Mazda Chapter 2 Vehicle Concepts Engine Rotary


Published on

Experience Mazda Zoom Zoom Lifestyle and Culture by Visiting and joining the Official Mazda Community at for additional insight into the Zoom Zoom Lifestyle and special offers for Mazda Community Members. If you live in Arizona, check out CardinaleWay Mazda's eCommerce website at

1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Chapter 2 Title: Alternative Vehicle ConceptsLevel: Basic, intermediate Requisites: none Overall aim The chapter gives an overview of working-principles and concepts of alterative drives and presents exemplary cars. The focus is on fuel cell vehicles. Content Introduction: European and US emission-laws Internal combustion engines (ICE) Diesel- and gasoline engine Rotary-Engine (Wankel engine) 3. Hybrid-Drives Mild-Hybrids Full-Hybrids Plug-In Hybrids 4. Electrical Drives Batteries Fuel Cells Fuel Cell Vehicles Types and car-concepts Components Efficiency Learning outcomes: The student will be able to: Appreciate the history of the relevant technologies Understand the variety of technologies that are available Understand the potential for this technologies in the future Methodology: Lectures, group work, discussion Schedule 4 one - hour - units
  • Mazda Chapter 2 Vehicle Concepts Engine Rotary

    1. 1. Chapter: Alternative Vehicle Concepts The chapter gives an overview of working-principles and concepts of alternative drives and presents exemplary cars. The focus is on fuel cell vehicles.
    2. 2. Contents <ul><li>1. Introduction: European and US emission-laws. </li></ul><ul><li>2. Internal combustion engines (ICE). </li></ul><ul><ul><li>Diesel- and gasoline engine. </li></ul></ul><ul><ul><li>Rotary-Engine (Wankel engine). </li></ul></ul><ul><li>3. Hybrid-Drives. </li></ul><ul><ul><li>Mild-Hybrids. </li></ul></ul><ul><ul><li>Full-Hybrids. </li></ul></ul><ul><ul><li>Plug-In Hybrids. </li></ul></ul><ul><li>4. Electrical Drives. </li></ul><ul><ul><li>Batteries. </li></ul></ul><ul><ul><li>Fuel Cells. </li></ul></ul><ul><li>5. Fuel Cell Vehicles. </li></ul><ul><ul><li>Types and car-concepts. </li></ul></ul><ul><ul><li>Components. </li></ul></ul><ul><ul><li>Efficiency. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5
    3. 3. EURO emission standards Gasoline (emissions ins mg/km) Diesel (emissions in mg/km) Source: Aigle/Krien/Marz 2007, 19 Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Krien/Marz 2007, 19 I
    4. 4. EURO emission standards: Nitrogen- Oxides and Particles <ul><ul><li>NOx and Particles are health hazards. </li></ul></ul><ul><ul><li>Especially nano particles (PM) are suspected to be dangerous. </li></ul></ul><ul><ul><li>Diesel-engines emit much more NOx and PM than gasoline-engines. </li></ul></ul><ul><ul><li>Particle-Filters and NOx-exhaust after-treatments are necessary for a “clean” diesel. </li></ul></ul><ul><ul><li>Restrictions for older diesel-cars in urban areas. (EU particular matter directive) </li></ul></ul>Nitrogen Oxides Particles Source: Aigle/Krien/Marz 2007,72 Source: Aigle/Krien/Marz 2007,77 Part 1 Part 2 Part 3 Part 4 Part 5 B
    5. 5. California's Low-Emission-Act <ul><ul><li>California has the world-wide strongest emission law. </li></ul></ul><ul><ul><li>California claims a 4% market-share of Zero Emission Vehicles (ZEV). </li></ul></ul><ul><ul><li>Hybrids and natural gas cars can be credited. </li></ul></ul><ul><ul><li>ZEV are only Fuel Cell- and Battery cars. </li></ul></ul><ul><ul><li>Note 1: There's no limit for CO2. </li></ul></ul><ul><ul><li>Note 2: The production of a fuel produces emissions ! </li></ul></ul>LEV - Low Emission Vehicle ULEV - Ultra Low E. V SULEV - Super Ultra Low E. V. EZEV - Equivalent Zero E. V. PZEV1 - Partial Zero E. V. ZEV - Zero Emission Vehicle Data: Aigle/Krien/Marz 2007, 24 own Illustration Part 1 Part 2 Part 3 Part 4 Part 5 B
    6. 6. Overview Fuels <ul><ul><li>Fuels on the left-side are used in diesel-engines. (diesel-ICE). </li></ul></ul><ul><ul><li>Fuels on the right side are compatible to gasoline-engines (Otto-ICE). </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Krien/Marz 2007, 43 B
    7. 7. Internal Combustion Engines (ICE) Principle <ul><li>Invention in the 1876: </li></ul><ul><ul><li>First four-stroke cycle engine developed by Nikolaus August Otto. </li></ul></ul><ul><li>First automobile in 1886: </li></ul><ul><ul><li>Developed by Gottfried Daimler and Carl Benz. </li></ul></ul><ul><li>Four-stroke principle: </li></ul><ul><ul><li>Intake. </li></ul></ul><ul><ul><li>Compression. </li></ul></ul><ul><ul><li>Ignition. </li></ul></ul><ul><ul><li>Exhaust. </li></ul></ul><ul><li>Engine-Types: </li></ul><ul><ul><li>Diesel engine (self-ignition). </li></ul></ul><ul><ul><li>Otto engine . </li></ul></ul>Nikolaus Otto Rudolph Diesel Source: Wikipedia 2007 Part 1 Part 2 Part 3 Part 4 Part 5 B Source: WBZU 2007 Exhaust gases Exhaust valve Piston Cylinder Connecting rod Crankshaft Rotating direction Intake valve Sparking Plug fuel-air mixture Piston rings
    8. 8. A Example: DaimlerChrysler BlueTec. The cleanest Diesel ever known? <ul><ul><li>Diesel engine V6. </li></ul></ul><ul><ul><li>Displacement: 2987 ccm. </li></ul></ul><ul><ul><li>Maximal output: 154 kW. </li></ul></ul><ul><ul><li>Maximal torque: 526 Nm. </li></ul></ul><ul><ul><li>Fuel consumption: 7,0 Litre/km. </li></ul></ul><ul><ul><li>Cruising range: 1200 km. </li></ul></ul><ul><ul><li>Top-Speed: 250 km/h. </li></ul></ul><ul><ul><li>Performance: 0-100 km/h: 6.6 sec. </li></ul></ul><ul><ul><li>NOx exhaust aftertreatment (DeNOx). </li></ul></ul><ul><ul><li>Costs: 39.780 EUR. </li></ul></ul>Mercedes E320 Bluetec Introduction US-market in 2007, (Permission in 45 States) Part 1 Part 2 Part 3 Part 4 Part 5 Discussion: Future of Diesel-engines? Established Technology versus alternative drives B
    9. 9. The Hydrogen ICE – A conventional drive with a new fuel <ul><ul><li>The design of a H2-Engine is similar to a petrol. </li></ul></ul><ul><ul><li>Differences result from the specifics of hydrogen and constructive measurements are necessary to avoid backfires. </li></ul></ul><ul><ul><li>Cars with a H2-ICE are rated as PZEV in California. </li></ul></ul><ul><ul><li>NOx-Emissions occur because nitrogen is in the combustion gas. </li></ul></ul><ul><ul><li>The H2-ICE is less efficient than fuel cells. </li></ul></ul><ul><ul><li>BMW plans to test 100 cars with a H2-ICE in 2008 (Hybrogen7). </li></ul></ul>Hydrogen7 from BMW Source: BMW 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Discussion: Most car manufacturer consider hydrogen in combination with fuel cells as the concept for the future. Why does BMW focuses on the H2-ICE ? B
    10. 10. Rotation-Engine: Principle <ul><li>First engine in 1954: </li></ul><ul><ul><li>Felix Wankel. </li></ul></ul><ul><li>First adoption: </li></ul><ul><ul><li>Audi Ro80 (until 1977). </li></ul></ul><ul><li>Four-stroke principle: </li></ul><ul><ul><li>But: A rotary piston is used instead of a linear piston. </li></ul></ul><ul><li>Main-advantage: </li></ul><ul><ul><li>compact design. </li></ul></ul>Felix Wankel Source: HyCar 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Air-Intake Exhaust gases Eccentric shaft Electrical connected H2-injector nozzle B
    11. 11. A Example: Mazda's RX-8 Hydrogen RE The last “sign of life” of Wankel´s engine? <ul><ul><li>Two rotary engines. </li></ul></ul><ul><ul><li>Bivalent: Gasoline and Hydrogen (CGH2). </li></ul></ul><ul><ul><li>Displacement: 2x654ccm (1.308ccm). </li></ul></ul><ul><ul><li>Maximal Output engine: </li></ul></ul><ul><ul><ul><li>Max. Output gasoline: 154 kW. </li></ul></ul></ul><ul><ul><ul><li>Max Output Hydrogen: 80 kW. </li></ul></ul></ul><ul><ul><li>Torque. </li></ul></ul><ul><ul><ul><li>gasoline: 222 Nm. </li></ul></ul></ul><ul><ul><ul><li>Hydrogen:140 Nm. </li></ul></ul></ul><ul><ul><li>Tank: </li></ul></ul><ul><ul><ul><li>Hydrogen: 110 Litre (@350 bar). </li></ul></ul></ul><ul><ul><ul><li>Tank gasoline 61 Litre. </li></ul></ul></ul><ul><ul><li>Cruising Range: </li></ul></ul><ul><ul><ul><li>Hydrogen. 100 km. </li></ul></ul></ul><ul><ul><ul><li>Gasoline: 549 km. </li></ul></ul></ul><ul><ul><li>Top-Speed 170 km/h (H2 mode). </li></ul></ul><ul><ul><li>Curb-weight: 1460 kg. </li></ul></ul><ul><ul><li>Price: concept car. </li></ul></ul>Mazda-RX8 Source: Mazda 2006 Part 1 Part 2 Part 3 Part 4 Part 5 B
    12. 12. Hybrid Cars <ul><li>Invention in 1902: </li></ul><ul><ul><li>Ferdinand Porsche. </li></ul></ul><ul><li>First mass-production vehicle </li></ul><ul><li>in 1997 </li></ul><ul><ul><li>Toyota Prius. </li></ul></ul><ul><li>Today: </li></ul><ul><ul><li>Toyota sold several hundred-thousands cars of the “Prius II” worldwide. Mainly in the US and Japan (see figure). </li></ul></ul><ul><ul><li>Most car-manufacturer develop hybrid-cars today. </li></ul></ul><ul><li>Basic idea: </li></ul><ul><ul><li>Support of the combustion engine by a electrical engine. </li></ul></ul><ul><ul><li>Storage of electrical energy in batteries, e.g. breaking energy. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Manager-Magazin 2005 B
    13. 13. Hybrid Cars: Principles and concepts <ul><li>Different forms of Hybrid-cars: </li></ul><ul><ul><li>Micro-Hybrids: electric start&stop automatic. </li></ul></ul><ul><ul><li>Mild-Hybrids: recuperation of braking energy. </li></ul></ul><ul><ul><li>Full-Hybrids can drive in an electrical mode. </li></ul></ul><ul><li>Different structure of drive: </li></ul><ul><ul><li>Parallel Hybrids. </li></ul></ul><ul><ul><li>Serial Hybrids. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Marz 2007, 65 B
    14. 14. Parallel and serial hybrids <ul><ul><li>In a parallel system the ICE and the electric motor can transmit the power to the transmission. </li></ul></ul><ul><ul><ul><li>Main advantage: Both drives can be used simultaneously. </li></ul></ul></ul><ul><ul><li>In a serial hybrid the ICE runs as generator to produce electrical power. Only the electrical motor conducts the transmission. </li></ul></ul><ul><ul><ul><li>Main advantage: The ICE can always run wit good efficiency. </li></ul></ul></ul><ul><ul><li>In mixed-systems, so called serial-parallel systems, both advantages can be combined. </li></ul></ul>Source: Bady 2000 Part 1 Part 2 Part 3 Part 4 Part 5 B
    15. 15. An example: Toyota Prius A success-story made in Japan <ul><ul><li>Combustion-engine: 4-Cylinder Otto-engine: </li></ul></ul><ul><ul><ul><li>Displacement::1497 ccm. </li></ul></ul></ul><ul><ul><ul><li>Nominal Power: 57 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 115 Nm (@ 4000 U/min). </li></ul></ul></ul><ul><ul><li>Electrical-Engine: Synchron AC engine: </li></ul></ul><ul><ul><ul><li>Nominal Power: 50 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 400 Nm (@ 1200 U/min). </li></ul></ul></ul><ul><ul><li>Battery: Ni-MH. </li></ul></ul><ul><ul><li>Fuel consumption: 4,3 Litre. </li></ul></ul><ul><ul><li>Cruising range: 1050 km. </li></ul></ul><ul><ul><li>Tank: 45 Litre. </li></ul></ul><ul><ul><li>Top speed:: 170 km/h. </li></ul></ul><ul><ul><li>Performance 0-100km/h: 10,9 sec. </li></ul></ul><ul><ul><li>Curb-weight: 1400 kg. </li></ul></ul><ul><ul><li>CO2-Emissions: 104 g/km. </li></ul></ul><ul><ul><li>Price: 24.070 € </li></ul></ul>Source: Toyota 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Toyota Prius B
    16. 16. Electric Vehicles <ul><ul><li>First electric car in 1881: </li></ul></ul><ul><ul><ul><li>Gustav Trouve. </li></ul></ul></ul><ul><ul><li>An electric vehicle was the first car that reached a Top-Speed of 100 km/h in 1889. </li></ul></ul><ul><ul><li>Battery-Types: </li></ul></ul><ul><ul><ul><li>Lead acid battery. </li></ul></ul></ul><ul><ul><ul><li>New battery types. </li></ul></ul></ul><ul><ul><li>Type of electrical motors: </li></ul></ul><ul><ul><ul><li>Direct current (dc). </li></ul></ul></ul><ul><ul><ul><li>Alternating current (ac). </li></ul></ul></ul><ul><ul><li>Electrical motors have high efficiencies and a good torque at lower revolutions. </li></ul></ul>Electric Vehicle von Trouve Source: Elektroauto-Tipp 2006 Part 1 Part 1 Part 2 Part 3 Part 4 Part 5 B
    17. 17. Overview Traction-Batteries <ul><ul><li>Lead acid-Batteries </li></ul></ul><ul><ul><ul><li>Common technology, but energy-density is too low. </li></ul></ul></ul><ul><ul><ul><li>Limited cruising range, batteries are too heavy. </li></ul></ul></ul><ul><ul><ul><li>Cars only play a role in certain niches (e.g. as city car). </li></ul></ul></ul><ul><ul><li>New battery-technologies </li></ul></ul><ul><ul><ul><li>Nickel-cadmium, Nickel-Metal Hydride, Lithium-Ion. </li></ul></ul></ul><ul><ul><ul><li>Only energy-density of Lithium-Ion batteries are sufficient to reach adequate cruising ranges. The electrical car comes out of the niche. </li></ul></ul></ul><ul><ul><ul><li>Problems: Costs, safety and life-time. </li></ul></ul></ul>Source: Aigle/Marz 2006, 77 Part 1 Part 2 Part 3 Part 4 Part 5 I
    18. 18. A example: Mitsubishi Lancer Evolution: Li-Ion Batteries and in-wheel motors <ul><ul><li>Four synchronic in-wheel motors. </li></ul></ul><ul><ul><li>Max. Power: 50 kW. </li></ul></ul><ul><ul><li>Max. Torque: 518 Nm. </li></ul></ul><ul><ul><li>Batteries: Li-on. </li></ul></ul><ul><ul><ul><li>Capacity 95 AH. </li></ul></ul></ul><ul><ul><ul><li>Off-load Voltage: 336V. </li></ul></ul></ul><ul><ul><ul><li>Nominal energy: 32 kWh. </li></ul></ul></ul><ul><ul><li>Cruising range: 250 km. </li></ul></ul><ul><ul><li>Top-Speed: 180 km/h. </li></ul></ul><ul><ul><li>Curb-Wight:1590 kg. </li></ul></ul><ul><ul><li>CO2-Emissions: 0 (local). </li></ul></ul><ul><ul><li>Price: Prototype. </li></ul></ul><ul><ul><li>Series-Production planned in 2010. </li></ul></ul>Mitsubishi Lancer Evolution Source: Mitsubishi 2005 Part 1 Part 2 Part 3 Part 4 Part 5 B
    19. 19. The Tesla Roadster <ul><ul><li>6831 rechargeable Li-Ion batteries are used in the Tesla. </li></ul></ul><ul><ul><li>Time to charge the batteries: 3,5 hours. </li></ul></ul><ul><ul><li>Life-time of the batteries is enough for 100.000 miles. </li></ul></ul>New Performance with Li-Ionen batteries! Source: Umweltbrief 2007 B
    20. 20. Fuel Cell Cars Part 1 Part 2 Part 3 Part 4 Part 5
    21. 21. History of H2-Vehicles <ul><ul><li>1807: First H2-ICE by Francois Isaac de Rivaz. </li></ul></ul><ul><ul><li>1839: Discovery of the functional principle of the fuel cell by Sir William Grove. </li></ul></ul><ul><ul><li>1860: 1-Cylinder gas engine by Jean Joseph Etienne Lenoir. Production of H2 by electrolysis on board the car. </li></ul></ul><ul><ul><li>1875 - 1890: Development of the 4-stroke combustion engine for liquid fuels by Otto, Benz and Daimler. </li></ul></ul><ul><ul><li>1933: Combustion of H2 with on-board reforming of ammonia by Nosk Hybdro. </li></ul></ul><ul><ul><li>1967: First fuel cell driven electric-car by General Motors. </li></ul></ul><ul><ul><li>1970: First fuel cell – battery hybrid vehicle (Austin A40) with an approval for road-service. Karl Kordesch. </li></ul></ul><ul><ul><li>1970-1990: Continuance of the development of the H2-ICE. Especially in Japan by Musashi. </li></ul></ul><ul><ul><li>Since 1990: Systematic development of fuel cell drives by Mercedes-Benz, Toyota, Opel, Audi, Honda und Ford. </li></ul></ul><ul><ul><li>1994: Fuel Cell-Transporter Necar1 by DaimlerChrysler </li></ul></ul><ul><ul><li>Since 2000: Field-tests with FC-Vehicles. </li></ul></ul><ul><ul><li>2003: Field-test with 60 fuel cell driven “A-Klasse” by DaimlerChrysler (worldwide 60 cars). </li></ul></ul><ul><ul><li>2006: German government invests 500 Mio. Euros over 10 year for market introduction of fuel cell vehicles. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 B
    22. 22. Introduction: FC-Vehicles Types of fuel cells Source: Jörissen/Garche 200,17. Own additions Part 1 Part 2 Part 3 Part 4 Part 5 I
    23. 23. Introduction: Characteristics of fuel cell types <100°C Up to 1000°C Platinum metal 4-5.0 H 2 C n H m 40-50% 50-60% Reforming System Internal Ref. Seconds Hours Source: own illustration Part 1 Part 2 Part 3 Part 4 Part 5 I high At once Start-Up-Time low high Dynamic low high System complexity high low Cell efficiency less clean clean Gas specification less pure pure Catalyst high low Temperature SOFC MCFC PAFC PEFC / DMFC AFC
    24. 24. Which type for which application ? <ul><li>Continuous loads </li></ul><ul><ul><li>CHP-Unit for industrial use </li></ul></ul><ul><ul><li>Base load plants </li></ul></ul>Golden rule: <ul><li>Dynamic loads </li></ul><ul><ul><li>FC-Vehicles </li></ul></ul><ul><ul><li>Mini CHP-Units. for households </li></ul></ul><ul><ul><li>Portable applications </li></ul></ul><ul><ul><li>Peak shaving, UPS </li></ul></ul>PAFC MCFC SOFC But: Not rule without a exception ! Part 1 Part 2 Part 3 Part 4 Part 5 B PEFC (DMFC)
    25. 25. Concepts of fuel cell vehicles <ul><ul><li>DaimlerChrysler developed a prototype (Necar5) with a methanol on-board reformer. </li></ul></ul><ul><ul><li>Daimler stopped its activities and followed the Hydrogen concept. </li></ul></ul><ul><ul><li>Most of the car manufacturer focus on direct hydrogen storage. </li></ul></ul><ul><ul><li>Most vehicles use compressed hydrogen gas. It can be compressed up to 350 bar. In near future 700 bar tanks are available. </li></ul></ul><ul><ul><li>Liquid hydrogen is stored in cryogen tanks. Hydrogen liquefies at minus 253°C. </li></ul></ul>Source: Aigle/Marz 2006, 85 Part 1 Part 2 Part 3 Part 4 Part 5 B
    26. 26. Main components of a H2-FCV 1: Electrical Engine. 2: Fuel-Cell System. 3: High-Pressure vessels. 4: High-voltage Battery. Fuel Cell A-Klasse of DaimlerChryler Source: Stauch 2005 Part 1 Part 2 Part 3 Part 4 Part 5 B
    27. 27. Energy flow in a Fuel Cell Vehicle <ul><ul><li>In a fuel car the chemical energy of H2 is converted into electrical energy. </li></ul></ul><ul><ul><li>A ICE converts the thermal energy of the fuel into mechanical energy (Karnot-process). </li></ul></ul><ul><ul><li>Compared to the Carnot-process the electrochemical conversion is more efficient. </li></ul></ul>Source: Los Alamos 1999, 5 Part 1 Part 2 Part 3 Part 4 Part 5 B
    28. 28. Methanol Fuel Cell Vehicles (NECAR V) <ul><ul><li>Fuel Processor System Specifications </li></ul></ul><ul><ul><li>Fuel: Methanol (CH 3 OH). </li></ul></ul><ul><ul><li>H2 flow rate 60 Nm³/h. </li></ul></ul><ul><ul><li>Efficiency 86%. </li></ul></ul><ul><ul><li>Start-up time1 minute. </li></ul></ul><ul><ul><li>Start from below 0°C possible. </li></ul></ul><ul><ul><li>Turn-down ratio 1:40. </li></ul></ul><ul><ul><li>Dynamics1.5 seconds (idle-90%load) . </li></ul></ul><ul><ul><li>Calculated cost $1,750 @ 100,000 units/yr. </li></ul></ul><ul><ul><li>per unit$3,550 @ 10,000 units/yr. </li></ul></ul><ul><ul><li>Dimensions 800x260x320 mm. </li></ul></ul><ul><ul><li>Volume / weight65 ltr/ 95 kg . </li></ul></ul><ul><ul><li>Fuel Cell System Specifications </li></ul></ul><ul><ul><li>Power of fuel cellsystem75 kW el,gross/ 60 kW el, net. </li></ul></ul><ul><ul><li>Emissions <SULEV. </li></ul></ul><ul><ul><li>Volume / weight332 ltr/ 385 kg. </li></ul></ul><ul><ul><li>System net efficiency> 40 %. </li></ul></ul>Source: Tillmetz/Benz 2006 Source: Tillmetz/Benz 2006 Part 1 Part 2 Part 3 Part 4 Part 5 B
    29. 29. Flow chart of a Methanol FCV Source: Los Alamos 1999, 16 Part 1 Part 2 Part 3 Part 4 Part 5 B
    30. 30. The fuel cell stack (Ballard) <ul><ul><li>Impressive technical achievements over the last years. </li></ul></ul><ul><ul><li>Ballard is the worldwide best-known stack-manufacture for mobile cars. </li></ul></ul><ul><ul><li>Hurdles are: costs, life-time and cold-start. But only a “small” gap to the performance of today's ICE. </li></ul></ul>Ballard MK902 Light Duty (LD) Ballard MK902 Heavy Duty (HD) Data: Budd 2006, 14-17, own illustration Part 1 Part 2 Part 3 Part 4 Part 5 B
    31. 31. Fuel Cell System Xcellsis TM HY-80 Power electronics Cooling pump System module Fuel Cell (80 kW) Control electronics Part 1 Part 2 Part 3 Part 4 Part 5 Source: Tillmetz/Benz 2006 B
    32. 32. Tank-System for compressed Hydrogen gas (CHG) <ul><ul><li>CGH2: compressed gaseous hydrogen, </li></ul></ul><ul><ul><li>Pressure 35–70 MPa and room temperature. </li></ul></ul><ul><ul><li>Usually 2 or 3 vessels can be placed in a car. In busses up to 8 vessels can be placed. </li></ul></ul><ul><ul><li>Cruising range is between 200km (350 bar) up to 500 km (700 bar). </li></ul></ul>Source: Helmolt/Eberle 2007, 837 Part 1 Part 2 Part 3 Part 4 Part 5 B
    33. 33. Tank-System for liquid hydrogen (LH2) <ul><ul><li>Operating temperature of in-between 20 and 30 K and 0.5 to max 1 MPa pressure. </li></ul></ul><ul><ul><li>Problem: Unavoidable head flow through: </li></ul></ul><ul><ul><ul><li>Thermal conduction. </li></ul></ul></ul><ul><ul><ul><li>Convection. </li></ul></ul></ul><ul><ul><ul><li>Thermal radiation. </li></ul></ul></ul><ul><ul><li>A efficient multi-layer vacuum super insulation is necessary (approximately 40 layers of metal foil). </li></ul></ul><ul><ul><li>Boil-off losses after several days. </li></ul></ul><ul><ul><li>Energy to liquefy hydrogen consumes 30% of the stored chemical energy. </li></ul></ul>Source: Helmolt/Eberle 2007, 838 Part 1 Part 2 Part 3 Part 4 Part 5 B
    34. 34. A example: DaimlerChryslers f-cell <ul><ul><li>Three-Phase asynchronous motor: </li></ul></ul><ul><ul><ul><li>Nominal Power: 65 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 210 Nm. </li></ul></ul></ul><ul><ul><li>Fuel Cell System: </li></ul></ul><ul><ul><ul><li>PEFC Ballard Mark 902. </li></ul></ul></ul><ul><ul><ul><li>Nominal Power: 85 kW. </li></ul></ul></ul><ul><ul><li>Batteries: </li></ul></ul><ul><ul><ul><li>NiMh 20kW. </li></ul></ul></ul><ul><ul><li>Tank: </li></ul></ul><ul><ul><ul><li>CGH2@350bar: 1,8 kg. </li></ul></ul></ul><ul><ul><li>Consumption: 4,2 l Diesel equivalent. </li></ul></ul><ul><ul><li>Cruising-Range: 160 km. </li></ul></ul><ul><ul><li>Top-Speed: 145 km/h. </li></ul></ul><ul><ul><li>Performance: 16 sec </li></ul></ul><ul><ul><li>Costs: Prototype: </li></ul></ul><ul><ul><ul><li>Field-test of 60 cars since 2002. </li></ul></ul></ul>F-cell DaimlerChrysler Part 1 Part 2 Part 3 Part 4 Part 5 Only water! B
    35. 35. GM´s Chevrolet Equinox Fuel Cell <ul><ul><li>Electric traction: </li></ul></ul><ul><ul><ul><li>73 kw 3-Phase asynchronous motor. 94 kw max. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque 320 Nm. </li></ul></ul></ul><ul><ul><li>Fuel Cell System: </li></ul></ul><ul><ul><ul><li>Stack: 440 cells, 93 kW. </li></ul></ul></ul><ul><ul><ul><li>NiMH battery 35 kW. </li></ul></ul></ul><ul><ul><ul><li>Operation life: 2.5 years, 80.000km. </li></ul></ul></ul><ul><ul><ul><li>Operation temperature: -25 to +45°C. </li></ul></ul></ul><ul><ul><li>Fuel storage: </li></ul></ul><ul><ul><ul><li>3 CGH2 vessels. </li></ul></ul></ul><ul><ul><ul><li>70 MPa. </li></ul></ul></ul><ul><ul><ul><li>4.2. kg Hydrogen. </li></ul></ul></ul><ul><ul><li>Performance: </li></ul></ul><ul><ul><ul><li>Acceleration: 0-100 km/h in 12s. </li></ul></ul></ul><ul><ul><ul><li>Top speed 160 km/h. </li></ul></ul></ul><ul><ul><ul><li>Operation range 320 km. </li></ul></ul></ul><ul><ul><li>Curb weight: 2010 kg. </li></ul></ul>Source: Helmolt/Eberle 2007, 842 Part 1 Part 2 Part 3 Part 4 Part 5 B
    36. 36. Comparison of Efficiency and CO 2 -Emission  Average efficiency (European Drive Cycle): Efficiencies: 36 % / 22 % CO 2 -Emissions (direct): 0 g/km / 177 g/km [ Km/h ] Source: Hermann/Winter 2003 Part 1 Part 2 Part 3 Part 4 Part 5 B 0 5 10 15 20 25 30 35 40 45 0 50 100 150 200 [ Efficiency (%) ] <ul><li>Hydrogen-driven FC Zafira (HydroGen3) </li></ul><ul><li>Diesel Zafira (X20DTL Engine) </li></ul>1. Gear 2. Gear 3. Gear 4. Gear 5. Gear
    37. 37. Overall efficiency FC-car (example DC) 100 % l H 2 Data: Lamm 2002 Part 1 Part 2 Part 3 Part 4 Part 5 B 37.7 % overall efficiency tank to whell 62.2 % FC-output 37.8 % Heat 45.8 % Converter output 16.4 % auxilliaries 37.7 % Wheel 8.1 % converter, motor, gear, differential
    38. 38. Fuel Cell Busses <ul><ul><li>DaimlerChryslers “Citaro-Bus” based on fuel cell technology. </li></ul></ul><ul><ul><li>27 Citaro buses were tested during 2003 to 2005 in 9 European cities. </li></ul></ul><ul><ul><li>Stack-Technology from Ballard: </li></ul></ul><ul><ul><ul><li>Two modules “MK902 Heavy Duty“ with 300 kW. </li></ul></ul></ul><ul><ul><li>Tank-System </li></ul></ul><ul><ul><ul><li>9 CGH2-vessels with 350 bar can store 1845 litre. </li></ul></ul></ul><ul><ul><li>operating range </li></ul></ul><ul><ul><ul><li>200 to 250 kilometres. </li></ul></ul></ul><ul><ul><li>maximum speed </li></ul></ul><ul><ul><ul><li>approx. 80 kilometres. </li></ul></ul></ul>Source: Fuel Cell Bus Club 2004 Part 1 Part 2 Part 3 Part 4 Part 5 Fuel Cell Bus “Citaro” B
    39. 39. H2 Filling Stations - worldwide Part 1 Part 2 Part 3 Part 4 Part 5 299 filling stations worldwide ! Source: by LBST (LBST 2007) B
    40. 40. H2 Filling Stations – Europe Part 1 Part 2 Part 3 Part 4 Part 5 Source: by LBST (LBST 2007) B
    41. 41. Sources I <ul><li>Aigle, Thomas; Marz, Lutz (2007a): Automobilität und Innovation. Versuch eine interdisziplinären Systematisierung. Discussion Paper SPIII 2007-102. Wissenschaftszentrum für Sozialforschung Berlin </li></ul><ul><li>Aigle, Thomas; Krien, Philipp; Marz, Lutz (2007): Die Evaluations-Matrix. Ein Tool zur Bewertung antriebs- und kraftstofftechnologischer Innovationen in der Automobilindustrie. Discussion Paper SPIII 2007-105. Wissenschaftszentrum für Sozialforschung Berlin </li></ul><ul><li>Bady, Ralf (2000): Hybrid-Elektrofahrzeuge – Strukturen und Entwicklungen. Vortrag, 6. Symposium Elektrische Straßenfahrzeug. Technische Akademie Esslingen. </li></ul><ul><li>Budd, Geoff (2006): A fuel cell bus project for Europe – Lessons learned from a fuel cell perspektive. Vortag, CUTE-Abschlusskonferenz. 22.5.2006, Hamburg. </li></ul><ul><li>BMW (2006a): Der BMW Hydrogen 7 – eine neue Ära der Mobilität. Pressemitteilung, Internet: Zugriff: 10.10.2006 </li></ul><ul><li>Fuel Cell Bus Club (2004) Background Information / Fuel Cell Technology / New Generation of Buses Internet: / zugriff: 17.12.2007 </li></ul><ul><li>Helmolt von, Rittmar; Eberle, Ulrich (2007): Fuel cell vehicles: Status 2007. In: Journal of Power Sources, 165 (2007), S. 833-845 </li></ul><ul><li>Herrmann, M.; Winter, U.: Fuel Cells 2003, 3, No. 3, 141 ff </li></ul><ul><li>HyCar (2006): Der Wasserstoff-Wankelmotor. Informationsseiten über Wasserstofffahrzeuge von Jürgen Kern. Internet: Zugriff: 04.10.06 </li></ul><ul><li>Jörissen, Ludwig; Garche, Jürgen (2000): Brennstoffzellen für den Fahrzeugantrieb. In: Wengel, Jürgen; Schirmeister, Elna (Hg.): Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die baden-württembergische Industrie. Abschlussbericht. Karlsruhe, Februar 2000, S. 13-48. </li></ul>Part 1 Part 2 Part 3 Part 4 Part 5
    42. 42. Sources II <ul><li>Lamm, Arnold (2006): PEM-BZ-Systeme für den mobilen Einsatz. Vortrag, DaimlerChrysler Forschungszentrum Ulm. Internet: Zugriff: 06.11.2006 </li></ul><ul><li>LBSt (2007): Hydrogen filling stations worldwide. Internet: </li></ul><ul><li>Los Alamos (1999): Fuel Cells. The green Power. </li></ul><ul><li>Manager-Magazin (2005): Hybridautos – Der Airbag-Effekt. Artikel, Internet:,2828,373740,00.html. Zugriff: 22.10.2006 </li></ul><ul><li>Mitshubishi (2005): Mitsubishi Motors to drive forward development of next-generation EVs - Colt EV test car uses in-wheel motors & lithium-ion batteries. Pressemitteilung, Internet: Zugriff: 02.11.2006 </li></ul><ul><li>Stauch, Thorsten (2005): Präsentation Technik F-Cell. Vortrag, Praxis-Seminar Wasserstoff­betriebene Fahrzeuge, Weiterbildungszentrum Brennstoffzelle. 27.1.2005, Ulm. </li></ul><ul><li>Tillmetz, Werner; Benz, Uwe (2006): Methanol Fuel Cell Power Train. Vortrag. European Biofuel Congress, 17.Oktober 2006, Essen </li></ul><ul><li>Toyota (2006): Seriell-paralleles Hybridsystem - Fluss der Systemenergie. Schaubild, Internet: Zugriff: 22.10.2006 </li></ul><ul><li>Umweltbrief (2007): Tesla - ein Elektro-Roadster aus USA. Internet: Zugriff: 17.12.2007 </li></ul>Part 1 Part 2 Part 3 Part 4 Part 5