S 1.2 Enhancing climate-resilience in tropical maize (Zea may L.)

1,610 views

Published on

Presentacion de 11th Asian Maize Conference which took place in Beijing, China from November 7 – 11, 2011.

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,610
On SlideShare
0
From Embeds
0
Number of Embeds
290
Actions
Shares
0
Downloads
72
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

S 1.2 Enhancing climate-resilience in tropical maize (Zea may L.)

  1. 1. Enhancing climate-resilience in tropicalmaize (Zea may L.)PH Zaidi* and Jill CairnsGlobal Maize Program, CIMMYT* E-mail: phzaidi@cgiar.org
  2. 2. Saturday 29 October 2011
  3. 3. South Asia boils -52 years record temperature and heat wavesPress Trust of India, Friday May 6, 2011, New Delhi
  4. 4. CLIMATE CHANGE Predictions for Asian Region (IPCC, 2007) Temp. increase by 2050 : 2.5-3.00C, Rise in winter (night) temperature Good for winter maize, but more biotic pressure Significant change in pattern of annual precipitation Frequency of temporary flooding/water-logging and drought likely to increases Summers may become more drier & hotter Drought and heat stress are likely to increasesDeparture in Temp. (0C) from 1990 value
  5. 5. Climate-change vulnerability mapCriteria:• Exposure (highly exposed if the temperature increases by at least 2oC or if variation in annual precipitation levels at least 20%)• Sensitivity (represented by share of labor employed in agriculture (FAO 2004); countries with agricultural employment above 40% are considered to be highly sensitive)• Adaptive capacity (represented by poverty level. A poverty level of more than 30% is considered to be low adaptive capacity) (ADB, 2009)
  6. 6. Effect on Crop production• If current trends persist until 2050, the yields of major crops in South Asia will decrease significantly :  Maize (-17%),  Wheat (-12%) and  Rice (-10%) due to of climate change-inducedheat and water stress.• Resulting food scarcity will lead to higher prices and reduced caloric intake across the region. Building Climate Resilience in the Agriculture Sector of Asia and Pacific (IFPRI and ADB, 2009)
  7. 7. Effect of Temperature max. and min. on maize yieldLobell et al., 2011; DOI: 10.1126/science.1204531
  8. 8. Projected increase in demand for major cereals in developing countries, 1995–2020 Rice Maize Wheat Annual percent increase 2000 3 Other grains 2.35Million metric tons 1500 2.09 2 1.58 1000 1.23 1 500 0 0 0 1995 2020 Rice Wheat Other Maize grains Source: VISION 2020, IFPRI.
  9. 9. Some facts about Asian Tropics Over 80% maize is grown as rain- fed crop, with avg. yield <1/2 of irrigated maize Further increase in rain-fed maize area @1.8% per year (~ six time faster than irrigated area) (Edmeades, 2007) Declining ground water table Irrigation capacity under threat Climate change effects more frequent & severe stresses Maize Demand Projection The Challenging Task! More than double by 2020 Meet the projected demand by (IFPRI IMPACT model, 2000) enhancing productivity of rain-fed ecology
  10. 10. Development of climate-ready maize - CIMMYT-initiatives Water-logging/ Heat Low-N tolerance / NUE Drought Anaerobic germination Combined stress tolerance Drought + Heat Drought + waterloggingDisease resistance
  11. 11. CIMMYT’s Abiotic Stress Tolerant Maize Breeding Sites Kiboko (Kenya) Hyderabad (India) Drought Drought; Waterlogging; Heat, DT+WL, DT+ HtTlaltizapan (Mexico)Drought; Heat DT + Ht Cali(Colombia) Acidity Chiredzi Nanga (Zambia) (Zimbabwe) Drought Drought
  12. 12. Abiotic Stress Screening/Phenotyping sites in South & SE Asia Drought Waterlogging Heat Cold
  13. 13. Managed Drought Stress Irrigation for germination Last irrigation, before DT stress Genotypic variability at flowering At harvestMonitoring stress intensity
  14. 14. Drought tolerant maize for Asian tropics1. Early YellowS.No. Pedigree GY-DT Anth ASI GY-NM HG 1 P31C4S5B-23-#-#-6-B-1-B-B 3.05 51.2 3.3 8.50 A 2 CA03130-B-B-2-B-1-B 2.40 52.3 4.1 7.75 A 3 G18Seq C5 F68-2-1-1-2-2-B 3.35 50.1 4.2 7.68 A 5 G18Seq C5 F236-1-2-1-2-3-B 2.58 52.1 4.3 9.35 A 7 G18Seq C5 F76-2-1-2-1-2-B 2.75 50.0 3.2 7.88 A 8 CML-472 A 2 CA14514-6-B-1-B-B 2.08 52.1 2.3 7.52 B 3 G18Seq C5 F105-1-1-1-2-1-B 2.53 50.0 3.7 8.82 B [G16SeqC1F47xP84c1 F26)-F2-1-2-2- 4 2.09 51.1 1.6 7.76 B B2. Medium yellow 1 DTPYC9-F87-1-1-1-2-1-2-1-B 3.67 57.8 1.0 8.90 A 2 DTPYC9-F46-3-1-1-2-3-2-2-B 3.64 59.2 2.9 8.02 A 3 DTPYC9-F46-3-9-1-2-2-1-3-B 3.53 57.0 3.2 8.04 A 4 DTPYC9-F38-5-2-1-1-2-2-1-B 3.27 56.8 1.4 7.88 A 7 DTPYC9-F148-2-2-1-2-1-2-1-B 3.01 60.0 7.69 A 9 P401c2F2-248-1-B*5-1-B-1-B 2.97 58.2 2.0 9.08 A 1 SO4YLWL-172-B-1-1-B-1-B 3.15 57.6 2.6 8.69 B 2 WLS-F310-3-2-2-B-1-B 3.01 59.2 5.1 8.36 B [Ent67:92SEW1-17/[DMRESR-W]-B- 3 2.45 56.9 -0.9 8.06 B 31-B 7 POB.45c9 F2 23-4-2-1-B 2.69 57.8 2.3 8.82 B
  15. 15. Genetic architecture of the trait can/should decide ways of marker interventionPurpose of marker use (Rex Bernardo, 2008)
  16. 16. DTMA association mapping panel• 279 hybrids (diverse lines crossed with common tester CML-312 SR) Breeding program No. of lines Main sources Acid soils 28 KU and P43 Drought 52 DTPW, DTPY, La Posta Sequia Entomology 39 CML, MBR, ZM607, KLIMA, P84 Ethiopia 2 Pool9 Highland 5 ATZRI, BA90 Low N 32 DTPW, DTPY, La Posta Sequia Nigeria 5 KU and P43 Sub-tropical 31 CML, MBR, SPMAT, Pop 33, Pop 45, Pop 501, Pop 502 Tropical 41 CML, CLQ, CL Zimbabwe 44 CML, CIMCALI, DTPW Genotypic data – Babu Raman, Jianbing Yan Wen et al. Crop Science 2011
  17. 17. DTMA association mapping panel• Drought – 9 experiments – Kenya 2010, 2011 (still in the field) – Mexico 2009, 2010, 2011 – Thailand 2010, 2011 (Professor Grudloyma) – Zimbabwe 2010, 2011 (still in the field)• Well-watered – 7 experiments Mexico 2009 – Mexico 2009, 2010 (x2), 2011 (x2) – Thailand 2010, 2011 (Dr. Pichet Grudloyma)• Drought and heat – 2 experiments – Mexico 2010, 2011• Drought and Heat – 1 experiment – India 2011 Mexico 2010• Waterlogging – 1 experiment – India 2010• Anaerobic germination – 1 experiment – India 2011 (Low N, MSV, GLS, Et, ear rots) Kenya 2010
  18. 18. Combined analysis Drought stress Well-wateredENT Pedigree GY* AD ASI GY* AD ASI238 DTPYC9-F46-1-2-1-2 2.66 72.1 0.7 7.12 69.9 1.0257 La Posta Seq C7-F86-3-1-1-1 2.53 74.0 2.5 7.83 73.8 1.3207 CL-G1628=G16BNSeqC0F118-1-1-4-2 2.53 72.2 2.3 6.77 71.2 3.6 La Posta Seq C7-F64-2-6-2-2 2.51 74.5 1.3 7.65 74.0 0.9298 La Posta Seq C7-F78-2-1-1-1 2.51 74.7 3.1 8.35 73.9 2.1 La Posta Seq C7-F86-3-1-1-1 2.50 75.9 2.3 7.74 75.5 0.0217 DTPWC9-F24-4-3-1 2.49 72.5 1.4 6.97 71.5 1.0261 La Posta Seq C7-F180-3-1-1-1 2.48 75.7 4.1 7.94 75.6 0.3237 DTPYC9-F46-1-2-1-1 2.48 72.3 1.9 6.73 71.7 0.8256 La Posta Seq C7-F103-2-2-2-1 2.45 77.3 2.9 7.91 76.3 0.1 84 (200-3 x GUAT189)(16xP84c1 F27-4-1-4-B-1-B59)F1… 1.72 74.5 5.9 5.23 74.6 2.9 CML-491 1.72 81.0 5.0 7.78 79.8 2.4 9 CIMCALI8843/S9243-BB-#-B-5-1-BB-2-3-3 1.71 77.0 8.3 6.55 76.3 2.9 53 CLA183 1.71 75.5 7.8 6.50 74.9 1.7 22 P501SRc0-F2-47-3-2-1 1.69 76.2 5.5 6.04 75.4 4.8108 [M37W/ZM607#bF37sr-2-3sr-6-2-X]-8-2-X-1… 1.67 74.5 9.2 5.33 72.8 3.5 40 [CML144/[CML144/CML395]F2-8sx]-1-2-3-2 1.61 75.6 8.5 6.77 75.6 2.5 39 [CML144/[CML144/CML395]F2-8sx]-1-1-1 1.61 77.3 7.2 6.81 76.7 1.1147 CML-311 1.50 76.7 8.3 4.71 76.3 2.9109 [M37W/ZM607#bF37sr-2-3sr-6-2-X]-8-2-X-1… 1.42 73.8 8.5 4.37 73.0 4.2 *best linear unbiased predictions
  19. 19. MARS for improving Drought tolerance AMDROUT Phenotyping & Genotyping Summary No. of F2.3 Polymorp F3 families Population Parent1 Parent2 Evaluation Season test crosses hic SNPs genotyped 2010 & 2011AMDROUT1 CML470 CML444 273 Drought, 2011 353 294 Rainy 2010 & 2011AMDROUT2 VL1012767 CML444 165 Drought, 2011 391 189 Rainy 2011 Drought,AMDROUT5 VL1012764 CML444 156 432 213 2011 Rainy 2011 Drought,AMDROUT6 CML472 CML440 123 348 183 2011 Rainy
  20. 20. Phenotyping advances• Identify field gradients, minimize error• Placement of trials to avoid/minimize field gradients
  21. 21. Monitoring moisture content in soil profiles in drought trials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
  22. 22. Root phenotyping ???
  23. 23. Root traits - focus on functions Water use, its dynamics
  24. 24. Water use under drought stress Water use Water use pattern 60.0 5.0 Tolerant Water use (liters plant-1week-1) 50.0 Mod. TolerantGrain yield (g plant-1) Susceptible y = 13.50x - 13.43 4.0 40.0 R² = 0.676** 30.0 3.0 20.0 2.0 10.0 0.0 1.0 Late grain filling Before anthesis Early grain filling Anthesis 0.0 2.0 4.0 6.0 1.0 2.0 3.0 4.0 Water use (liters plant-1week-1)
  25. 25. Temporary water-logging problem in summer (Kharif) maize
  26. 26. Water-logging at vegetative growth stage 7th day 3rdday after release of stressRecovery & completion of crop cycle
  27. 27. Confirmation of response under field conditionTolerant entry
  28. 28. WL tolerant medium maturity yellow lines- Per se & TC performance TC under WL-Across Under normal moisture Rank TC LineNo. Pedigree Avg. Grain Yield Anth ASI HG Yield yield TLB Rust # t/ha d d t/ha t/ha (1-5) (1-51 WLS-F287-1-3-1-B-1-B/CML474 1 3.32 58.2 2.8 B 6.38 3.05 1.7 3.22 J.local-18-6-2-3-3-1-B-B-B-B/CML470 2 3.11 61.2 2.6 A 6.98 2.98 2.4 1.33 WLS-F310-3-2-2-B-1-B/CML474 3 3.06 61.3 1.0 B 6.88 2.56 1.9 2.24 J.local-16-2-1-1-3-1-B-B-B-B/CML474 4 2.98 60.3 2.6 B 7.06 2.86 2.6 3.35 SO4YLWL-172-B-1-1-B-1-B/CML470 5 2.88 62.3 1.5 A 7.03 2.46 3.1 2.16 WLS-F102-3-2-1-B-1-B/CML474 6 2.56 58.3 2.3 B 6.86 2.98 2.3 1.97 Saracura-11-3-2-2-1-B-B-B-B/CML474 7 2.42 61.2 1.6 B 5.99 2.77 0.9 2.68 WLS-F183-3-2-2-B-2-B/CML470 9 2.39 62.1 2.1 A 6.79 2.51 2.1 1.89 CML-226-2-3-2-1-B-B-B-B-B/CML470 11 2.33 62.3 1.2 A 7.26 3.01 1.2 2.2
  29. 29. Anaerobic germination tolerant maize Germination & seedling establishment under prolonged high moisture condition (R-M system, diara lands etc.)
  30. 30. Managedanaerobic stress High moisture (48 hrs) Anaerobic conditions (72 hrs)
  31. 31. Anaerobic germination tolerance 140 135 Zero 120 1-10% 96 100 11-30% 31-50%No. of entries 80 51-80% 81-90% 60 >90% 40 31 25 20 7 5 2 0 Frequency distribution Fig. 1: Frequency distribution of hybrids for seedling emergence (%) under anaerobic condition due excessive soil moisture.
  32. 32. Heat stress tolerant maize Climate change - Mid- season drought & heat stress in main season Intensive cereal system - summer/spring maize as 3rd crop CSISA project
  33. 33. Managed heat stress at flowering/early grain-filling 45 40 40 35 Delhi 35 30 Delayed planting of Spring maize – 30 25 Flowering/early grain filling coincides with high temperature regime (400C+) and low RH Relative humidity (%) 25 20Temperature (oC) 20 15 45 40 40 35 35 Hyderabad 30 30 25 25 20 20 15 CSISA project
  34. 34. Performance of Elite Inbred lines under Heat stress Across five locations (Hyderabad, Jalna, Delhi, Karnal & Ludhiana)Pedigree GY Rank Anthesis ASIBEST under heat stress t/ha Rank d dG18Seq C5 F68-2-1-1-2-2-B-B 1.99 1 48.0 4.7POOL 16 BNSEQ.C3 F28 x 15-3-1-2-1-B 1.64 2 51.0 2.8Pop.61C1 QPM TEYF-40-1-2-1-1-B 1.51 3 56.5 1.7LM 12 1.50 4 57.0 3.4CA00106-9-B-2-B 1.47 5 55.0 -0.6Pop.61C1 QPM TEYF-54-2-1-1-2-B-B 1.38 6 50.0 1.3HKI 1094-WG 1.24 7 57.5 -1.7POOL 16 BNSEQ.C3 F22 X 1-3-2-B 1.19 9 60.8 7.5(CML161 x CML451)-B-23-1-B-B-B-B-B 1.07 10 54.0 -0.6WORST under heat stressCML 470 0.00 122 52.1 12.4HKI 288-2 0.00 123 52.3 14.1LM 17 0.00 124 52.6 3.9P31C4S5B-99-JMM-B-3 0.00 125 50.7 13.4Mean 0.17 45 56.4 5.3LSD (0.05) 0.01 26 4.5 5.8Mse 52.28 4.9 8.4P *** *** ***Min 0.00 1 48.0 -4.5Max 1.99 125 66.0 17.0 CSISA project
  35. 35. Cross performance of heat tolerant lines GrainEnt Pedigree Rank Anthesis ASI Plant Ht. 100 KW yield t/ha d d cm g BEST (CML161xCML451)-B-23-1-B*4-1- 31 3.26 1 62.9 2.1 160.6 28.1 B/(CML165xKI45)-B-14-1-B*4-1-B 38 PAC740 3.19 2 59.9 2.2 167.0 25.2 Pop61C1QPMTEYF-40-1-2-1-1-B-3- 24 3.17 3 57.4 5.3 171.9 23.0 BB/(CML161xCML451)-B-23-1-B*4-1-B 40 J.K.M.H.502 2.90 4 61.7 2.6 144.1 27.6 35 (CML161xCML451)-B-23-1-B*4-1-B/LM12-B 2.88 5 60.6 2.8 173.1 27.4 (CML150xCL-03618)-B-16-1-1-1-B*6-1- 8 2.82 6 62.4 2.4 172.1 25.4 BB/LM12-B 32 (CML165xKI45)-B-14-1-B*4-1-B/LM13-B 2.76 7 60.4 3.4 154.7 29.5 LM13-B/Pop61C1QPMTEYF-40-1-2-1-1-B-3- 25 2.75 9 57.7 4.0 160.3 23.5 BB 20 LM13-B/G18SeqC5F19-1-2-1-2-4-BBB 2.68 8 54.0 4.9 152.2 27.2 WORST (CML165xKI45)-B-14-1-B*4-1- 17 0.97 38 54.3 8.6 137.4 27.1 B/POOL16BNSEQC3F28x15-3-1-2-1-BBB Pop61C1QPMTEYF-40-1-2-1-1-B-3- 28 0.75 39 59.2 5.7 145.5 19.1 BB/Pop61C1QPMTEYF-54-2-1-1-2-B-1-BB Pop61C1QPMTEYF-54-2-1-1-2-B-1- 11 0.38 40 53.4 9.5 136.5 24.8 BB/POOL16BNSEQC3F28x15-3-1-2-1-BBBMean 2.04 21 58.3 4.7 152.3 25.7LSD (0.05) 0.99 12 2.4 2.6 14.2 3.9CV 28.47 1.7 29.0 7.2 9.2H2 75.17 93.47 78.17 76.15 75.20p 0.001 0.000 0.000 0.000 0.000
  36. 36. Challenge of breeding for combinations of traits Drought + heat drought +waterlogging Abiotic + biotic stresses 100 Drought Water-logging DroughtWeekly rainfall (mm) 75 50 25 0 p ly ug ne Se Ju Ju A Monsoon months Planting Vegetative stage Reproductive stage
  37. 37. Drought & Waterlogging Tolerant Maize (GY t ha-1, R2 = 0.13) Best under Drought Best under Waterlogging DT WL WL DT PAC-745 3.57 2.29 KMH-408710 4.36 3.16 BH-19 3.46 3.61 HTMH-5101 4.06 2.26 SAMPARN 3.34 2.53 BH-18 3.94 0.60 PAC-748 3.27 2.88 BH-5 3.83 0.80 KMH-408710 3.16 4.36 BH-1 3.71 1.48 YSC-354 3.15 1.78 BH-20 3.71 2.51 CML470/ CML472 3.07 1.41 HTMH-5103 3.70 1.25 C900MG 3.04 2.88 BH-4 3.68 0.59 PAC-740 3.02 2.65 BH-19 3.61 3.46 VIVEK HYBRID-9 2.92 0.92 BH-7 3.59 1.66 Mean data of 112 elite hybrids for two years & three locations BMZ-Asia project
  38. 38. Entry Pedigree Lines 1 G18Seq C5 F19-1-2-1-2-2-B R-lines Combining DT and WL 2 3 G18Seq C5 F19-1-2-1-2-3-B G18Seq C5 F76-2-2-1-1-1-B R-lines R-lines tolerance 4 5 G18Seq C5 F100-1-1-3-1-2-B G18Seq C5 F105-1-1-1-2-3-B R-lines R-lines 6 DTPWC9-F16-1-1-3-2-2-2-1-B R-lines 7 DTPWC9-F2-3-1-1-2-1-2-1-B R-lines 8 DTPWC9-F24-4-3-1-2-1-1-2-B R-lineso 24 DT lines, including lines from 17 9 DTPWC9-F31-1-1-3-1-2-1-3-B R-lines lines CIMMYT-Asia and 5 lines from 10 DTPWC9-F5-4-1-1-2-2-1-1-B R-lines 11 DTPWC9-F67-2-2-1-3-2-1-2-B R-lines CIMMYT-Zimbabwe 12 DTPYC9-F134-2-1-2-1-2-1-2-B R-lines 13 DTPYC9-F38-4-3-1-3-2-1-2-B R-lineso Crossed with 2 veg. stage WLT and 2 14 DTPYC9-F46-3-1-1-2-3-2-2-B R-lines 15 DTPYC9-F46-3-6-1-2-2-1-2-B R-lines anaerobic germination tolerant lines 16 DTPYC9-F69-3-1-1-2-2-1-1-B R-lines ,5406-119P28TSR-(S2)-3-1-2-2-B- 17o BC1 F3 (and F4) TC ###-BBBB-B-B-B-B R-lines 18 CML488-2 R-lineso TC evaluation in Kharif-11 (WL, Yield, 19 ZM621A-10-1-1-1-2-B*7-B-B-B-6 R-lines 20 DRB-F2-60-1-1-1-BBB-4 R-lines disease) and Rabi-11 (DT) 21 ZM523B-29-2-1-1-BBB-2 R-lines 22 CML440-1 R-lines 23 CML442-3 R-lines 24 CML444-2 R-lines 25 WLS-F36-4-2-2-B D-Lines (Veg. stage WL) 26 Bio9681-WLS-6-3-2-1-2-B-B-B-B D-Lines (Veg. stage WL) (DT/LN/EM-46-3-1xCML311-2-1-3)-B- 27 F203-1-1 D-Lines (Germ. stage WL) (DT/LN/EM-46-3-1xCML311-2-1-3)-B- 28 F243-1-1 D-Lines (Germ. stage WL)BMZ-Asia project
  39. 39. Effects of heat stress on maize yield Each degree day spent above 30 C reduced the final yield by 1% under optimal rain-fed conditions, and by 1.7% under drought conditions.(Lobell et al., 2011)
  40. 40. Drought Tolerant Lines under Heat Stress Pedigree GY Rank Anthesis ASIBEST t/ha Rank d dDTPWC9-F137-3-1-2-2-1-2-1-B 2.20 1 58.3 0.9CML31-1 1.87 2 55.1 3.5P31C4S5B-39-#-#-B-B-B-B-3-B-1 1.42 3 57.1 1.7P147-F2#105-2-1-B-1-B-B-B-B- 1.39 4 56.4 0.2POOL 16 BNSEQ.C3 F32 x 37-4-1-2- 1.28 5 52.0 -2.11-B-BCA03139-B-B-B-1 1.23 6 55.0 2.0DTPWC9-F2-3-1-1-2-1-2-1-B-B 1.11 7 57.7 1.4DTPYC9-F46-3-1-1-2-3-2-2-B-B 1.03 8 53.2 1.9CML292-1 1.02 9 61.5 -0.5DTPYC9-F143-1-1-1-2-1-2-2-B-B 1.01 10 58.6 -0.5WORSTCML421-4-B-1 0.00 167 52.5 4.5P31C4S5B-38-#-#-4-B 0.00 168 61.3 11.2CML469-1-B-B-2-B 0.00 169 58.4 10.3DTPYC9-F142-1-3-1-2-1-2-2-B-B 0.00 170 50.1 9.2Mean 0.30 76 55.0 6.3LSD (0.05) 0.42 44 4.3 8.3MSe 0.04 4.6 17.5p ** *** ***Min 0.01 1 52.1 -2.6Max 2.20 170 64.1 18.1
  41. 41. DTMA – AM panel under Heat and Drought Stress Entry Code Pedigree GY Rank Anthesis ASI Plant Ht. t/ha Rank d d cm BEST DTPWC9-F67-1-2-1-2-B-B-B-B-B / CML-312 28 DTMA-224 3.51 1 55.2 6.9 124.4 SR 88 DTMA-240 DTPYC9-F114-2-4-1-2-B-B-B-B / CML-312 SR 3.11 2 59.9 13.4 120.3 106 DTMA-271 DTPWC9-F67-2-2-1-B-B-B-B-B / CML-312 SR 3.08 3 58.3 4.1 139.8 La Posta Seq C7-F102-1-3-1-1-B-B-B-B-B / 101 DTMA-242 2.78 4 60.1 3.3 126.1 CML-312 SR 150 CHECK-2 PAC740 2.77 5 63.4 2.4 150.6 Cuba/Guad C3 F85-3-3-1-B-B-B-B-B-B / CML- 59 DTMA-95 2.52 6 55.7 6.5 130.8 312 SR La Posta Seq C7-F96-1-2-1-1-B-B-B-B-B / 107 DTMA-247 2.48 7 59.0 0.4 125.2 CML-312 SR La Posta Seq C7-F96-1-2-1-3-B-B-B-B / CML- 89 DTMA-265 2.38 8 55.7 6.3 140.1 312 SR 149 CHECK-1 PAC339 2.32 9 64.6 -0.3 138.8 WORST EARLY- 146 CML-421 x CML-423 = Check 1 Early Maturity 0.09 147 55.8 14.7 152.4 CHECK-1 [(P86 S.F*P.S.P.A.A x P.S.P.A.A. TL91A 44-3- 118 DTMA-83 1-18-2P-2-1-1-3-1) x A.I.R.L. TL91A 2(3)-1-4-2- 0.01 148 58.4 8.6 141.7 2TL-1-1-B]-3-2-3-1-B-B-B-B-B / CML-312 SR 100 DTMA-232 DTPYC9-F11-2-3-1-2-B-B-B-B-B / CML-312 SR -0.05 149 61.1 4.6 88.2 P502c1#-771-2-2-3-B-1-1xCML-176]F2-61-4-2- 113 DTMA-142 -0.10 150 60.8 9.1 104.0 2-B-B-B-B-B-B / CML-312 SR Mean 1.30 76 58.6 6.8 124.2LSD (0.05) 0.74 43 3.3 10.3 18.0 CV 35.19 3.4 76.1 12.4 p 0.000 0.000 0.340 0.000 Min -0.10 1 52.2 -0.3 88.2 Max 3.51 150 67.2 18.2 152.4
  42. 42. CONCLUSIONS…….• Climate change effects are biggest challenge for Asian food grain productivity.• Stress-resilient germplasm, tolerant to key stresses is one of the key for addressing climate change effects• Integration of stress-tolerant germplasm & resource efficient technologies, the way forward

×