SlideShare a Scribd company logo

Linked Open Data-enabled Strategies for Top-N Recommendations

Linked Open Data-enabled Strategies for Top-N Recommendations - Cataldo Musto, Pierpaolo Basile, Pasquale Lops, Marco De Gemmis and Giovanni Semeraro - 1st Workshop on New Trends in Content-based Recommender Systems, co-located with ACM Recommender Systems 2014

1 of 79
Download to read offline
CBRecSys 2014 
Workshop on New Trends in 
Content-based Recommender Systems 
Foster City (CA, United States) 
October 6, 2014 
Linked Open Data-enabled 
Strategies for Top-N 
Recommendations 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis 
(Università degli Studi di Bari ‘Aldo Moro’, Italy - SWAP Research Group)
Outline 
• Background 
• Content-based RecSys (CBRS) 
• Limitations 
• Linked Open Data 
• What? 
• Introducing LOD in CBRS 
• Experiments 
• Conclusions 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 
2 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
Content-based Recommender Systems 
Suggest items similar to those the user liked in the past 
(I bought Converse shoes, I’ll continue buying similar sport shoes) 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 
3 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
Content-based Recommender Systems 
Limitations 
Limited content 
4 
(in several domains) 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 
Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
Content-based Recommender Systems 
Limitations 
Poor Semantics 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 
5 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
How can we boost 
Content-based 
Recommender Systems 
with Semantics? 
(and with more content) 
6 
Problem 
Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 
Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
Ad

Recommended

Combining Distributional Semantics and Entity Linking for Context-aware Conte...
Combining Distributional Semantics and Entity Linking for Context-aware Conte...Combining Distributional Semantics and Entity Linking for Context-aware Conte...
Combining Distributional Semantics and Entity Linking for Context-aware Conte...Cataldo Musto
 
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...Cataldo Musto
 
Semantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open DataSemantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open DataCataldo Musto
 
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Ne...
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Ne...A Deep Architecture for Content-based Recommendations Exploiting Recurrent Ne...
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Ne...Cataldo Musto
 
Mining Big Data and Open Knowledge Sources to develop transparent and serendi...
Mining Big Data and Open Knowledge Sources to develop transparent and serendi...Mining Big Data and Open Knowledge Sources to develop transparent and serendi...
Mining Big Data and Open Knowledge Sources to develop transparent and serendi...Cataldo Musto
 
Recommender Systems based on Linked Open Data
Recommender Systems based on Linked Open DataRecommender Systems based on Linked Open Data
Recommender Systems based on Linked Open DataCataldo Musto
 
Semantics-aware Techniques for Social Media Analysis, User Modeling and Recom...
Semantics-aware Techniques for Social Media Analysis, User Modeling and Recom...Semantics-aware Techniques for Social Media Analysis, User Modeling and Recom...
Semantics-aware Techniques for Social Media Analysis, User Modeling and Recom...Cataldo Musto
 
DeCAT 2015 - International Workshop on Deep Content Analytics Techniques for ...
DeCAT 2015 - International Workshop on Deep Content Analytics Techniques for ...DeCAT 2015 - International Workshop on Deep Content Analytics Techniques for ...
DeCAT 2015 - International Workshop on Deep Content Analytics Techniques for ...Cataldo Musto
 

More Related Content

What's hot

Metadata Provenance Tutorial at SWIB 13, Part 1
Metadata Provenance Tutorial at SWIB 13, Part 1Metadata Provenance Tutorial at SWIB 13, Part 1
Metadata Provenance Tutorial at SWIB 13, Part 1Kai Eckert
 
OSFair2017 Workshop | Text mining
OSFair2017 Workshop | Text miningOSFair2017 Workshop | Text mining
OSFair2017 Workshop | Text miningOpen Science Fair
 
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...Open Science Fair
 
Open data 4 Startups @ Digital Festival Torino
Open data 4 Startups @ Digital Festival TorinoOpen data 4 Startups @ Digital Festival Torino
Open data 4 Startups @ Digital Festival Torinomzaglio
 
Information Extraction and Linked Data Cloud
Information Extraction and Linked Data CloudInformation Extraction and Linked Data Cloud
Information Extraction and Linked Data CloudDhaval Thakker
 
Keystone summer school 2015 paolo-missier-provenance
Keystone summer school 2015 paolo-missier-provenanceKeystone summer school 2015 paolo-missier-provenance
Keystone summer school 2015 paolo-missier-provenancePaolo Missier
 
The State of Linked Government Data
The State of Linked Government DataThe State of Linked Government Data
The State of Linked Government DataRichard Cyganiak
 
Linked Open Data_mlanet13
Linked Open Data_mlanet13Linked Open Data_mlanet13
Linked Open Data_mlanet13Kristi Holmes
 
Omitola birmingham cityuniv
Omitola birmingham cityunivOmitola birmingham cityuniv
Omitola birmingham cityunivTope Omitola
 
Oop principles a good book
Oop principles a good bookOop principles a good book
Oop principles a good booklahorisher
 
Linked Data for Federation of OER Data & Repositories
Linked Data for Federation of OER Data & RepositoriesLinked Data for Federation of OER Data & Repositories
Linked Data for Federation of OER Data & RepositoriesStefan Dietze
 
Online Learning and Linked Data: An Introduction
Online Learning and Linked Data: An IntroductionOnline Learning and Linked Data: An Introduction
Online Learning and Linked Data: An IntroductionEUCLID project
 
WWW2013 Tutorial: Linked Data & Education
WWW2013 Tutorial: Linked Data & EducationWWW2013 Tutorial: Linked Data & Education
WWW2013 Tutorial: Linked Data & EducationStefan Dietze
 
Exploration, visualization and querying of linked open data sources
Exploration, visualization and querying of linked open data sourcesExploration, visualization and querying of linked open data sources
Exploration, visualization and querying of linked open data sourcesLaura Po
 
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)Stefan Dietze
 
LAK Dataset and Challenge (April 2013)
LAK Dataset and Challenge (April 2013)LAK Dataset and Challenge (April 2013)
LAK Dataset and Challenge (April 2013)Stefan Dietze
 
Transcript FAIR 3 -I-for-interoperable-13-9-17
Transcript FAIR 3 -I-for-interoperable-13-9-17Transcript FAIR 3 -I-for-interoperable-13-9-17
Transcript FAIR 3 -I-for-interoperable-13-9-17ARDC
 
Transcript FAIR webinar #2: A for Accessable-06-06-2017
Transcript FAIR webinar #2: A for Accessable-06-06-2017Transcript FAIR webinar #2: A for Accessable-06-06-2017
Transcript FAIR webinar #2: A for Accessable-06-06-2017ARDC
 
Question answering in linked data
Question answering in linked dataQuestion answering in linked data
Question answering in linked dataReza Ramezani
 

What's hot (20)

Metadata Provenance Tutorial at SWIB 13, Part 1
Metadata Provenance Tutorial at SWIB 13, Part 1Metadata Provenance Tutorial at SWIB 13, Part 1
Metadata Provenance Tutorial at SWIB 13, Part 1
 
OSFair2017 Workshop | Text mining
OSFair2017 Workshop | Text miningOSFair2017 Workshop | Text mining
OSFair2017 Workshop | Text mining
 
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...
OSFair2017 Workshop | Building a global knowledge commons - ramping up reposi...
 
Open data 4 Startups @ Digital Festival Torino
Open data 4 Startups @ Digital Festival TorinoOpen data 4 Startups @ Digital Festival Torino
Open data 4 Startups @ Digital Festival Torino
 
Information Extraction and Linked Data Cloud
Information Extraction and Linked Data CloudInformation Extraction and Linked Data Cloud
Information Extraction and Linked Data Cloud
 
Keystone summer school 2015 paolo-missier-provenance
Keystone summer school 2015 paolo-missier-provenanceKeystone summer school 2015 paolo-missier-provenance
Keystone summer school 2015 paolo-missier-provenance
 
The State of Linked Government Data
The State of Linked Government DataThe State of Linked Government Data
The State of Linked Government Data
 
Linked Open Data_mlanet13
Linked Open Data_mlanet13Linked Open Data_mlanet13
Linked Open Data_mlanet13
 
Omitola birmingham cityuniv
Omitola birmingham cityunivOmitola birmingham cityuniv
Omitola birmingham cityuniv
 
Oop principles a good book
Oop principles a good bookOop principles a good book
Oop principles a good book
 
Linked Data for Federation of OER Data & Repositories
Linked Data for Federation of OER Data & RepositoriesLinked Data for Federation of OER Data & Repositories
Linked Data for Federation of OER Data & Repositories
 
Online Learning and Linked Data: An Introduction
Online Learning and Linked Data: An IntroductionOnline Learning and Linked Data: An Introduction
Online Learning and Linked Data: An Introduction
 
WWW2013 Tutorial: Linked Data & Education
WWW2013 Tutorial: Linked Data & EducationWWW2013 Tutorial: Linked Data & Education
WWW2013 Tutorial: Linked Data & Education
 
Sanderson Shout It Out: LOUD
Sanderson Shout It Out: LOUDSanderson Shout It Out: LOUD
Sanderson Shout It Out: LOUD
 
Exploration, visualization and querying of linked open data sources
Exploration, visualization and querying of linked open data sourcesExploration, visualization and querying of linked open data sources
Exploration, visualization and querying of linked open data sources
 
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)
Open Educational Data - Datasets and APIs (Athens Green Hackathon 2012)
 
LAK Dataset and Challenge (April 2013)
LAK Dataset and Challenge (April 2013)LAK Dataset and Challenge (April 2013)
LAK Dataset and Challenge (April 2013)
 
Transcript FAIR 3 -I-for-interoperable-13-9-17
Transcript FAIR 3 -I-for-interoperable-13-9-17Transcript FAIR 3 -I-for-interoperable-13-9-17
Transcript FAIR 3 -I-for-interoperable-13-9-17
 
Transcript FAIR webinar #2: A for Accessable-06-06-2017
Transcript FAIR webinar #2: A for Accessable-06-06-2017Transcript FAIR webinar #2: A for Accessable-06-06-2017
Transcript FAIR webinar #2: A for Accessable-06-06-2017
 
Question answering in linked data
Question answering in linked dataQuestion answering in linked data
Question answering in linked data
 

Viewers also liked

Innvovative cities: web de données et web sémantique, ressources ubiquitaires...
Innvovative cities: web de données et web sémantique, ressources ubiquitaires...Innvovative cities: web de données et web sémantique, ressources ubiquitaires...
Innvovative cities: web de données et web sémantique, ressources ubiquitaires...Fabien Gandon
 
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...What is #LODLAM?! Understanding linked open data in libraries, archives [and ...
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...Alison Hitchens
 
L’apport du Web sémantique à la recherche d’informations
L’apport du Web sémantique à la recherche d’informationsL’apport du Web sémantique à la recherche d’informations
L’apport du Web sémantique à la recherche d’informationsAref Jdey
 
Intro to Linked Open Data in Libraries Archives & Museums.
Intro to Linked Open Data in Libraries Archives & Museums.Intro to Linked Open Data in Libraries Archives & Museums.
Intro to Linked Open Data in Libraries Archives & Museums.Jon Voss
 
Towards an architecture and adoption process for Linked Data technologies in ...
Towards an architecture and adoption process for Linked Data technologies in ...Towards an architecture and adoption process for Linked Data technologies in ...
Towards an architecture and adoption process for Linked Data technologies in ...Jose Emilio Labra Gayo
 
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...UKSG: connecting the knowledge community
 
Linked Open Data. Definizioni, esempi, esperienze pisane
Linked Open Data. Definizioni, esempi, esperienze pisaneLinked Open Data. Definizioni, esempi, esperienze pisane
Linked Open Data. Definizioni, esempi, esperienze pisaneFrancesca Di Donato
 
L’apport des technologies du Web sémantique à la gestion des données structur...
L’apport des technologies du Web sémantique à la gestion des données structur...L’apport des technologies du Web sémantique à la gestion des données structur...
L’apport des technologies du Web sémantique à la gestion des données structur...Gautier Poupeau
 
Méthodes et outils pour interrelier le web des données
Méthodes et outils pour interrelier le web des donnéesMéthodes et outils pour interrelier le web des données
Méthodes et outils pour interrelier le web des donnéesFrançois Scharffe
 
Linked open data and libraries
Linked open data and librariesLinked open data and libraries
Linked open data and librariesAlison Hitchens
 
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & MuseumsALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & MuseumsJon Voss
 
Intro to Linked Open Data in Libraries, Archives & Museums
Intro to Linked Open Data in Libraries, Archives & MuseumsIntro to Linked Open Data in Libraries, Archives & Museums
Intro to Linked Open Data in Libraries, Archives & MuseumsJon Voss
 
Les professionnels de l'information face aux défis du Web de données
Les professionnels de l'information face aux défis du Web de donnéesLes professionnels de l'information face aux défis du Web de données
Les professionnels de l'information face aux défis du Web de donnéesGautier Poupeau
 
#opentourism - Linked Open Data Publishing and Discovery Workshop
#opentourism - Linked Open Data Publishing and Discovery Workshop#opentourism - Linked Open Data Publishing and Discovery Workshop
#opentourism - Linked Open Data Publishing and Discovery WorkshopRaf Buyle
 
Linked Open Data for Libraries
Linked Open Data for LibrariesLinked Open Data for Libraries
Linked Open Data for LibrariesLukas Koster
 
Overview of Open Data, Linked Data and Web Science
Overview of Open Data, Linked Data and Web ScienceOverview of Open Data, Linked Data and Web Science
Overview of Open Data, Linked Data and Web ScienceHaklae Kim
 
EIFL 2014 - Linked Open Data
EIFL 2014 - Linked Open DataEIFL 2014 - Linked Open Data
EIFL 2014 - Linked Open DataAntoine Isaac
 
LODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data WorkshopLODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data WorkshopMyungjin Lee
 
Usage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application ScenariosUsage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application ScenariosEUCLID project
 
Quelques repères sur le Web sémantique / Web de données
Quelques repères sur le Web sémantique / Web de donnéesQuelques repères sur le Web sémantique / Web de données
Quelques repères sur le Web sémantique / Web de donnéesBe_Sa
 

Viewers also liked (20)

Innvovative cities: web de données et web sémantique, ressources ubiquitaires...
Innvovative cities: web de données et web sémantique, ressources ubiquitaires...Innvovative cities: web de données et web sémantique, ressources ubiquitaires...
Innvovative cities: web de données et web sémantique, ressources ubiquitaires...
 
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...What is #LODLAM?! Understanding linked open data in libraries, archives [and ...
What is #LODLAM?! Understanding linked open data in libraries, archives [and ...
 
L’apport du Web sémantique à la recherche d’informations
L’apport du Web sémantique à la recherche d’informationsL’apport du Web sémantique à la recherche d’informations
L’apport du Web sémantique à la recherche d’informations
 
Intro to Linked Open Data in Libraries Archives & Museums.
Intro to Linked Open Data in Libraries Archives & Museums.Intro to Linked Open Data in Libraries Archives & Museums.
Intro to Linked Open Data in Libraries Archives & Museums.
 
Towards an architecture and adoption process for Linked Data technologies in ...
Towards an architecture and adoption process for Linked Data technologies in ...Towards an architecture and adoption process for Linked Data technologies in ...
Towards an architecture and adoption process for Linked Data technologies in ...
 
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...
UKSG webinar: Making Connections - Creating Linked Open Library Data with Nei...
 
Linked Open Data. Definizioni, esempi, esperienze pisane
Linked Open Data. Definizioni, esempi, esperienze pisaneLinked Open Data. Definizioni, esempi, esperienze pisane
Linked Open Data. Definizioni, esempi, esperienze pisane
 
L’apport des technologies du Web sémantique à la gestion des données structur...
L’apport des technologies du Web sémantique à la gestion des données structur...L’apport des technologies du Web sémantique à la gestion des données structur...
L’apport des technologies du Web sémantique à la gestion des données structur...
 
Méthodes et outils pour interrelier le web des données
Méthodes et outils pour interrelier le web des donnéesMéthodes et outils pour interrelier le web des données
Méthodes et outils pour interrelier le web des données
 
Linked open data and libraries
Linked open data and librariesLinked open data and libraries
Linked open data and libraries
 
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & MuseumsALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
 
Intro to Linked Open Data in Libraries, Archives & Museums
Intro to Linked Open Data in Libraries, Archives & MuseumsIntro to Linked Open Data in Libraries, Archives & Museums
Intro to Linked Open Data in Libraries, Archives & Museums
 
Les professionnels de l'information face aux défis du Web de données
Les professionnels de l'information face aux défis du Web de donnéesLes professionnels de l'information face aux défis du Web de données
Les professionnels de l'information face aux défis du Web de données
 
#opentourism - Linked Open Data Publishing and Discovery Workshop
#opentourism - Linked Open Data Publishing and Discovery Workshop#opentourism - Linked Open Data Publishing and Discovery Workshop
#opentourism - Linked Open Data Publishing and Discovery Workshop
 
Linked Open Data for Libraries
Linked Open Data for LibrariesLinked Open Data for Libraries
Linked Open Data for Libraries
 
Overview of Open Data, Linked Data and Web Science
Overview of Open Data, Linked Data and Web ScienceOverview of Open Data, Linked Data and Web Science
Overview of Open Data, Linked Data and Web Science
 
EIFL 2014 - Linked Open Data
EIFL 2014 - Linked Open DataEIFL 2014 - Linked Open Data
EIFL 2014 - Linked Open Data
 
LODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data WorkshopLODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data Workshop
 
Usage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application ScenariosUsage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application Scenarios
 
Quelques repères sur le Web sémantique / Web de données
Quelques repères sur le Web sémantique / Web de donnéesQuelques repères sur le Web sémantique / Web de données
Quelques repères sur le Web sémantique / Web de données
 

Similar to Linked Open Data-enabled Strategies for Top-N Recommendations

Introduction to question answering for linked data & big data
Introduction to question answering for linked data & big dataIntroduction to question answering for linked data & big data
Introduction to question answering for linked data & big dataAndre Freitas
 
Managing Metadata for Science and Technology Studies: the RISIS case
Managing Metadata for Science and Technology Studies: the RISIS caseManaging Metadata for Science and Technology Studies: the RISIS case
Managing Metadata for Science and Technology Studies: the RISIS caseRinke Hoekstra
 
Growth of SAFe in Government Acquisitions, Contracts, & Portfolios
Growth of SAFe in Government Acquisitions, Contracts, & PortfoliosGrowth of SAFe in Government Acquisitions, Contracts, & Portfolios
Growth of SAFe in Government Acquisitions, Contracts, & PortfoliosDavid Rico
 
Adoption of the Linked Data Best Practices in Different Topical Domains
Adoption of the Linked Data Best Practices in Different Topical DomainsAdoption of the Linked Data Best Practices in Different Topical Domains
Adoption of the Linked Data Best Practices in Different Topical DomainsChris Bizer
 
Self adaptive based natural language interface for disambiguation of
Self adaptive based natural language interface for disambiguation ofSelf adaptive based natural language interface for disambiguation of
Self adaptive based natural language interface for disambiguation ofNurfadhlina Mohd Sharef
 
Extreme-scale Identity Management for Scientific Collaborations
Extreme-scale Identity Management for Scientific CollaborationsExtreme-scale Identity Management for Scientific Collaborations
Extreme-scale Identity Management for Scientific CollaborationsVon Welch
 
Managing, Sharing and Curating Your Research Data in a Digital Environment
Managing, Sharing and Curating Your Research Data in a Digital EnvironmentManaging, Sharing and Curating Your Research Data in a Digital Environment
Managing, Sharing and Curating Your Research Data in a Digital Environmentphilipdurbin
 
Building and Communicating Evidence of Effectiveness in OER through Collectiv...
Building and Communicating Evidence of Effectiveness in OER through Collectiv...Building and Communicating Evidence of Effectiveness in OER through Collectiv...
Building and Communicating Evidence of Effectiveness in OER through Collectiv...Robert Farrow
 
"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote
"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote
"Designing for Truth, Scale and Sustainability" - WSSSPE2 KeynoteKaitlin Thaney
 
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH     Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH Philip Bourne
 
Semantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSemantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSaeedeh Shekarpour
 
Using Bibliometrics to Keep Up with the Joneses
Using Bibliometrics to Keep Up with the JonesesUsing Bibliometrics to Keep Up with the Joneses
Using Bibliometrics to Keep Up with the JonesesChristina Pikas
 
Priorities for Research Data Services
Priorities for Research Data ServicesPriorities for Research Data Services
Priorities for Research Data ServicesGiuseppe Sollazzo
 
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...Shalin Hai-Jew
 
Spark Social Media
Spark Social Media Spark Social Media
Spark Social Media suresh sood
 
An introduction to open data
An introduction to open dataAn introduction to open data
An introduction to open dataSally Lait
 
The Pistoia Alliance Biology Domain Strategy April 2011
The Pistoia Alliance Biology Domain Strategy April 2011The Pistoia Alliance Biology Domain Strategy April 2011
The Pistoia Alliance Biology Domain Strategy April 2011Pistoia Alliance
 
Around Data Science (v. 2020 ITA)
Around Data Science (v. 2020 ITA)Around Data Science (v. 2020 ITA)
Around Data Science (v. 2020 ITA)Frieda Brioschi
 

Similar to Linked Open Data-enabled Strategies for Top-N Recommendations (20)

Introduction to question answering for linked data & big data
Introduction to question answering for linked data & big dataIntroduction to question answering for linked data & big data
Introduction to question answering for linked data & big data
 
Managing Metadata for Science and Technology Studies: the RISIS case
Managing Metadata for Science and Technology Studies: the RISIS caseManaging Metadata for Science and Technology Studies: the RISIS case
Managing Metadata for Science and Technology Studies: the RISIS case
 
Holmes "Institutional Infrastructure for Data Sharing"
Holmes "Institutional Infrastructure for Data Sharing"Holmes "Institutional Infrastructure for Data Sharing"
Holmes "Institutional Infrastructure for Data Sharing"
 
Growth of SAFe in Government Acquisitions, Contracts, & Portfolios
Growth of SAFe in Government Acquisitions, Contracts, & PortfoliosGrowth of SAFe in Government Acquisitions, Contracts, & Portfolios
Growth of SAFe in Government Acquisitions, Contracts, & Portfolios
 
Adoption of the Linked Data Best Practices in Different Topical Domains
Adoption of the Linked Data Best Practices in Different Topical DomainsAdoption of the Linked Data Best Practices in Different Topical Domains
Adoption of the Linked Data Best Practices in Different Topical Domains
 
Self adaptive based natural language interface for disambiguation of
Self adaptive based natural language interface for disambiguation ofSelf adaptive based natural language interface for disambiguation of
Self adaptive based natural language interface for disambiguation of
 
Extreme-scale Identity Management for Scientific Collaborations
Extreme-scale Identity Management for Scientific CollaborationsExtreme-scale Identity Management for Scientific Collaborations
Extreme-scale Identity Management for Scientific Collaborations
 
Managing, Sharing and Curating Your Research Data in a Digital Environment
Managing, Sharing and Curating Your Research Data in a Digital EnvironmentManaging, Sharing and Curating Your Research Data in a Digital Environment
Managing, Sharing and Curating Your Research Data in a Digital Environment
 
Building and Communicating Evidence of Effectiveness in OER through Collectiv...
Building and Communicating Evidence of Effectiveness in OER through Collectiv...Building and Communicating Evidence of Effectiveness in OER through Collectiv...
Building and Communicating Evidence of Effectiveness in OER through Collectiv...
 
"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote
"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote
"Designing for Truth, Scale and Sustainability" - WSSSPE2 Keynote
 
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH     Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH
Ask Not What the NIH Can Do For You; Ask What You Can Do For the NIH
 
Semantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSemantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked Data
 
NISO/NFAIS Joint Virtual Conference: Connecting the Library to the Wider Wor...
NISO/NFAIS Joint Virtual Conference:  Connecting the Library to the Wider Wor...NISO/NFAIS Joint Virtual Conference:  Connecting the Library to the Wider Wor...
NISO/NFAIS Joint Virtual Conference: Connecting the Library to the Wider Wor...
 
Using Bibliometrics to Keep Up with the Joneses
Using Bibliometrics to Keep Up with the JonesesUsing Bibliometrics to Keep Up with the Joneses
Using Bibliometrics to Keep Up with the Joneses
 
Priorities for Research Data Services
Priorities for Research Data ServicesPriorities for Research Data Services
Priorities for Research Data Services
 
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...
Setting Up a Qualitative or Mixed Methods Research Project in NVivo 10 to Cod...
 
Spark Social Media
Spark Social Media Spark Social Media
Spark Social Media
 
An introduction to open data
An introduction to open dataAn introduction to open data
An introduction to open data
 
The Pistoia Alliance Biology Domain Strategy April 2011
The Pistoia Alliance Biology Domain Strategy April 2011The Pistoia Alliance Biology Domain Strategy April 2011
The Pistoia Alliance Biology Domain Strategy April 2011
 
Around Data Science (v. 2020 ITA)
Around Data Science (v. 2020 ITA)Around Data Science (v. 2020 ITA)
Around Data Science (v. 2020 ITA)
 

More from Cataldo Musto

MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
MyrrorBot: a Digital Assistant Based on Holistic User Models forPersonalize...MyrrorBot: a Digital Assistant Based on Holistic User Models forPersonalize...
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...Cataldo Musto
 
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Fairness and Popularity Bias in Recommender Systems: an Empirical EvaluationFairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Fairness and Popularity Bias in Recommender Systems: an Empirical EvaluationCataldo Musto
 
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...Cataldo Musto
 
Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploring the Effects of Natural Language Justifications in Food Recommender ...Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploring the Effects of Natural Language Justifications in Food Recommender ...Cataldo Musto
 
Exploiting Distributional Semantics Models for Natural Language Context-aware...
Exploiting Distributional Semantics Models for Natural Language Context-aware...Exploiting Distributional Semantics Models for Natural Language Context-aware...
Exploiting Distributional Semantics Models for Natural Language Context-aware...Cataldo Musto
 
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...Cataldo Musto
 
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...Cataldo Musto
 
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph EmbeddingsHybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph EmbeddingsCataldo Musto
 
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
Natural Language Justifications for Recommender Systems Exploiting Text Summa...Natural Language Justifications for Recommender Systems Exploiting Text Summa...
Natural Language Justifications for Recommender Systems Exploiting Text Summa...Cataldo Musto
 
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA RispondeL'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA RispondeCataldo Musto
 
Explanation Strategies - Advances in Content-based Recommender System
Explanation Strategies - Advances in Content-based Recommender SystemExplanation Strategies - Advances in Content-based Recommender System
Explanation Strategies - Advances in Content-based Recommender SystemCataldo Musto
 
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...Cataldo Musto
 
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...ExpLOD: un framework per la generazione di spiegazioni per recommender system...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...Cataldo Musto
 
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
Myrror: una piattaforma per Holistic User Modeling e Quantified SelfMyrror: una piattaforma per Holistic User Modeling e Quantified Self
Myrror: una piattaforma per Holistic User Modeling e Quantified SelfCataldo Musto
 
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Semantic Holistic User Modeling for Personalized Access to Digital Content an...Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Semantic Holistic User Modeling for Personalized Access to Digital Content an...Cataldo Musto
 
Holistic User Modeling for Personalized Services in Smart Cities
Holistic User Modeling for Personalized Services in Smart CitiesHolistic User Modeling for Personalized Services in Smart Cities
Holistic User Modeling for Personalized Services in Smart CitiesCataldo Musto
 
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
A Framework for Holistic User Modeling Merging Heterogeneous Digital FootprintsA Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
A Framework for Holistic User Modeling Merging Heterogeneous Digital FootprintsCataldo Musto
 
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?Cataldo Musto
 
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...Cataldo Musto
 
Il Linguaggio dell'Odio sui Social Network
Il Linguaggio dell'Odio sui Social NetworkIl Linguaggio dell'Odio sui Social Network
Il Linguaggio dell'Odio sui Social NetworkCataldo Musto
 

More from Cataldo Musto (20)

MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
MyrrorBot: a Digital Assistant Based on Holistic User Models forPersonalize...MyrrorBot: a Digital Assistant Based on Holistic User Models forPersonalize...
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
 
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Fairness and Popularity Bias in Recommender Systems: an Empirical EvaluationFairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
 
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
 
Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploring the Effects of Natural Language Justifications in Food Recommender ...Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploring the Effects of Natural Language Justifications in Food Recommender ...
 
Exploiting Distributional Semantics Models for Natural Language Context-aware...
Exploiting Distributional Semantics Models for Natural Language Context-aware...Exploiting Distributional Semantics Models for Natural Language Context-aware...
Exploiting Distributional Semantics Models for Natural Language Context-aware...
 
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
 
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
 
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph EmbeddingsHybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
 
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
Natural Language Justifications for Recommender Systems Exploiting Text Summa...Natural Language Justifications for Recommender Systems Exploiting Text Summa...
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
 
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA RispondeL'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
 
Explanation Strategies - Advances in Content-based Recommender System
Explanation Strategies - Advances in Content-based Recommender SystemExplanation Strategies - Advances in Content-based Recommender System
Explanation Strategies - Advances in Content-based Recommender System
 
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
 
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...ExpLOD: un framework per la generazione di spiegazioni per recommender system...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
 
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
Myrror: una piattaforma per Holistic User Modeling e Quantified SelfMyrror: una piattaforma per Holistic User Modeling e Quantified Self
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
 
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Semantic Holistic User Modeling for Personalized Access to Digital Content an...Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
 
Holistic User Modeling for Personalized Services in Smart Cities
Holistic User Modeling for Personalized Services in Smart CitiesHolistic User Modeling for Personalized Services in Smart Cities
Holistic User Modeling for Personalized Services in Smart Cities
 
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
A Framework for Holistic User Modeling Merging Heterogeneous Digital FootprintsA Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
 
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
 
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
 
Il Linguaggio dell'Odio sui Social Network
Il Linguaggio dell'Odio sui Social NetworkIl Linguaggio dell'Odio sui Social Network
Il Linguaggio dell'Odio sui Social Network
 

Linked Open Data-enabled Strategies for Top-N Recommendations

  • 1. CBRecSys 2014 Workshop on New Trends in Content-based Recommender Systems Foster City (CA, United States) October 6, 2014 Linked Open Data-enabled Strategies for Top-N Recommendations Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis (Università degli Studi di Bari ‘Aldo Moro’, Italy - SWAP Research Group)
  • 2. Outline • Background • Content-based RecSys (CBRS) • Limitations • Linked Open Data • What? • Introducing LOD in CBRS • Experiments • Conclusions Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 2 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 3. Content-based Recommender Systems Suggest items similar to those the user liked in the past (I bought Converse shoes, I’ll continue buying similar sport shoes) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 3 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 4. Content-based Recommender Systems Limitations Limited content 4 (in several domains) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 5. Content-based Recommender Systems Limitations Poor Semantics Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 5 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 6. How can we boost Content-based Recommender Systems with Semantics? (and with more content) 6 Problem Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 7. 7 Semantics in CBRS State of the art Ontologies X Folksonomies Distributional Semantics Encyclopedic Knowledge Linked Open Data Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 8. 8 Top-down approaches What is the difference? X Formal Semantics Large-scale Folksonomies X X Ontologies V X Encyclopedic Knowledge X V Distributional Semantics X V Linked Open Data V V Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 9. 9 Top-down approaches What is the difference? X Formal Semantics Large-scale Folksonomies X X Ontologies V X Encyclopedic Knowledge X V Distributional Semantics X V Linked Open Data V V Linked Open Data merge the vastness of encyclopedic knowledge with the formal semantics typical of ontologies Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 10. 10 Top-down approaches What is the difference? X We focus on the introduction of Formal Semantics Large-scale Folksonomies X X Linked Open Data in Ontologies V X Content-based Recommender Encyclopedic Knowledge X V Systems Distributional Semantics X V Linked Open Data V V Linked Open Data merge the vastness of encyclopedic knowledge with the formal semantics typical of ontologies Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 11. 11 Linked Open Data What are we talking about? Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 12. 12 Linked Open Data Definition Methodology to publish, share and link structured data on the Web Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 13. 13 Linked Open Data (cloud) What is it? A (large) set of interconnected semantic datasets Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 14. 14 Linked Open Data (cloud) What kind of datasets? Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 15. 15 Linked Open Data (cloud) DBpedia http://dbpedia.org Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 16. 16 Linked Open Data (cloud) http://dbpedia.org DBpedia DBpedia is the structured mapping of Wikipedia It is the core of the LOD cloud. Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 17. 17 Linked Open Data (cloud) Example: unstructured content from Wikipedia example “Foster City is a town in United States located in California” (from Wikipedia page) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 18. 18 Linked Open Data (cloud) How are these data represented? Semantic Web cake Information from the LOD cloud is represented in RDF Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 19. “Foster City is a town in United States located in California” 19 Linked Open Data (cloud) How are these data represented? Foster City United States http://dbpedia.org/resource/United_States California http://dbpedia.org/resource/Foster_City,_California http://dbpedia.org/resource/California dbpedia-owl:country dbpedia-owl:isPartOf example (from Wikipedia page) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 20. “Foster City is a town in United States located in California” 20 Linked Open Data (cloud) How are these data represented? Data coming from the LOD cloud have a formal semantics represented in RDF Foster City United States http://dbpedia.org/resource/United_States California http://dbpedia.org/resource/Foster_City,_California http://dbpedia.org/resource/California dbpedia-owl:country dbpedia-owl:isPartOf example (from Wikipedia page) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 21. 21 Our checklist Can Linked Open Data boost content-based recommender systems? More Semantics More Content V ? Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 22. 22 Linked Open Data (cloud) How many data? Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 23. 23 Linked Open Data (cloud) How many data? 1048 datasets and 58 billions triples source: http://stats.lod2.eu Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 24. 24 Our checklist Can Linked Open Data boost content-based recommender systems? More Semantics More Content V V Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 25. 25 Our checklist Can Linked Open Data boost content-based recommender systems? More Semantics More Content V V …but Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 26. 26 Research Question Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 27. 27 Approach We propose two methodologies to introduce LOD-based features into CBRS Direct Access to DBpedia Entity Linking algorithms Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 28. Introducing LOD-based features in CBRS 28 Methodology :: Direct Access to DBpedia (We assume that each item to be recommender is already in the LOD cloud) The simplest way to introduce LOD-based features Domain-dependent features are manually defined 1. 2. (e.g. book recommendation —> genre, author, publisher, subject, etc.) SPARQL queries extract features’ values Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 29. Introducing LOD-based features in CBRS Example: The Great and Secret Show (Clive Barker’s book) 29 Methodology :: Direct Access to DBpedia Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 30. Introducing LOD-based features in CBRS 30 Methodology :: Direct Access to DBpedia e.g. Book Recommendation: author, genre, publisher, subject Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 31. Introducing LOD-based features in CBRS 31 Methodology :: Direct Access to DBpedia Each item is represented through the set of the (manually defined) features extracted from the LOD cloud. Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 32. Introducing LOD-based features in CBRS 32 Methodology :: Direct Access to DBpedia 9 LOD-based features: author (Clive Barker), genre (Fantasy Literature), publisher (William Collins), series (Books of the Art), subject (1980s fantasy novels, William Collins books, Novels by Clive Barker, British Fantasy Novels) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 33. 33 Direct Access to DBpedia Analysis - Very Straightforward approach - SPARQL queries can be easily built - Properties are manually defined - Approach is strongly domain-dependent - Does not exploit unstructured information Pros: Cons: Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 34. Introducing LOD-based features in CBRS Methodology :: Entity Linking algorithms • Entity Linking Algorithms! • Input: free text. • items description, in our setting • Output: identification of the most relevant entities mentioned in the text. • State of the art • tag.me(1), • DBpedia Spotlight(2), • Wikipedia Miner(3) (1) http://tagme.di.unipi.it (2) http://spotlight.dbpedia.org (3) http://wikipedia-miner.cms.waikato.ac.nz Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 34 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 35. Introducing LOD-based features in CBRS Methodology :: Entity Linking algorithms • Entity Linking Algorithms! • Input: free text. • items description, in our setting • Output: identification of the most relevant entities mentioned in the text. • State of the art • tag.me(1), • DBpedia Spotlight(2), • Wikipedia Miner(3) (1) http://tagme.di.unipi.it (2) http://spotlight.dbpedia.org (3) http://wikipedia-miner.cms.waikato.ac.nz Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 35 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 36. Introducing LOD-based features in CBRS 36 Methodology :: Entity Linking algorithms • Entity Linking Algorithms! • Input: free text. • in this setting: textual description of the items (e.g. Wikipedia abstract) • Output: identification of the most relevant entities mentioned in the text. from Tagme Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 37. Introducing LOD-based features in CBRS Entity Linking - output 37 Methodology :: Entity Linking algorithms Very human-readable representation! Free n-grams and entity recognition, free sense disambiguation Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 38. Introducing LOD-based features in CBRS Entity Linking - output not a simple textual feature! Each entity is a reference to a DBpedia node http://dbpedia.org/resource/Harry_D'Amour 38 Methodology :: Entity Linking algorithms Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 39. Introducing LOD-based features in CBRS Methodology :: Entity Linking algorithms LOD-based representation can be enriched! through broader categories by exploiting SPARQL queries 39 encoded in the dcterms:subject property Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 40. Introducing LOD-based features in CBRS The final representation of each item is obtained by merging the DBpedia nodes identified in the text with those the dcterms:subjects property refers to (broader categories) dbpedia nodes+ broader categories Features = 40 Methodology :: Entity Linking algorithms Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 41. 41 Entity Linking Algorithms Analysis Pros: Cons: - Exploit unstructured information - Very general approach - May introduce unexpected (but relevant) features - Strong features engineering (which ones are the best?) - Threshold score of Entity Linking algorithms is difficult to be set Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 42. 42 LOD-based features in CBRS Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 43. Experimental Evaluation Research Hypothesis 43 1. Which is the contribution of the Linked Open Data features to the accuracy of recommendation algorithms? 2. Does the representation based on Linked Open Data outperform existing state-of-the-art recommendation algorithms? Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 44. Experimental Evaluation Description of the dataset 44 • Book recommendation • ESWC 2014 Challenge Dataset (*) • 6,733 books • 6,181 users • 72,372 binary ratings • 11.71 ratings/user • Very sparse dataset! • Only 5.37 positive ratings/user! (*) http://challenges.2014.eswc-conferences.org/index.php/RecSys Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 45. Experimental Evaluation Feature combinations 45 • Content (crawled from Wikipedia + NLP processing) • LOD (direct access to DBpedia) • Entity Linking (Tagme) • Content + LOD • Content + Entity Linking • LOD + Entity Linking • All 7 combinations for each run Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 46. Experimental Evaluation Setup 46 • Evaluation of the effectiveness of LOD-based features on varying six different recommendation algorithms • Vector Space Models • VSM • BM25 • eVSM (*) • Classifiers • Random Forests • Linear Regression • Graph-based Approaches • PageRank with Priors (*) C. Musto: Enhanced vector space models for content-based recommender systems. RecSys 2010: 361-364 Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 47. Experimental Evaluation Design of the Experiment :: Vector Space Models 47 User profile (built upon the features describing the items the user liked) used as query Cosine Similarity to get the most similar items Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 48. Experimental Evaluation Design of the Experiment :: Classifiers 48 Random Forests learn a classification model which is used to predict the class (positive/negative) of unlabeled item.! Model is based! on the features coming from labeled items. Linear Regression also uses “basic” features (e.g. positive and negative ratings, average rating of the user, ratio between positive and negative ratings, etc.) to learn the model. Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 49. Experimental Evaluation Design of the Experiment :: PageRank with Priors (PRP) graph-based representation users, items = nodes positive feedback = edges PageRank calculates the ‘importance’ of a node according to the quality and the number of its connections Equal probability is assigned to all the nodes, by default Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 49 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 50. Experimental Evaluation Design of the Experiment :: PageRank with Priors (PRP) graph-based representation users, items = nodes positive feedback = edges PageRank calculates the ‘importance’ of a node according to the quality and the number of its connections PageRank with Priors introduces a bias towards some nodes ! (in our setting, the items the user liked) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 50 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 51. Experimental Evaluation Design of the Experiment :: PageRank with Priors (PRP) 51 Several strategies to build the graph are compared 1. no-LOD. Graph only models users and items 2. small-LOD. Graph expanded with new nodes by adding basic properties (subject, genre, publisher, author, etc.), of the items as well as their relationships 3. big-LOD. Graph is further expanded by introducing more nodes (e.g. other resources of the same genre, other resources written by the authors, etc.), as well as their relationships Rationale: the introduction of new nodes and connections coming from the LOD cloud can improve the effectiveness of the PageRank. Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 52. Experimental Evaluation Design of the Experiment :: PageRank with Priors (PRP) 52 Several strategies to build the graph are compared 1. no-LOD. Graph only models users and items 2. small-LOD. Graph expanded with new nodes by adding basic properties (subject, genre, publisher, author, etc.), of the items as well as their relationships 3. big-LOD. Graph is further expanded by introducing more nodes (e.g. other resources of the same genre, other resources written by the authors, etc.), as well as their relationships PRP is run and items in the test set are ranked according to their PageRank Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 53. Experimental Evaluation Recap 6 algorithms 7 set of features • Content • LOD • Entity Linking • Content + LOD • Content + Entity Linking • LOD + Entity Linking • All • VSM • BM25 • eVSM • Linear Regression • Random Forests • Page Rank With Priors Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 53 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 54. Experiment 1 54 Impact of LOD-based features. Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 55. Impact of LOD-based features :: VECTOR SPACE MODEL CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 54,62 54,42 54,59 54,47 54,36 54,69 53,79 +0,17 +0,05 53 53,5 54 54,5 55 55 LOD-based features improve F1-measure Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 56. Impact of LOD-based features :: VECTOR SPACE MODEL CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 54,62 54,42 54,59 54,47 54,36 paired t-test (p<0.01) 54,69 53,79 +0,17 +0,05 53 53,5 54 54,5 55 56 Statistically significant improvement Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 57. Impact of LOD-based features :: VECTOR SPACE MODEL CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 54,62 54,42 54,59 54,47 +0,27 54,36 54,69 53,79 paired t-test (p<0.01) 53 53,5 54 54,5 55 57 Best: LOD+Entity Linking (No Content!) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 58. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 54,43 54,56 54,51 54,6 -1,00% 53,9 53,91 53,43 53 53,5 54 54,5 55 58 Impact of LOD-based features :: BM25 Worst (again): LOD alone Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 59. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 54,43 54,56 54,51 54,6 53,9 53,91 53,43 +0,17 paired t-test (p<0.01) 53 53,5 54 54,5 55 59 Impact of LOD-based features :: BM25 Best (again): LOD+Entity Linking (With Content!) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 60. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 52,9 53,07 52,8 53,04 53,02 paired t-test (p<0.01) 53,37 52,06 +0,47 +0,17 +0,14 +0,12 51 51,75 52,5 53,25 54 60 Impact of LOD-based features :: EVSM Introduction of LOD-based features leads to an improvement again Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 61. Experiment 1 Impact of LOD-based features :: LESSONS LEARNED FOR VSMS 61 VSM BM25 eVSM 1. 2. LOD features alone are always the worst configuration. (At least) a LOD-based representation based on Entity Linking always improve the content alone Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 62. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL 53,86 Experiment 1 53,68 53,75 53,76 53,77 53,34 53,52 +0,36 53 53,25 53,5 53,75 54 62 Impact of LOD-based features :: RANDOM FORESTS Similar outcomes: all but LOD alone lead to improvement Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 63. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL 53,86 Experiment 1 53,68 53,75 53,76 53,77 53,34 53,52 +0,36 53 53,25 53,5 53,75 54 63 Impact of LOD-based features :: RANDOM FORESTS Content does matter: LOD+entity+content is the best Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 64. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 55,59 55,59 55,67 55,64 55,61 +0,08 55,5 55,57 paired t-test (p<0.01) 55 55,25 55,5 55,75 56 64 Impact of LOD-based features :: LINEAR REGRESSION Entity-based representation is the best one Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 65. CONTENT LOD ENTITY CONTENT+LOD CONTENT+ENTITY LOD+ENTITY ALL Experiment 1 55,59 55,59 55,67 55,64 55,61 +0,08 55,5 55,57 paired t-test (p<0.01) 55 55,25 55,5 55,75 56 65 Impact of LOD-based features :: LINEAR REGRESSION BTW, smaller improvements (due to basic features?) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 66. Experiment 1 Impact of LOD-based features :: LESSONS LEARNED FOR CLASSIFIERS 66 RF LR 1. 2. LOD features alone never overcome the content (At least) a LOD-based representation based on Entity Linking always improve the content alone Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 67. Experiment 1 Impact of LOD-based features :: LESSONS LEARNED FOR CLASSIFIERS 67 Same LR outcomes RF (algorithm-independent behaviour) 1. 2. LOD features alone never overcome the content (At least) a LOD-based representation based on Entity Linking always improve the content alone Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 68. Experiment 1 Impact of LOD-based features :: LESSONS LEARNED FOR CLASSIFIERS 68 Same LR outcomes RF (algorithm-independent behaviour) 1. 2. LOD features alone never overcome the content (At least) a LOD-based representation based on Entity Linking always improve the content alone Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 69. Experiment 1 Impact of LOD-based features :: PAGERANK WITH PRIORS +0,45 55,44 54,73 54,28 +1,16 paired t-test (p<0.001) 53 54 55 56 57 69 NO-LOD SMALL-LOD BIG-LOD The more LOD-based data, the best the accuracy Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 70. Impact of LOD-based features :: PAGERANK WITH PRIORS NO-LOD SMALL-LOD BIG-LOD Experiment 1 55,44 54,73 54,28 53 54 55 56 57 Drawback: more nodes produce an exponential growth of computational costs (from 3 hours to 120 hours to run the experiment!) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014 70 +0,45 +1,16 paired t-test (p<0.001)
  • 71. [*] V. Ostuni, T. Di Noia, E. Di Sciascio, R. Mirizzi: Top-N recommendations from implicit feedback leveraging Linked Open Data. RECSYS 2013 [+] S. Rendle, C.Freudenthaler, Z. Gantner, L. Schmidt-Thieme: BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI 2009. Experiment 2 71 Comparison to State of the art SPRANK (Semantic Path Ranking)[*] BPRMF (Bayesian Personalized Ranking) [+] U2U_CF (User to User CF) I2I_CF (Item to Item CF) Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 72. VSM LR PRP SPRANK BPRMF U2U_CF I2I_CF Experiment 2 52,27 52,28 52,24 54,12 55,67 55,44 54,69 baselines 51 52,25 53,5 54,75 56 Our best-performing configurations are considered as baseline 72 Comparison to state of the art Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 73. VSM LR PRP SPRANK BPRMF U2U_CF I2I_CF Experiment 2 52,27 52,28 52,24 54,12 55,67 55,44 54,69 51 52,25 53,5 54,75 56 Classical CF techniques poorly performs (sparsity?) 73 Comparison to state of the art Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 74. VSM LR PRP SPRANK BPRMF U2U_CF I2I_CF Experiment 2 52,27 52,28 52,24 54,12 55,67 55,44 54,69 ! -3,4% 51 52,25 53,5 54,75 56 74 Comparison to state of the art +3,4% over LOD-based state of the art algorithm Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 75. VSM LR PRP SPRANK BPRMF U2U_CF I2I_CF Experiment 2 52,27 52,28 52,24 54,12 +0,57 55,67 55,44 54,69 +1,55 51 52,25 53,5 54,75 56 75 Comparison to state of the art Our approaches overcome Matrix Factorization Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014 +0,32
  • 76. Conclusions Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. 76 Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 77. Lessons Learned INVESTIGATION ABOUT THE EFFECTIVENESS OF LINKED OPEN DATA IN Two Solutions have been proposed.! Direct Access to DBpedia and Entity Linking Algorithms! ! Evaluation.! Research Question: What is the impact of LOD-based features on VSM, Classifiers and Graph-based Algorithms?! All recommendation approaches significantly benefit of the introduction of LOD-based features! Our best-performing configurations overcomes both collaborative and LOD-based state of the art algorithms 77 CONTENT-BASED RECOMMENDATION TASKS Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 78. Future Research 78 Evaluation against different datasets and stronger baselines; Better (automatic) tuning of parameters and integration of more LOD-based datasources Evaluation of Novelty, Diversity and Serendipity on LOD-based Recommendations; Cataldo Musto, Pierpaolo Basile, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis. Linked Open Data-enabled Strategies for Top-N Recommendation. CBRecSys 2014 Workshop, Silicon Valley (US), 6.10.2014
  • 79. questions? Cataldo Musto, Ph.D cataldo.musto@uniba.it