Vulcanismo

11,965 views

Published on

Published in: Education
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
11,965
On SlideShare
0
From Embeds
0
Number of Embeds
597
Actions
Shares
0
Downloads
108
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Vulcanismo

  1. 1. Vulcanismo<br />Fenómeno que consiste en la salida desde el interior de la Tierra hacia el exterior de rocas fundidas o magma, acompañada de emisión a la atmósfera de gases. <br />El magma y los gases rompen las zonas más débiles de la corteza externa de la Tierra o litosfera para llegar a la superficie. Estas debilidades se encuentran sobre todo a lo largo de los límites entre placas tectónicas, que es donde se concentra la mayor parte del vulcanismo. Cuando el magma y los gases alcanzan la superficie a través de las chimeneas o fisuras de la corteza, forman estructuras geológicas llamadas volcanes.<br />Este vulcanismo de fisura ocurre sobre todo en los bordes constructivos de las placas en que está dividida la litosfera. El magma ascendente enfriado producido por el vulcanismo de fisura el que forma el nuevo fondo oceánico. Por tanto, la mayor parte de la actividad volcánica permanece oculta bajo los mares.<br />
  2. 2. VULCANISMO DE SUPERFICIE O CONTINENTAL Y VULCANISMO DE FISURA<br />El vulcanismo de superficie o continental es mucho menos importante que el submarino en cuanto a volumen de magma expulsado, pero se conoce mucho mejor porque es visible y afecta directamente al ser humano. Se sabe desde hace mucho tiempo que la actividad volcánica oscila desde las explosiones violentas hasta la suave extrusión de magma, que pasa a llamarse lava cuando cae en la superficie terrestre.<br />El vulcanismo de fisura se asocia con dorsales oceánicas, pero también ocurre en tierra, y en algunos casos con resultados espectaculares. Estos volcanes emiten enormes volúmenes de material muy fluido que se extiende sobre grandes superficies; las erupciones sucesivas se superponen hasta formar grandes llanuras o mesetas. Actualmente los volcanes de fisura mejor conocidos son probablemente los de Islandia, que se encuentra en la dorsal Medioatlántica. Pero este vulcanismo, cuando ocurre en tierra, se asocia sobre todo con el pasado, con las grandes llanuras que se encuentran en casi todos los continentes. Estos basaltos de meseta o de avalancha o ignimbritas han formado, entre otras, la meseta del Decán en la región central occidental de la India; la cuenca del Paraná al sur de Brasil, Argentina y Uruguay; la meseta de Columbia en el noroeste de Estados Unidos; la llanura de Drakensberg en Sudáfrica; y la meseta central de la isla del Norte de Nueva Zelanda.<br />La mayor parte de la actividad volcánica de superficie no se asocia con fisuras, sino con chimeneas más o menos circulares o con grupos de chimeneas que se abren en la corteza terrestre. Estas chimeneas dan lugar a volcanes centrales de los que hay dos tipos básicos. El volcán cónico de pendientes acusadas se construye a veces totalmente a partir de material sólido o tefra, cuyo tamaño va desde las cenizas y el lapilli hasta piedras y grandes rocas. La tefra se expulsa de manera explosiva en una erupción o en una serie de erupciones y cae de nuevo a tierra en la proximidad inmediata del cráter. Un ejemplo conocido de esta clase de volcán es el Paricutín, en México, que entró en erupción en un campo cultivado el 20 de febrero de 1943 y en seis días formó un cono de cenizas de 140m de altura; al terminar el año se había alzado hasta más de 336 metros.<br /> <br />
  3. 3. TEORIAS VOLCÁNICAS<br />Volcanes y placas tectónicas<br />Los científicos han vinculado el origen y la actividad de los volcanes con la teoría de la tectónica de placas y han puesto de manifiesto que los volcanes tienden a situarse en los límites entre las placas.<br />© Microsoft Corporation. Reservados todos los derechos.<br />Durante mucho tiempo los geólogos supusieron que la causa principal de los sucesos volcánicos era la entrada de agua, sometida a altas temperaturas, en el interior de la Tierra. En los últimos años, sin embargo, a medida que se comprenden mejor los mecanismos de interacción de las placas corticales terrestres, los geólogos han conseguido integrar el vulcanismo en la teoría de la tectónica de placas. La energía de los volcanes activos deriva, en último término, de los procesos ligados a los movimientos de las placas de la corteza. Además, los volcanes tienden a situarse en las fronteras de las placas más importantes.<br />
  4. 4. Los volcanes se forman en dos tipos de fronteras de placa: las convergentes y las divergentes. En las primeras, donde una placa penetra (es subducida) bajo otra, la materia de la parte superior de la placa subducida es arrastrada en una trayectoria oblicua hacia el interior de la Tierra, hasta que alcanza una profundidad en la que se funde. Entonces asciende por fisuras verticales y es expulsada hacia la superficie por una chimenea volcánica. En las fronteras divergentes, como la dorsal del Atlántico, donde la corteza oceánica se estira y se separa, se forma una zona lineal débil (el centro de expansión); ésta sirve de salida para la erupción de magma que asciende por corrientes de convección gigantes situadas en el manto. <br />Los vulcanólogos han enunciado varias teorías para explicar la acción de los gases volcánicos como generadores de una erupción. La teoría más sencilla establece que el mecanismo es similar a la forma en que el gas en una bebida gaseosa puede provocar un chorro de ésta, o a lo que ocurre al agitar una botella de gaseosa.<br />El nacimiento de un volcán y la construcción de su cono fueron observados en directo en 1943, cuando el volcán Paricutín, en México, hizo erupción en una hondonada, hecho que dio a los geólogos la posibilidad de observar la secuencia de materia expulsada. La región había experimentado sacudidas de terremotos durante un periodo de dos semanas; el 20 de febrero se observó la apertura de una chimenea que emitía primero vapor y polvo volcánico, después fragmentos calientes y luego roca fundida. La erupción duró 8 meses y formó un cono de 2.250 m de altura. Las corrientes de lava enterraron el pueblo de San Juan Parangaricutiro y los asentamientos cercanos.<br />
  5. 5. VOLCANES DE ESCUDO<br />Cuando la corteza oceánica se funde como resultado de la subducción, el magma formado asciende a lo largo del plano de subducción y brota en forma de erupción en la corteza terrestre. Cuando el magma emite sobre la tierra da lugar a largas cadenas montañosas, entre las que destacan los Andes de América del Sur y la cordillera de América del Norte, que comprende las montañas Rocosas y la cordillera de las Cascadas. Cuando las erupciones de subducción se producen en el mar, se forman largas cadenas de islas volcánicas dispuestas en forma de arco, como Japón o Filipinas.<br />Casi todas las zonas de subducción de la Tierra se encuentran alrededor del océano Pacífico, Forman una franja conocida como cinturón de fuego en el que también son comunes los terremotos. Este cinturón se extiende a lo largo de los Andes, la cordillera de América del Norte, las islas Aleutianas, la península de Kamchatka al este de Siberia, las islas Kuriles, Japón, Filipinas, Sulawesi, Nueva Guinea, las islas Salomón, Nueva Caledonia y Nueva Zelanda<br />
  6. 6. CALDERAS<br />La erupción del cráter Kilauea de 1983 derramó lava basáltica fundida por las laderas del volcán Mauna Loa en la isla Hawai. Los volcanes hawaianos son ejemplos de volcanes acorazados, formados por las erupciones de lava. SoamesSummerhays/Photo Researchers, Inc.<br />Lago del Cráter, Oregón<br />La isla Wizard, es la cumbre de un extinto volcán que se formó en las aguas del lago del Cráter, al sur de Oregón. El lago alimenta el cráter del volcán monte Mazama, que se supone hizo erupción violentamente hace más de 7.500 años. Debido a la gran profundidad del lago, sólo se ven 236 m de los 793 m del volcán <br />
  7. 7. Calderas - Cráter<br />El cráter por el que brota el material volcánico se suele mantener en forma de depresión, incluso cuando el volcán está dormido, como resultado del hundimiento de la lava en la chimenea eruptiva. A veces se hunde tan profundamente que el cono volcánico se derrumba y cae al interior de la chimenea, donde forma una depresión mucho mayor llamada caldera, en ocasiones de varios kilómetros de diámetro. Las calderas pueden ser también producto de explosiones muy violentas que ‘vuelan’ el cono, como ocurrió en Krakatoa, Indonesia.<br />Con el tiempo algunas calderas situadas en la cumbre de volcanes extintos o inactivos desde hace mucho tiempo, son ocupadas por lagos profundos, como el lago del Cráter, en Oregón, o por llanuras planas, como el amplio valle Caldera en el norte de Nuevo México, ambos en Estados Unidos. Ciertas calderas son resultado de explosiones cataclísmicas que destruyen el volcán en erupción; las islas volcánicas de Santorín, en Grecia, y de Krakatoa, en Indonesia, así como el lago del Cráter entran en esta categoría. Otras se forman cuando la cámara subterránea de magma, vacía tras erupciones sucesivas, no puede soportar más el peso de la mole volcánica situada encima y se derrumba.  Muchos volcanes nacen bajo el agua, en el fondo marino. El Etna y el Vesubio empezaron siendo volcanes submarinos, como los conos amplios de las islas Hawai y de otras muchas islas volcánicas del océano Pacífico.<br />
  8. 8. MATERIALES VOLCANICOS<br />Por debajo de casi todos los volcanes activos o potencialmente activos hay una cámara magmática llena de roca fundida. El magma que contiene surgió probablemente de la astenosfera, la capa móvil situada inmediatamente por debajo de la litosfera. Cuando el magma surge puede brotar en forma líquida, sólida o gaseosa.<br />Casi todos los magmas contienen gases disueltos, como dióxido de carbono y de azufre, que se liberan como consecuencia de la brusca reducción de presión que experimenta el magma cuando asciende hacia la superficie. La liberación puede ser muy repentina y adquirir fuerza explosiva suficiente para impulsar el magma y lanzarlo hacia la atmósfera en forma de tefra o piroclastos y materiales fundidos o semifundidos que se enfrían en mayor o menor grado a medida que caen de nuevo al suelo. El tamaño de las partículas que componen la tefra es muy variable, y comprende desde el polvo muy fino y las cenizas, que el viento puede arrastrar a distancias enormes, hasta peñascos de 100 toneladas. Las erupciones muy violentas pueden lanzar estas rocas a distancias de varios kilómetros de la chimenea. <br />lObsidiana<br />Roca volcánica vítrea formada a partir de lava enfriada y solidificada. Está compuesta principalmente de silicio, oxígeno y calcio y es bastante uniforme, con independencia de su origen. <br />
  9. 9. ERUPCIÓN<br />En una erupción violenta de un volcán la lava está muy cargada de vapor y de otros gases, como dióxido de carbono, hidrógeno, monóxido de carbono y dióxido de azufre, que se escapan de la masa de lava con explosiones violentas y ascienden formando una nube turbia. Estas nubes descargan, muchas veces, lluvias copiosas.. Estos objetos o partículas se precipitan sobre las laderas externas del cono o sobre el interior del cráter, de donde vuelven a ser expulsadas una y otra vez. El magma asciende por la chimenea y fluye convertido en lava sobre el borde del cráter, o rezuma, como una masa pastosa, a través de fisuras en la ladera del cono. <br />La enorme cantidad de energía liberada durante una erupción explosiva se puede evaluar en función de la altura hasta la que se proyectan las rocas y las cenizas. Hay informes que señalan que las cenizas del Krakatoa, en Indonesia, fueron arrastradas hasta una altura de 27 km cuando el volcán hizo erupción en 1883. Las nubes de vapor y polvo así producidas pueden tener efectos atmosféricos y climáticos.<br />Erupción del volcán Montserrat<br />BBC Worldwide Americas, Inc./NBC News Archives<br />
  10. 10. TIPOS DE ERUPCIONES<br />Cualquier volcán puede mantenerse varios días en erupción, pero algunos tipos tienden a asociarse con volcanes determinados. Este hecho se refleja en la clasificación de las erupciones volcánicas, que atribuye a cada categoría el nombre de un volcán representativo. Las erupciones fisurales y de escudo suelen clasificarse como islándicas y hawaianas, respectivamente. Las más explosivas se categorizan, en una escala de viscosidad creciente del magma, como estrombolianas, vulcanianas, vesuvianas, plinianas y peleanas. La erupción de la montaña Pelada el 8 de mayo de 1902 destruyó la ciudad de Saint-Pierre y causó la muerte a unas 30.000 personas, casi todas abrasadas por la nube ardiente o asfixiadas.<br />Las erupciones más violentas se asocian con los bordes destructivos de las placas. Las dos mayores erupciones de la historia —las del Krakatoa y el Tambora— se produjeron en la confluencia de las placas asiática y australiana. Tambora, en la costa norte de la isla Sumbawa, entró en erupción en 1815; el cono saltó por los aires y el volcán causó la muerte a unos 50.000 isleños.. Las olas provocadas por la explosión causaron la muerte de decenas de miles de personas en todo el Sureste asiático. La lava fluye a veces muy deprisa, pero por lo general da tiempo a evitarla, aunque sí resultan destruidos edificios y cultivos..<br />Erupción del monte Saint Helens<br />El volcán Saint Helens, en la zona suroeste del estado de Washington en Estados Unidos, entró en erupción el 18 de mayo de 1980, después de un largo periodo de latencia. La violenta explosión despidió nubes de ceniza y otros restos volcánicos a la atmósfera, y perecieron al menos 60 personas. Con la erupción, la altura de la montaña descendió de 2.950 a 2.550 metros.<br />
  11. 11. CORRIENTES DE LAVA<br />En algunas circunstancias, en lugar de salir por la chimenea central, la lava se derrama por fisuras que pueden extenderse a lo largo de varios kilómetros sobre la superficie de la tierra. Las corrientes de este tipo han creado láminas gruesas de basalto que cubren cientos de kilómetros cuadrados. El resultado de algunas de estas inundaciones de lava puede verse en el oeste de Estados Unidos, por ejemplo en la gran llanura de lava del río Snake en Idaho. <br />Lava, término aplicado por los geólogos al magma que sale a la superficie de la Tierra a través de grietas y de fisuras, en particular durante la erupción de un volcán. El enfriamiento y solidificación de la lava da origen a las rocas ígneas extrusivas o volcánicas, cuya composición y características dependen tanto del tipo de lava como de la velocidad de enfriamiento de la lava.<br />Las lavas se clasifican en función de su composición en sílice, desde lavas ácidas o silíceas (70% o más de sílice) a lavas básicas (menos del 50%). Esta composición condiciona la viscosidad de la lava y, con ella, el carácter explosivo o violento de las erupciones volcánicas (más sílice supone mayor viscosidad y, por tanto, mayor explosividad eruptiva). Las rocas volcánicas o ígneas extrusivas dependen, por tanto, de la composición de la lava que las originó. Las principales son la riolita, la andesita y el basalto, en una secuencia de mayor a menor acidez o composición en sílice.<br />La lava calentada al rojo fluye en un volcán de Reunión, isla africana del océano Índico. La lava se pliega porque el exterior y el interior se enfrían a velocidad distinta. La superficie se enfría con rapidez, y forma una especie de piel que se deforma al moverse la lava más caliente del interior.<br />Krafft-Explorer/Photo Researchers, Inc.<br />
  12. 12. FORMAS ÍGNEAS<br />Las rocas formadas a partir del magma enfriado y solidificado se llaman ígneas. Todas las coladas de lava solidificadas son rocas ígneas, pero no las únicas. Parte del magma no llega a la superficie, sino que llena cavidades subterráneas naturales o rompe las rocas que encuentra a su paso y abre sus propios cauces. A veces está tan caliente que funde y moviliza parte de las rocas del terreno que atraviesa.<br />El magma que penetra en los huecos subsuperficiales solidifica en forma de intrusiones, a veces muy grandes. Se llama filón-capa o sill a una intrusión plana horizontal dispuesta entre capas de roca estratificada. Son ejemplos los Salisbury Crags de Edimburgo, en Escocia, y el filón Palisades, a lo largo de la orilla occidental del río Hudson, cerca de Nueva York. El lacolito también se forma entre estratos rocosos cuando la presión del magma empuja los superiores hacia arriba y forma una cúpula central, lo que da a la intrusión un perfil de lenteja o de seta. Se llama lopolito a una intrusión de forma de plato que se produce cuando el magma penetra en estratos rocosos plegados. Los facolitos tienen un perfil de plato invertido.<br />Cuando un volcán se extingue o queda dormido, el magma de la chimenea se solidifica y forma una clavija volcánica. Si la erosión destruye todo el cono, la clavija queda expuesta y se transforma en un accidente muy visible del paisaje. El castillo de Edimburgo, en Escocia, está construido sobre una de estas clavijas volcánicas. Cuando la erupción se produce a través de una fisura en lugar de por medio de una chimenea cilíndrica, el magma solidificado forma láminas verticales de intrusión llamadas diques. El ejemplo más espectacular de esta formación es probablemente el Gran Dique de Zimbabue, muy rico en minerales, que se extiende en sentido noreste-suroeste a lo largo del centro del país.<br />
  13. 13. DEPÓSITOS VOLCÁNICOS<br />El magma suele brotar de la tierra a temperaturas entre 800 y 1.200 ºC y se enfría a medida que fluye; la lava se solidifica desde fuera hacia dentro hasta endurecerse por completo en forma de colada. La forma y la textura superficial de la colada depende en gran medida de la viscosidad del magma. Se distinguen tres tipos básicos, llamados pahoehoe, aa o malpaís y en bloques.<br />El tipo pahoehoe deriva de un magma muy fluido y móvil. Cuando llega al suelo, forma rápidamente una película superficial delgada y plástica.. El malpaís procede de lavas menos móviles que se recubren de una capa espesa y dura al enfriar. Esta capa se fragmenta bajo el empuje de la lava fundida y deja una superficie caótica y muy áspera. La lava en bloques también se fragmenta, pero presenta una superficie más lisa. No todos los gases disueltos en el magma escapan a la atmósfera durante la erupción; parte queda atrapada en cavidades llamadas burbujas, que pueden persistir incluso después de que el magma se haya solidificado. La piedra pómez es una lava llena de pequeñas burbujas que la hacen muy ligera, lo suficiente para flotar en el agua.<br />Por último, la tefra puede fundirse al caer al suelo y formar lo que se llama toba. También el material arrastrado por las nubes ardientes se puede consolidar y formar ignimbritas. Tobas e ignimbritas son, por tanto, rocas compuestas formadas por la consolidación de materiales eruptivos o piroclastos.<br />Campos de lava pahoehoe<br />La foto muestra un campo de lava del Mauna Loa, uno de los volcanes activos en el Parque nacional de los Volcanes Hawaianos, que se ha solidificado formando pliegues de roca. Este tipo de lava se denomina pahoehoe.<br />David Muench/Tony Stone Images<br />
  14. 14. FASE DE ENFRIAMIENTO<br />Formación de los géiseres<br />Los géiseres aparecen cuando la base de una columna de agua que reposa en una cámara subterránea se evapora al contacto con una roca volcánica caliente. Cuando el agua hierve, se expande, arrastrando algo de líquido hacia el exterior. La cantidad inicial de agua liberada en la superficie reduce el peso de la columna, a su vez, disminuye la presión y por tanto el punto de fusión disminuye. Cuando desciende el punto de fusión, toda la columna se evapora a la vez y sale del suelo en una erupción espectacular. Las fumarolas son similares a los géiseres, pero liberan ráfagas de gases calientes en vez de agua. Los manantiales calientes se surten de las mismas fuentes que los géiseres, pero son sistemas de baja presión, lo que hace que el agua burbujee en lugar de salir en erupción. El agua de estos manantiales calentados de forma natural supera con frecuencia temperaturas de 60 ºC.<br />© Microsoft Corporation. Reservados todos los derechos.l<br />
  15. 15. Durante un largo periodo después de que haya cesado la erupción de lava o de materia fragmentada, un volcán continúa emitiendo gases ácidos y vapor en lo que se llama estado fumarólico. Después de esta fase surgen del volcán manantiales calientes. Un ejemplo de este tipo de actividad puede verse en los géiseres del Parque nacional de Yellowstone en Wyoming y en las fuentes calientes de la isla del Norte de Nueva Zelanda. Con el tiempo, los últimos rastros del calor volcánico desaparecen, y entonces pueden aparecer manantiales de agua fría en el volcán o en las zonas cercanas.<br /> <br />PERIODOS DE INACTIVIDAD<br />Después de volverse inactivo, un volcán experimenta una reducción progresiva de tamaño debido a la erosión por agua fluyente, glaciares, viento u olas. En ocasiones el volcán desaparece dejando sólo un conducto volcánico, esto es, una chimenea llena de lava o de materia fragmentada que se extiende desde la superficie terrestre hasta el antiguo depósito de lava. Las minas de diamantes de Sudáfrica se encuentran en conductos volcánicos<br />

×