Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Algebra 1.1

3,025 views

Published on

  • Be the first to comment

Algebra 1.1

  1. 1. ÁlgebraCompendio de Ciencias I-A 31SISTEMA HELICOIDAL MOTIVACIÓN Los Árabes fueron los verdaderos sistematizadores del Álgebra. A fines del siglo VIII floreció la escuela de Bagdad a la que pertenecían al Juarismi, al Batani y Omar K.hayyan. A l Juarismi, persa del siglo IX, escribió el primer libro de Algebra y le dio nombre a esta ciencia. Al Batani, sirio (858 - 929), aplicó el Algebra a problemas astronómicos. Y Omar Khayyan persa del siglo XII, conocido por sus poemas escritos en «Rubayat», escribió un tratado de Algebra. «Querer es poder, tú quieres, luego puedes». Concepto : Es la operación que consiste en multiplicar un número llamado base tantas veces como factor, como lo indica otro llamado exponente, para obtener un resultado llamado potencia. Así tenemos: Notación: donde: b base n exponente P potencia Luego: Ejemplos: •  Es base : 2 Es exponente : 5 Es potencia : 32 •  Es base : –3 Es exponente : 4 Es potencia : 81 • • • •  Donde: POTENCIACIÓN OBJETIVOS Las leyes de exponentes tiene por objeto estudiar todas las clases de exponentes que existen y las relaciones que se dan entre ellos; y la operación que da origen al exponente es la potenciación.
  2. 2. ÁlgebraCompendio de Ciencias I-A 32 PASCUAL SACO OLIVEROS Es base : Es exponente : 4 Es potencia : • • • (a + b)3 = (a + b) (a + b) (a + b) Recíprocamente de acuerdo a la definición de potenciación se verifica: • • • • Ejemplos Diversos: • –34 = –3 × 3 × 3 × 3 = –81 • (–3)4 = (–3) (–3) (–3) (–3) = +81 • (3x)4 = (3x) (3x) (3x) (3x) • 3x4 = 3x x x x • (– 3x)4 = (–3x) (–3x) (–3x) (–3x) • – 3x4 = – 3 x x x x • • (*) –bn ≠ (–b)n (**) Identificación de una base y su exponente: • En: • En: * En : En el Exponente anterior: , se tiene: Exp. = x2 Base = x LEY DE LOS SIGNOS EN LA POTENCIACIÓN Ejemplos: • (+2)4 = + 24  (24 ) = 16 • (+x)32 = x32 (x)32 = x32 Ejemplos: • (+2)5 = + 25  (2)5 = 32 • (+x)17 = + x17 (x)17 = x17 Ejemplo: • (–2)6 = + 26  (–2)6 = 64 • (–x)18 = + x18 (–x)18 = x18 Ejemplo: • (–2)5 = – 25  (–2)5 = – 32 • (–x)21 = – x21 (1º) Es conveniente indicar la diferencia entre: –34 y (–3)4 (*) En: – 34 ; el exponente no afecta al signo.  (*) En: (–3)4 ; el exponente si afecta al signo. (–3)4 = + 34  Por ello: –34 (–3)4 (2º) Debes tener presente lo siguiente: (i) con
  3. 3. ÁlgebraCompendio de Ciencias I-A 33SISTEMA HELICOIDAL Ejemplos: • 123 = 1 • 1128 = 1 • 1–25 = 1 (ii) Ejemplos: • (–1)16 = 1 • (–1)328 = 1 (iii) Ejemplos: • (–1)17 = –1 • (–1)5 = –1 (iv) con Ejemplos: • 017 = 0 • 0120 = 0 • 01256 = 0 Para realizar diversas operaciones a través de la po- tenciación es necesario recordar las potencias más usuales: POTENCIAS MÁS USUALES : LEYES DE EXPONENTES Los exponentes se rigen a través de leyes, normas que estudiaremos a continuación: Objetivos: • El objetivoes capacitaral alumno a poder identificar los diferentes tipos deexponentes y las relaciones quese dan entreellos, luego dar paso a la solución de ejercicios mediante reglas prácticas de exponentes. Paraunmayorentendimientoenestecapítulo,lasleyes de exponentes lo dividimos en 3 partes: (1º) Leyes de Los Exponentes I (2º) Leyes de los Exponentes II (3º) Leyes de los Exponentes III A continuación pasaremos a desarrollar las respectivas leyes contenidas en cada grupo. LEYES DE EXPONENTES I Aqui mencionaremos las leyes que son usuales dada su forma en que se presentan: 1. Ley del exponente Cero siempre y cuando : b 0 Ejemplos: • (3)0 = 1 • 30 = 1 • (–3)0 = 1 • –30 = –1 • 3x0 = 3(1) = 3 • (3x)0 = 1 • • 3(a + b)0 = 3(1) = 3 • – 3x0 y = –3(1)y = –3y 0º es indeterminado 2. Ley del exponente Uno El exponente uno ya no se escribe, se sobreentiende Ejemplos: • 51 = 5 • • • (a + b)1 = (a + b) • 3x1 = 3x • 3. Ley del exponente de Exponentes: (cadena de expo- nentes) Para desarrollar esta expresión se toma los 2 últimos términos (base y exponente), luego se va transfor- mando de arriba hacia abajo, tomando de 2 en 2 los términos. Ejemplos: (*) Desarrollar: Luego: (*) Desarrollar:
  4. 4. ÁlgebraCompendio de Ciencias I-A 34 PASCUAL SACO OLIVEROS Luego: 4. Ley del exponente Negativo con b 0 *Caso Particular con: a; b 0 Ejemplos: • • • • Tambien: • • • Recíprocamente: • • • • • Si la forma del exponente es negativo: Entonces transformamos a una expresión fraccionaria I. Problema desarrollado 1. Indicar de las proposiciones que afirmaciones son correctas: A) (F) B) (F) C) (V) RESOLUCION A) La proposición es falsa B) Es falso la proposición C) La proposición es verdadera II. Problema por desarrollar 2. Indicar cuales de las afirmaciones son verdaderas (V) o falsas (F): A) ................... ( ) B) ............ ( ) A) ........................... ( ) RESOLUCION
  5. 5. ÁlgebraCompendio de Ciencias I-A 35SISTEMA HELICOIDAL 1. Hallar el resultado de: A) B) 2. Efectuar: A) B) Rpta.: ....................................................... 3. Efectuar: A) B) Rpta.: ....................................................... 4. Efectuar: A) B) Rpta.: ....................................................... 5. Efectuar: Rpta.: ....................................................... 6. Efectuar: Rpta.: ....................................................... 7. Efectuar: Rpta.: ....................................................... 8. Efectuar: Rpta.: ....................................................... 9. Efectuar: Rpta.: ....................................................... 10. Efectuar: Rpta.: ....................................................... 11. Calcular: Rpta.: ....................................................... 12. Efectuar: Rpta.: ....................................................... 13. Calcular: Rpta.: ....................................................... 14. Calcular: Rpta.: ....................................................... 15. Efectuar: Rpta.: ....................................................... 16. Efectuar: Rpta.: ....................................................... 17. Efectuar:
  6. 6. ÁlgebraCompendio de Ciencias I-A 36 PASCUAL SACO OLIVEROS 1. Calcular: A) –9 B) 27 C) –27 D) 3 E) 6 2. Calcular: A) 12 B) 17 C) –15 D) 19 E) –20 3. Calcular: A) 13 B) 15 C) 16 D) 11 E) 5 4. Efectuar: A) 10 B) 9 C) 7 D) 6 E) 5 5. Calcular: A) 5 B) 6 C) 1/6 D) –6 E) 1/5 Rpta.: ....................................................... 18. Efectuar: Rpta.: ....................................................... 19. Calcular: Rpta.: ....................................................... 20. Calcular: Rpta.: .......................................................
  7. 7. ÁlgebraCompendio de Ciencias I-A 37SISTEMA HELICOIDAL LEYES DE EXPONENTES II AquímencionamoslasLeyesquerigenalosexponentes de acuerdo a las operaciones usuales que presentan las diversas expresiones. 1. Multiplicación de Bases Iguales ; En forma extensiva: Ejemplos: • • • • • • Recíprocamente: • • • 2. División de Bases Iguales con b 0 Ejemplos: • • • Si se tiene: Luego obtendremos: Regla Práctica : “La base resultante lleva como exponente una forma particular; donde el exponente del numerador mantie- ne su exponente, mientras el exponente denominador va a pasar con signos opuestos” Ejemplos: • • • Ejemplos Diversos: • • •  Se observa: OBJETIVOS MOTIVACIÓN «Cada uno de nosotros en cierta medida ha nacido bueno, mediocre o malo, pero al igual que la inteligencia. El sentido moral puede ser desarrollado por la educación, la disciplina y la fuerza de voluntad». Buscar que el alumno logre dominar las diversas operaciones que se da con los exponentes establecidos como leyes. El camino a recorrer con estas leyes nos permitirá desarrollar a través de los ejercicios su capacidad de razonamiento.
  8. 8. ÁlgebraCompendio de Ciencias I-A 38 PASCUAL SACO OLIVEROS • 3. Potencia de Potencia ; Ejemplos: • • • • • • Recíprocamente: • • • Si se tiene:  m•n = n•m Luego se cumple: Ejemplos: • • • no confundir: Pues: 4. Potencia de un Producto • • Ejemplos: • • • • Recíprocamente: (*) (*) (*) Nota: 5. Potencia de un Cociente ; con b 0 Ejemplos: •
  9. 9. ÁlgebraCompendio de Ciencias I-A 39SISTEMA HELICOIDAL 1. Efectuar: a) = b) = 2. Efectuar: a) = b) = Rpta.: ....................................................... • • • I. Problema desarrollado 1. Indicar de las proposiciones que afirmamos son correctas: a) (F) b) (V) c) (F) RESOLUCION A) La proposición es falsa B) La proposición es verdadera 3. Efectuar: a) = b) = Rpta.: ....................................................... 4. Efectuar: C) La proposición es falsa II. Problema por desarrollar 2. Indicar cuales de las proposiciones son verdaderas (V) o falsas (F): a) .......................... ( ) b) .......................... ( ) c) .......................... ( ) RESOLUCION Recíprocamente: • • •
  10. 10. ÁlgebraCompendio de Ciencias I-A 40 PASCUAL SACO OLIVEROS a) = b) = Rpta.: ....................................................... 5. Efectuar: = Rpta.: ....................................................... 6. Efectuar: = Rpta.: ....................................................... 7. Efectuar: = Rpta.: ....................................................... 8. Efectuar: = Rpta.: ....................................................... 9. Efectuar: = Rpta.: ....................................................... 10. Efectuar: = Rpta.: ....................................................... 11. Efectuar: = Rpta.: ....................................................... 12. Efectuar: = Rpta.: ....................................................... 13. Efectuar: = Rpta.: ....................................................... 14. Efectuar: = Rpta.: ....................................................... 15. Efectuar: = Rpta.: ....................................................... 16. Efectuar: = Rpta.: ....................................................... 17. Efectuar: = Rpta.: ....................................................... 18. Efectuar:
  11. 11. ÁlgebraCompendio de Ciencias I-A 41SISTEMA HELICOIDAL 1. Simplificar: A) 3 B) 5 C) 7 D) 4 E) 6 2. Efectuar: A) B) C) D) E) 3. Reducir: A) 1 B) 2 C) 3 D) 4 E) 5 4. Calcular el exponente final de x en: A) 9 B) –9 C) 18 D) –27 E) 27 = Rpta.: ....................................................... 19. Efectuar: = Rpta.: ....................................................... 20. Efectuar: Si Calcular : = Rpta.: .......................................................
  12. 12. ÁlgebraCompendio de Ciencias I-A 42 PASCUAL SACO OLIVEROS LEYES DE LOS EXPONENTES III Las siguientes leyes están dadas para la transformación de expresiones afectadas por el símbolo de una raíz. 1. Exponente Fraccionario con n 2 Ejemplos: • • • Si se tiene  (se sobreentiende el índice 2) Ejemplos: • • 2. Potencia de una Raíz ; con n 2 Ejemplos: • • • • Si se tiene  Luego: Para fines prácticos: (1º) Si m = 1:  (2º) Si m ≠ 1:  Ejemplos: • • • • • • • • La  porque: La  porque: La  porque: S La  porque: La  porque: La  porque: OBJETIVOS MOTIVACIÓN «El tiempo que gastas en averiguar vidas ajenas, debes emplearlo en reconocer tus defectos, tus aspiraciones y los actos de tu propia vida». Lograr que el alumno domine las leyes relacionadas a exponentes fraccionarias y los radicales, los cuales son muy importantes dado sus diversas aplicaciones en otras materias. Esto será posible a través de la práctica que efectuemos con los diversos ejercicios.
  13. 13. ÁlgebraCompendio de Ciencias I-A 43SISTEMA HELICOIDAL Sabemos que: Si hacemos: m = n, se tendrá: Luego: En forma similar: Ejemplos: • • • • • • • Se cumple; dadas las siguientes formas: : ⇒ : ⇒ : ⇒ Ejemplos: • • • • • • • • • • • • 3. Raíz de una Multiplicación • • Ejemplos: • • • • Recíprocamente: • • • • 4. Raíz de una División • Ejemplos: • • • • Recíprocamente:
  14. 14. ÁlgebraCompendio de Ciencias I-A 44 PASCUAL SACO OLIVEROS • • • • 5. Raíz de Raíz • • Ejemplos: • • • • • PROPIEDADES AUXILIARES • ......................................................(I) • .................................................... (II) • ................................................(III) • .................................(IV) • ..................................(V) • .......(VI) Propiedad de Raíz de Raíz : : Ejemplos Diversos: • • • • • • • • • • • • Ejemplos de las formas de Raíz de Raíz: Efectuar: • • • Desarrollar: • •
  15. 15. ÁlgebraCompendio de Ciencias I-A 45SISTEMA HELICOIDAL 1. Efectuar: a) b) 2. Efectuar: a) b) Rpta.: ....................................................... 3. Efectuar: a) b) Rpta.: ....................................................... 4. Efectuar: Rpta.: ....................................................... 5. Simplificar: I. Problema desarrollado 1. Indicar de las proposiciones que afirmaciones son correctas: A) (V) B) (F) C) (V) RESOLUCION A) La proposición es verdadera B) 9 . 3 = 9 27 = 9 La proposición es falsa C) La proposición es verdadera II. Problema por desarrollar 2. Indicar cuales de las proposiciones es verdadera (V) o falsa (F): A) ....................... ( ) B) ....................... ( ) C) ....................... ( ) RESOLUCION
  16. 16. ÁlgebraCompendio de Ciencias I-A 46 PASCUAL SACO OLIVEROS Rpta.: ....................................................... 6. Simplificar: Rpta.: ....................................................... 7. Simplificar: Rpta.: ....................................................... 8. Simplificar: Rpta.: ....................................................... 9. Simplificar: Rpta.: ....................................................... 10. Simplificar: Rpta.: ....................................................... 11. Simplificar: Rpta.: ....................................................... 12. Simplificar: Rpta.: ....................................................... 13. Simplificar: Rpta.: ....................................................... 14. Simplificar: Rpta.: ....................................................... 15. Simplificar: Rpta.: ....................................................... 16. Simplificar: Rpta.: ....................................................... 17. Simplificar: Rpta.: ....................................................... 18. Simplificar: Rpta.: ....................................................... 19. Simplificar:
  17. 17. ÁlgebraCompendio de Ciencias I-A 47SISTEMA HELICOIDAL 1. Hallar la expresión equivalente: A) B) 2. Reducir: A) 1 B) 3 C) 9 D) 27 E) 30 3. Reducir: A) 1 B) 2 C) 3 D) 4 E) 8 4. Calcular: A) B) C) D) E) 5. Calcular: A) 1 B) 2 C) 3 D) 5 E) 7 Rpta.: ....................................................... 20. Simplificar: Rpta.: .......................................................

×