
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on September 24, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
In the framework of mathematical morphology, watershed transform (WT) represents a key step in image segmentation procedure. In this paper, we present a thorough analysis of some existing watershed approaches in the discrete case: WT based on flooding, WT based on pathcost minimization, watershed based on topology preservation, WT based on local condition and WT based on minimum spanning forest. For each approach, we present detailed description of processing procedure followed by mathematical foundations and algorithm of reference. Recent publications based on some approaches are also presented and discussed. Our study concludes with a classification of different watershed transform algorithms according to solution uniqueness, topology preservation, prerequisites minima computing and linearity.
Be the first to like this
Be the first to comment