Successfully reported this slideshow.
Your SlideShare is downloading. ×

Social Interaction Ontology

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Upcoming SlideShare
Social Networking for Adults
Social Networking for Adults
Loading in …3
×

Check these out next

1 of 46 Ad

More Related Content

Slideshows for you (19)

Advertisement

Similar to Social Interaction Ontology (20)

More from Channy Yun (20)

Advertisement

Recently uploaded (20)

Social Interaction Ontology

  1. 1. Research Draft Social Semantic Web and Social Interaction Ontology Seokchan (Channy) Yun Biomedical Knowledge Engineering Laboratory Seoul National University June 8th 2009
  2. 2. Agenda • Online Social Network – Traditional research • Social Semantic Web – FOAF/SIOC – Tripartite Social Ontology – Social Semantic Network • Activity-based Approach – Online Presence Project – Activity Streams • Social Interaction Ontology – Research Plan
  3. 3. Social Networks in Socialogy • Social Network used firstly J.A. Barnes (1954) • Research methodology in Social Sciences • Generally sameAs Network (Graph) Theory – Milgram’s six degrees of separation theory – Erdős number – Dunbar’s Number – 150 (average 124) – Diffusion of innovations
  4. 4. Representation of Social Network • Graph Model with Node and Edge
  5. 5. Emerging Online Social Network • New opportunities for social science – Explicit and implicit social network information – Large scale data sets – Dynamic data – Different modalities (profiles, email, IM, Twitter…) • Challenges – Theoretical – Friend on the Web = Friend in reality? – Extracting information – Heterogeneity – Quality of data – Time and space complexity – Ethical and legal challenges • Semantic technologies can help with some of the technical challenges
  6. 6. History • First Mover – Classmates.com, Match.com and sixdegree.com – Friendster and Orkut • Majority – Myspace and Facebook – Linkedin.com – Twitter.com
  7. 7. Classification
  8. 8. How succeed? • Allows a user to create and maintain an online network of close friends or business associates for social and professional reasons: – Friendships and relationships – Offline meetings – Curiosity about others – Business opportunities – Job hunting • Allows a user to share interests based on object-centered sociality with meaning – Sharing photo, video and bookmark – Life streaming over SNS – Broadcasting and publishing of my own content
  9. 9. Status of Online SNS John Breslin, The Social Semantic Web: An Introduction (2009)
  10. 10. Social Semantic Information Spaces
  11. 11. FOAF
  12. 12. Example of FOAF <foaf:Person> <foaf:name> Seokchan Yun </foaf:name> <foaf:mbox_sha1sum> 241021fb0e6289f92815fc210f9e9137262c252e </foaf:mbox_sha1sum> <foaf:homepage rdf:resource=quot;http://www.creation.netquot; /> <foaf:knows> <foaf:Person> <foaf:name>Hong-Gee Kim</foaf:name> <foaf:mbox rdf:resource=”mailto:hgkim@snu.ac.kr”/> <rdfs:seeAlso rdf:resource=“http://.../foaf.rdf /> </foaf:Person> </foaf:Person>
  13. 13. Common Structure
  14. 14. SIOC (John Breslin)
  15. 15. Example of SIOC <sioc:Post rdf:about=quot;http://koreacrunch.com/archive/firefox-supports-geolocation-servicequot;> <dcterms:title>Firefox supports Geolocation Service</dcterms:title> <dcterms:created>2006-09-07T09:33:30Z</dcterms:created> <sioc:has_container rdf:resource=quot;http://www.creation.net/?sioc_type=site#weblogquot;/> <sioc:has_creator> <sioc:User rdf:about=quot;http://www.creation.net/quot; rdfs:label=quot;Cloudquot;> </sioc:User> </sioc:has_creator> <sioc:content>Firefox 3.5 Beta 4 and higher starts to support W3C’s Geolocation APIs developed by Google.com based... </sioc:content> <sioc:topic rdfs:label=quot;Firefoxquot; rdf:resource=quot;http://koreacrunch.com/tags/firefox/quot;/> <sioc:topic rdfs:label=quot;Geolocationquot; rdf:resource=quot;http://koreacrunch.com/tags/...quot;/> <sioc:has_reply> <sioc:Post rdf:about=quot;http://koreacrunch.com/archive/351#comment-123928quot;> </sioc:Post> </sioc:has_reply> </sioc:Post>
  16. 16. FOAF+ SIOC 16
  17. 17. FOAF+SIOC+SKOS skos:isSubjectOf sioc:topic 17
  18. 18. Disconnected sites on the Social Web
  19. 19. Tripartite Social Ontology (Peter Mica) • A graph model of ontologies based on tripartite graphs of actors, concepts and instances – Actors: users – Concepts: tags – Instances: objects • Emergent semantics – General idea: observe semantics in the way agents interact (use concepts) • Bottom-up ontologies • Semantics = syntax + statistics
  20. 20. Dimensional Ontology Oci and Oac
  21. 21. e.g. Delicious • When looking at co-occurrence of terms (Oci ) – Network reflects language use – Better for clustering, determining ambiguity of terms and finding synonyms • E.g. travel - cote, provence, villa, azur, mas, holiday, vacation, tourism, france, heritage • When looking at community overlaps (Oac ) – Network reflects the domain – Better for finding broader/narrower terms, non-trivial relationships • E.g. google – gmail, picasa, youtube…
  22. 22. e.g. Flink
  23. 23. Social Semantic Network (Jason Jung)
  24. 24. Remained Question?
  25. 25. What’s Definition of Online Friends? http://answers.polldaddy.com/poll/1230119/?view=results Well-known Friends 9% Colleagues 7% Known Meet once in offline 25% Knowing only name 12% Famous person 3% Unknown FoaF 13% Unknown Everyone requested 32% Online Friend != Real FOAF’s knows is not knowing!
  26. 26. Twitter
  27. 27. Facebook
  28. 28. me2DAY
  29. 29. LinkedIn
  30. 30. Challenges • Discovering Knowledge Abdullah Al Reshood roommateOf Aafia Siddique Aafia Siddique isMemberOf Al Queda Aafia Siddique traveledTo Pakistan Mounir-al Motassad traveledTo Pakistan Abdullah Al Reshood isRelatedTo Al Queda ? Al Queda isRelatedTo Pakistan ? • Degree of User relationship – Coupling between users (high vs. weak) – Removing coupling bias in analysis
  31. 31. Online Presence Project (Milan Stankovic) • Feel of Presense – Status Messages – Online Status (Busy, Available, Away…) – Current listening music, activities…
  32. 32. Activity Streams (Chris Messina) • Lightweight simple Atom based syndication for user’s activities • Widely supported by Facebook, MySpace etc. • Basic Format – User, Verb, Noun
  33. 33. Example of Activity Streams <entry> <id>tag:photopanic.example.com,2008:activity01</id> <title>Geraldine posted a Photo on PhotoPanic</title> <published>2008-11-02T15:29:00Z</published> <link rel=quot;alternatequot; type=quot;text/html“ href=quot;/geraldine/activities/1quot; /> <activity:verb> http://activitystrea.ms/schema/1.0/post </activity:verb> <activity:object> <id>tag:photopanic.example.com,2008:photo01</id> <title>My Cat</title> <published>2008-11-02T15:29:00Z</published> <link rel=quot;alternatequot; type=quot;text/html“ href=quot;/geraldine/photos/1quot; /> <activity:object-type> tag:atomactivity.example.com,2008:photo </activity:object-type> <source> <title>Geraldine's Photos</title> <link rel=quot;selfquot; type=quot;application/atom+xml“ href=quot;/geraldine/photofeed.xmlquot; /> <link rel=quot;alternatequot; type=quot;text/html“ href=quot;/geraldine/quot; /> </source> </activity:object> <content type=quot;htmlquot;> &lt;p&gt;Geraldine posted a Photo on PhotoPanic&lt;/p&gt; &lt;img src=quot;/geraldine/photo1.jpgquot;&gt; </content> </entry>
  34. 34. Other approaches
  35. 35. Questions • Twitter – There are many spammers and followers. – Whom I should follow? Who is expert? • me2DAY – There are many friends – Who disconnected in my friendship? • Flickr – There are many photos. – What’s good photos enjoying with friend? • RateMDs – There are many doctors. – What’s good doctors recommended by friends?
  36. 36. Answers • 1. Measuring degree of user relationship – Twitter: Following < RT < Reply < Direct Message < SMS – me2Day: me2 < Link < Reply < Memo < Gift < SMS – Exporting Social Interaction Ontology • 2. Modeling of user degree – Similarity formula (A,B) • 3. Integration data for answer
  37. 37. Pre-work for solving problem • Social web evolves direct sharing and broadcasting instead of document link based distribution and knowledge discovering. – Social Interaction is more important in social networks. – FriendFeed, Facebook life streaming, Twitter • Need to represent “Degree between people” – Writing simple ontology represents interaction • Channy replies Hong-Gee (What) (When) in Facebook • John retweets Channy (What) (When) in Twitter
  38. 38. Why new ontology? • SIOC – Only focusing on relationship with site(forum), contents and person. • OPO – Only focusing “Presence” not to be interested in “Activity” – No description on various interaction such as Twitter’s RT – Need to more practical • Activity streams – Atom (RDF) based – Only description for Person / Verb / Object
  39. 39. Twitter interaction
  40. 40. Facebook interaction
  41. 41. me2DAY interaction
  42. 42. Social Interaction Ontology • Focusing on User-to-User – User / Verb / User in Sites select count(?y) as ?cdegree { • E.g. fromAccount Act toAccount { ?y interAct:retweet ?x} UNION {?x interAct:directmessage ?y} • Connection with FOAF and SIOC } group by ?x – foaf:Person – foaf:holdsAccount • sioc:User rdfs:subClassOf foaf:onlineAccount – interAct:fromAccount rdfs:sioc:User • Expression for various interaction – Verb : comment, reply, me2, RT, hashtag… • E.g act:comment sioc:Sites
  43. 43. Research Plan • Who disconnected in my friendship on me2DAY? – Modeling Social Interactive Ontology – Export me2DAY activity to SIO – Measuring coupling-degree index • Distance = # of interaction/ time interval • Priority = normalized value for each interactions – Evaluation with user’s reaction for alert • Whom I should follow? Who is expert in Twitter? – Export twitter activity to SIO – Measuring coupling-degree index – Evaluation with user’s reaction for recommendation
  44. 44. Interaction Interaction Interaction Ontology Ontology Ontology Exporter Exporter Exporter
  45. 45. Q&A channy@snu.ac.kr http://www.creation.net Twitter: @channyun

×