Figure: PageRank
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
▶ Graph partitioning
▶ Master-worker system model
▶ Message buffer for better performance
▶ Checkpoint and confined recovery
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
Partition Partition
Partition
Figure: Graph Partitioning
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
▶ Graph is partitioned by hash(vertexId) by default
▶ User partitioning function can be provided for locality
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
Worker
Partition
Partition
Worker
Partition
Partition
Master
Coordinator
Master
Coordinator
Figure: Master-Worker Model
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
▶ Master coodinates supersteps, it holds no partition of graph
▶ Master calculate and hold values of aggregators
▶ Master send RPC to every participated worker and wait for task to finish
▶ Workers hold partitions of graph. Given a vertexId, a worker can know which worker
is holding it without querying master
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
Worker
Partition
Buffer
network
Figure: Message Buffer
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
Confined Recovery
Superstep
N1
N2
N3
0
3
9
10
3
6
1
Checkpoint
Write Ahead Log
Figure: Checkpoint & Confined Recovery
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
System Design
▶ A worker buffers message locally and send them as a batch as to reduce network
overhead
▶ Before and after a superstep, a worker checkpoint and perform confined recovery
▶ Confined recovery logs every outgoing messages, so that only lost partitions need to
be recalculated
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
PV Login GPS
IP addr
ClientId
IP addr
ClientId
Nickname
AvatarURL
IP addr
ClientId
GeoLocation
Session
Session Session
Figure: User Tracking Problem
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Figure: Sessionize Events & Feature Extraction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Figure: Find Connected Components & Get User Profile
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Problem
Calculating edges betwen sessions cost O(N2
) time if we compare each pair. It will be too
enormous even for just a million(106
) sessions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Solution
Five significant features are selected for matching, and we define two sessions are
matched if more than two features matched. So we can:
▶ Enumerate combinations of the five significant features, it will be C2
5 = 10
▶ Applying sort or hash method to distribute sessions into matching buckets
▶ Connect sessions in a same bucket
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Figure: Match Features
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Instance: User Tracking System
Claim
This optimization (using sort method) reduced time cost.
At first, the total elements to match upon each other will increasee to O(N × 10). To sort
all elements cost O(log N × 10). Connect elements in a bucket cost O(N × 10) in total.
The final cost will be
O(log N × 10) ≃ O(log N) ⪯ O(N2
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Thank you!

Recommended

Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017MLconf
 
Predicting Flight Delays with Spark Machine Learning
Predicting Flight Delays with Spark Machine LearningPredicting Flight Delays with Spark Machine Learning
Predicting Flight Delays with Spark Machine LearningCarol McDonald
 
The Five Graphs of Government: How Federal Agencies can Utilize Graph Technology
The Five Graphs of Government: How Federal Agencies can Utilize Graph TechnologyThe Five Graphs of Government: How Federal Agencies can Utilize Graph Technology
The Five Graphs of Government: How Federal Agencies can Utilize Graph TechnologyNeo4j
 
Optimizing Apache Spark Throughput Using Intel Optane and Intel Memory Drive...
 Optimizing Apache Spark Throughput Using Intel Optane and Intel Memory Drive... Optimizing Apache Spark Throughput Using Intel Optane and Intel Memory Drive...
Optimizing Apache Spark Throughput Using Intel Optane and Intel Memory Drive...Databricks
 
Differential privacy and applications to location privacy
Differential privacy and applications to location privacyDifferential privacy and applications to location privacy
Differential privacy and applications to location privacyPôle Systematic Paris-Region
 
Aray dan recrd
Aray dan recrdAray dan recrd
Aray dan recrd555560
 
Web-Scale Graph Analytics with Apache Spark with Tim Hunter
Web-Scale Graph Analytics with Apache Spark with Tim HunterWeb-Scale Graph Analytics with Apache Spark with Tim Hunter
Web-Scale Graph Analytics with Apache Spark with Tim HunterDatabricks
 

More Related Content

What's hot

Smarter Fraud Detection With Graph Data Science
Smarter Fraud Detection With Graph Data ScienceSmarter Fraud Detection With Graph Data Science
Smarter Fraud Detection With Graph Data ScienceNeo4j
 
Privacy, security and ethics in data science
Privacy, security and ethics in data sciencePrivacy, security and ethics in data science
Privacy, security and ethics in data scienceNikolaos Vasiloglou
 
Ethics in Data Science and Machine Learning
Ethics in Data Science and Machine LearningEthics in Data Science and Machine Learning
Ethics in Data Science and Machine LearningHJ van Veen
 
Exploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science ClubExploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science ClubMartin Bago
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudDatabricks
 
GraphFrames: Graph Queries In Spark SQL
GraphFrames: Graph Queries In Spark SQLGraphFrames: Graph Queries In Spark SQL
GraphFrames: Graph Queries In Spark SQLSpark Summit
 
Our Story With ClickHouse at seo.do
Our Story With ClickHouse at seo.doOur Story With ClickHouse at seo.do
Our Story With ClickHouse at seo.doMetehan Çetinkaya
 
Introduction to RapidMiner Studio V7
Introduction to RapidMiner Studio V7Introduction to RapidMiner Studio V7
Introduction to RapidMiner Studio V7geraldinegray
 
Using Machine Learning and Analytics to Hunt for Security Threats - Webinar
Using Machine Learning and Analytics to Hunt for Security Threats - WebinarUsing Machine Learning and Analytics to Hunt for Security Threats - Webinar
Using Machine Learning and Analytics to Hunt for Security Threats - WebinarSplunk
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jDatabricks
 
The Case for Graphs in Supply Chains
The Case for Graphs in Supply ChainsThe Case for Graphs in Supply Chains
The Case for Graphs in Supply ChainsNeo4j
 
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...Data Con LA
 
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...Kim Hammar
 
Top 5 Mistakes When Writing Spark Applications
Top 5 Mistakes When Writing Spark ApplicationsTop 5 Mistakes When Writing Spark Applications
Top 5 Mistakes When Writing Spark ApplicationsSpark Summit
 

What's hot (17)

Smarter Fraud Detection With Graph Data Science
Smarter Fraud Detection With Graph Data ScienceSmarter Fraud Detection With Graph Data Science
Smarter Fraud Detection With Graph Data Science
 
Privacy, security and ethics in data science
Privacy, security and ethics in data sciencePrivacy, security and ethics in data science
Privacy, security and ethics in data science
 
Ethics in Data Science and Machine Learning
Ethics in Data Science and Machine LearningEthics in Data Science and Machine Learning
Ethics in Data Science and Machine Learning
 
Exploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science ClubExploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science Club
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the Cloud
 
Crisp dm
Crisp dmCrisp dm
Crisp dm
 
GraphFrames: Graph Queries In Spark SQL
GraphFrames: Graph Queries In Spark SQLGraphFrames: Graph Queries In Spark SQL
GraphFrames: Graph Queries In Spark SQL
 
Our Story With ClickHouse at seo.do
Our Story With ClickHouse at seo.doOur Story With ClickHouse at seo.do
Our Story With ClickHouse at seo.do
 
Introduction to RapidMiner Studio V7
Introduction to RapidMiner Studio V7Introduction to RapidMiner Studio V7
Introduction to RapidMiner Studio V7
 
Internal Hive
Internal HiveInternal Hive
Internal Hive
 
Using Machine Learning and Analytics to Hunt for Security Threats - Webinar
Using Machine Learning and Analytics to Hunt for Security Threats - WebinarUsing Machine Learning and Analytics to Hunt for Security Threats - Webinar
Using Machine Learning and Analytics to Hunt for Security Threats - Webinar
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
 
The Case for Graphs in Supply Chains
The Case for Graphs in Supply ChainsThe Case for Graphs in Supply Chains
The Case for Graphs in Supply Chains
 
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
 
22 rdf
22 rdf22 rdf
22 rdf
 
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...
Kim Hammar - Feature Store: the missing data layer in ML pipelines? - HopsML ...
 
Top 5 Mistakes When Writing Spark Applications
Top 5 Mistakes When Writing Spark ApplicationsTop 5 Mistakes When Writing Spark Applications
Top 5 Mistakes When Writing Spark Applications
 

Similar to Pregel In Graphs - Models and Instances

Similar to Pregel In Graphs - Models and Instances (20)

Manual
ManualManual
Manual
 
jc_thesis_final
jc_thesis_finaljc_thesis_final
jc_thesis_final
 
Ivo Pavlik - thesis (print version)
Ivo Pavlik - thesis (print version)Ivo Pavlik - thesis (print version)
Ivo Pavlik - thesis (print version)
 
report
reportreport
report
 
Matloff programming on-parallel_machines-2013
Matloff programming on-parallel_machines-2013Matloff programming on-parallel_machines-2013
Matloff programming on-parallel_machines-2013
 
web_based_ide
web_based_ideweb_based_ide
web_based_ide
 
Xpc target ug
Xpc target ugXpc target ug
Xpc target ug
 
eclipse.pdf
eclipse.pdfeclipse.pdf
eclipse.pdf
 
test6
test6test6
test6
 
Postgresql database administration volume 1
Postgresql database administration volume 1Postgresql database administration volume 1
Postgresql database administration volume 1
 
hardback
hardbackhardback
hardback
 
Migrating to netcool precision for ip networks --best practices for migrating...
Migrating to netcool precision for ip networks --best practices for migrating...Migrating to netcool precision for ip networks --best practices for migrating...
Migrating to netcool precision for ip networks --best practices for migrating...
 
Redp4469
Redp4469Redp4469
Redp4469
 
trex_astf.pdf
trex_astf.pdftrex_astf.pdf
trex_astf.pdf
 
Liebman_Thesis.pdf
Liebman_Thesis.pdfLiebman_Thesis.pdf
Liebman_Thesis.pdf
 
Ali.Kamali-MSc.Thesis-SFU
Ali.Kamali-MSc.Thesis-SFUAli.Kamali-MSc.Thesis-SFU
Ali.Kamali-MSc.Thesis-SFU
 
Software guide 3.20.0
Software guide 3.20.0Software guide 3.20.0
Software guide 3.20.0
 
Linux-Perf.pdf
Linux-Perf.pdfLinux-Perf.pdf
Linux-Perf.pdf
 
OPCDE Crackme Solution
OPCDE Crackme SolutionOPCDE Crackme Solution
OPCDE Crackme Solution
 
Improved kernel based port-knocking in linux
Improved kernel based port-knocking in linuxImproved kernel based port-knocking in linux
Improved kernel based port-knocking in linux
 

More from Chase Zhang

AWS Summit: Strikingly analytics
AWS Summit:  Strikingly analyticsAWS Summit:  Strikingly analytics
AWS Summit: Strikingly analyticsChase Zhang
 
Aws summit strikingly analytics
Aws summit   strikingly analyticsAws summit   strikingly analytics
Aws summit strikingly analyticsChase Zhang
 
Deploying Apache Kylin on AWS and designing a task scheduler for it
Deploying Apache Kylin on AWS and designing a task scheduler for itDeploying Apache Kylin on AWS and designing a task scheduler for it
Deploying Apache Kylin on AWS and designing a task scheduler for itChase Zhang
 
Intro to Hadoop ecosystem and Apache Kylin
Intro to Hadoop ecosystem and Apache KylinIntro to Hadoop ecosystem and Apache Kylin
Intro to Hadoop ecosystem and Apache KylinChase Zhang
 
Immutable, and More
Immutable, and MoreImmutable, and More
Immutable, and MoreChase Zhang
 
Intermediate Git
Intermediate GitIntermediate Git
Intermediate GitChase Zhang
 

More from Chase Zhang (6)

AWS Summit: Strikingly analytics
AWS Summit:  Strikingly analyticsAWS Summit:  Strikingly analytics
AWS Summit: Strikingly analytics
 
Aws summit strikingly analytics
Aws summit   strikingly analyticsAws summit   strikingly analytics
Aws summit strikingly analytics
 
Deploying Apache Kylin on AWS and designing a task scheduler for it
Deploying Apache Kylin on AWS and designing a task scheduler for itDeploying Apache Kylin on AWS and designing a task scheduler for it
Deploying Apache Kylin on AWS and designing a task scheduler for it
 
Intro to Hadoop ecosystem and Apache Kylin
Intro to Hadoop ecosystem and Apache KylinIntro to Hadoop ecosystem and Apache Kylin
Intro to Hadoop ecosystem and Apache Kylin
 
Immutable, and More
Immutable, and MoreImmutable, and More
Immutable, and More
 
Intermediate Git
Intermediate GitIntermediate Git
Intermediate Git
 

Recently uploaded

Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
Artificial Intelligence for Vision:  A walkthrough of recent breakthroughsArtificial Intelligence for Vision:  A walkthrough of recent breakthroughs
Artificial Intelligence for Vision: A walkthrough of recent breakthroughsNikolas Markou
 
Choose your perfect jacket.pdf
Choose your perfect jacket.pdfChoose your perfect jacket.pdf
Choose your perfect jacket.pdfAlexia Trejo
 
presentation big data analytics on Apache spark
presentation big data analytics on Apache sparkpresentation big data analytics on Apache spark
presentation big data analytics on Apache sparkVarun Garg
 
Prometheus Grafana Dashboard for Cassandra 5
Prometheus Grafana Dashboard for Cassandra 5Prometheus Grafana Dashboard for Cassandra 5
Prometheus Grafana Dashboard for Cassandra 5Sarma Pydipally
 
introduction-to-crimean-congo-haemorrhagic-fever.pdf
introduction-to-crimean-congo-haemorrhagic-fever.pdfintroduction-to-crimean-congo-haemorrhagic-fever.pdf
introduction-to-crimean-congo-haemorrhagic-fever.pdfSalamaAdel
 
Discover the Best Free Web Hosting Services with SSL in 2023
Discover the Best Free Web Hosting Services with SSL in 2023Discover the Best Free Web Hosting Services with SSL in 2023
Discover the Best Free Web Hosting Services with SSL in 2023maker Money
 
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdf
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdfEIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdf
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdfEarley Information Science
 
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...Samuel Chukwuma
 
Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...ThinkInnovation
 
Customer Satisfaction Data - Multiple Linear Regression Model.pdf
Customer Satisfaction Data -  Multiple Linear Regression Model.pdfCustomer Satisfaction Data -  Multiple Linear Regression Model.pdf
Customer Satisfaction Data - Multiple Linear Regression Model.pdfruwanp2000
 
Basics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelBasics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelTope Osanyintuyi
 
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDF
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDFEXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDF
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDFProject Cubicle
 
Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...DrSumathyV
 
HayleyDerby_Market_Research_Spotify.docx
HayleyDerby_Market_Research_Spotify.docxHayleyDerby_Market_Research_Spotify.docx
HayleyDerby_Market_Research_Spotify.docxHayleyDerby
 
AWS_projects related AWS services such as feature store store and clarify
AWS_projects related AWS services such as feature store store and clarifyAWS_projects related AWS services such as feature store store and clarify
AWS_projects related AWS services such as feature store store and clarifyVarun Garg
 
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptx
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptxWOMEN IN TECH EVENT : Explore Salesforce Metadata.pptx
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptxyosra Saidani
 
itc limited word file.pdf...............
itc limited word file.pdf...............itc limited word file.pdf...............
itc limited word file.pdf...............mahetamanav24
 
Ratio analysis, Formulas, Advantage PPt.pptx
Ratio analysis, Formulas, Advantage PPt.pptxRatio analysis, Formulas, Advantage PPt.pptx
Ratio analysis, Formulas, Advantage PPt.pptxSugumarVenkai
 

Recently uploaded (18)

Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
Artificial Intelligence for Vision:  A walkthrough of recent breakthroughsArtificial Intelligence for Vision:  A walkthrough of recent breakthroughs
Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
 
Choose your perfect jacket.pdf
Choose your perfect jacket.pdfChoose your perfect jacket.pdf
Choose your perfect jacket.pdf
 
presentation big data analytics on Apache spark
presentation big data analytics on Apache sparkpresentation big data analytics on Apache spark
presentation big data analytics on Apache spark
 
Prometheus Grafana Dashboard for Cassandra 5
Prometheus Grafana Dashboard for Cassandra 5Prometheus Grafana Dashboard for Cassandra 5
Prometheus Grafana Dashboard for Cassandra 5
 
introduction-to-crimean-congo-haemorrhagic-fever.pdf
introduction-to-crimean-congo-haemorrhagic-fever.pdfintroduction-to-crimean-congo-haemorrhagic-fever.pdf
introduction-to-crimean-congo-haemorrhagic-fever.pdf
 
Discover the Best Free Web Hosting Services with SSL in 2023
Discover the Best Free Web Hosting Services with SSL in 2023Discover the Best Free Web Hosting Services with SSL in 2023
Discover the Best Free Web Hosting Services with SSL in 2023
 
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdf
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdfEIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdf
EIS-Webinar-Info-Governance-Age-AI-2024-02-27-for-distr.pdf
 
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...
Cousera Cap Course Datasets containing datasets from a Fictional Fitness Trac...
 
Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...
 
Customer Satisfaction Data - Multiple Linear Regression Model.pdf
Customer Satisfaction Data -  Multiple Linear Regression Model.pdfCustomer Satisfaction Data -  Multiple Linear Regression Model.pdf
Customer Satisfaction Data - Multiple Linear Regression Model.pdf
 
Basics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelBasics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft Excel
 
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDF
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDFEXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDF
EXCEL-VLOOKUP-AND-HLOOKUP LECTURE NOTES ALL EXCEL VLOOKUP NOTES PDF
 
Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...
 
HayleyDerby_Market_Research_Spotify.docx
HayleyDerby_Market_Research_Spotify.docxHayleyDerby_Market_Research_Spotify.docx
HayleyDerby_Market_Research_Spotify.docx
 
AWS_projects related AWS services such as feature store store and clarify
AWS_projects related AWS services such as feature store store and clarifyAWS_projects related AWS services such as feature store store and clarify
AWS_projects related AWS services such as feature store store and clarify
 
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptx
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptxWOMEN IN TECH EVENT : Explore Salesforce Metadata.pptx
WOMEN IN TECH EVENT : Explore Salesforce Metadata.pptx
 
itc limited word file.pdf...............
itc limited word file.pdf...............itc limited word file.pdf...............
itc limited word file.pdf...............
 
Ratio analysis, Formulas, Advantage PPt.pptx
Ratio analysis, Formulas, Advantage PPt.pptxRatio analysis, Formulas, Advantage PPt.pptx
Ratio analysis, Formulas, Advantage PPt.pptx
 

Pregel In Graphs - Models and Instances