Towards the Wallace Initiative: Evaluating the impact of climate change on global plant biodiversity Julián Ramírez and An...
The Wallace Initiative framework: <ul><li>Assessment of impacts of climate change on species distributions to: </li></ul><...
<ul><li>Impact of climate change on species distributions Data: GBIF inputs </li></ul><ul><li>Very preliminary approach us...
The data: current and future climates <ul><li>Current climates from WorldClim </li></ul><ul><ul><li>19 bioclimatic indices...
The approach <ul><li>Maximum entropy as a very accurate algorithm for niche modeling </li></ul><ul><li>10 or more points f...
Results: distribution of protected areas <ul><li>Covering 13.8% of the total global surface (3.8% international, 10% natio...
Results: protected areas per AVOID region Proportion of nationally and internationally protected area Current extent of  i...
Modeling approach <ul><li>Aplying the maximum entropy algorithm </li></ul><ul><ul><li>Macoubea guianensis  Aubl.: food for...
Results: Current and future predicted species richness <ul><li>Important hotspots in Latin America, Europe, Australasia an...
Results: changes in species richness <ul><li>Null migration: losses everywhere </li></ul><ul><li>Unlimited migration: most...
Results: changes in species richness <ul><li>Null migration: losses everywhere </li></ul><ul><li>Unlimited migration: most...
Results: changes within AVOID regions <ul><li>Changes in species richness under both migration scenarios </li></ul>
Results:  in situ  conservation under the context of CC <ul><li>No matter if the best ‘adaptation’ scenario (unlimited dis...
Results:  in situ  conservation under the context of CC <ul><li>Expected changes within protected areas (PAs) sometimes oc...
Results:  in situ  conservation under the context of CC <ul><li>Loss in extent of  in situ  conservation </li></ul><ul><li...
Refugia identification <ul><li>Migration patterns </li></ul><ul><ul><li>Population plasticity </li></ul></ul><ul><ul><li>P...
Refugia identification <ul><li>Intensification of deforestation processes: where and when to locate a reserve? </li></ul>I...
Conclusions <ul><li>In situ  conservation needs to be oriented under the context of climate change </li></ul><ul><ul><li>A...
Next steps… scientific rigor <ul><li>A far more detailed approach is required including </li></ul><ul><ul><li>Individual G...
Next steps… analysis of policy implications <ul><li>Similarities/dissimilarities between regions </li></ul><ul><ul><li>Do ...
Upcoming SlideShare
Loading in …5
×

Julian R - Evaluating the impact of climate change on global plant biodiversity

998 views

Published on

Preliminary results on the assessment of impacts of climate change on global plant diversity. Presented at Tyndall Centre, Norwich, UK, by Julian Ramirez

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
998
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
28
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Julian R - Evaluating the impact of climate change on global plant biodiversity

  1. 1. Towards the Wallace Initiative: Evaluating the impact of climate change on global plant biodiversity Julián Ramírez and Andy Jarvis International Centre for Tropical Agriculture, CIAT Bioversity International
  2. 2. The Wallace Initiative framework: <ul><li>Assessment of impacts of climate change on species distributions to: </li></ul><ul><ul><li>Determine refugia </li></ul></ul><ul><ul><li>Improve knowledge of risks of exceeding certain levels of change by means of determining extinction rates </li></ul></ul><ul><li>Map potential corridors for species </li></ul><ul><li>Potential refugia, carbon dist., and design of REDD mechanisms </li></ul><ul><li>Driving of protected area design in the 21 st century </li></ul><ul><li>Provide critical conclusions to aid the development of adaptation plans </li></ul>
  3. 3. <ul><li>Impact of climate change on species distributions Data: GBIF inputs </li></ul><ul><li>Very preliminary approach using 33,004 taxa </li></ul><ul><ul><li>Using the entire GBIF database </li></ul></ul><ul><ul><li>Selecting species with at least 10 unique data points </li></ul></ul><ul><ul><li>67,039 species (15,215,524 occurrences) </li></ul></ul><ul><ul><li>Correcting georreferences </li></ul></ul><ul><ul><ul><li>Is the record in land or sea? </li></ul></ul></ul><ul><ul><ul><li>Is in the country/department/locality it says it is? </li></ul></ul></ul><ul><ul><ul><li>Is within the environmental niche of the species? </li></ul></ul></ul><ul><ul><li>65,991 selected species (14,157,497 occurrences) </li></ul></ul><ul><ul><li>Run for 33,004 (time matters) </li></ul></ul><ul><ul><li>Further taxonomical/geographic corrections to be implemnetd </li></ul></ul>Source: Conservation International
  4. 4. The data: current and future climates <ul><li>Current climates from WorldClim </li></ul><ul><ul><li>19 bioclimatic indices at 10 arc-minutes </li></ul></ul><ul><li>Future climates from downscaled GCM outputs </li></ul><ul><ul><li>18 models at 10 arc-minutes spatial resolution </li></ul></ul><ul><ul><li>For 2050s </li></ul></ul><ul><ul><li>Under the A2a emission scenario </li></ul></ul><ul><ul><li>19 bioclimatic variables as for WorldClim </li></ul></ul><ul><ul><li>Control run with the average climate of all GCMs </li></ul></ul>
  5. 5. The approach <ul><li>Maximum entropy as a very accurate algorithm for niche modeling </li></ul><ul><li>10 or more points for each of the 33,004 taxa </li></ul><ul><li>Only one future projection (control future scenario) </li></ul><ul><li>Current: two extreme migration scenarios </li></ul><ul><ul><li>Unlimited migration </li></ul></ul><ul><ul><li>Null migration </li></ul></ul><ul><li>Measures of diversity and area loss </li></ul><ul><ul><li>Per AVOID region and globally </li></ul></ul><ul><ul><ul><li>Within Protected Areas </li></ul></ul></ul><ul><ul><ul><li>Overall </li></ul></ul></ul><ul><li>Current extent of conserved biodiversity within protected areas ( in situ gap analysis) </li></ul>
  6. 6. Results: distribution of protected areas <ul><li>Covering 13.8% of the total global surface (3.8% international, 10% national) </li></ul><ul><li>Holding a great amount of biodiversity </li></ul>
  7. 7. Results: protected areas per AVOID region Proportion of nationally and internationally protected area Current extent of in situ conservation Some issues in highly diverse areas… Global biodiversity currently well conserved
  8. 8. Modeling approach <ul><li>Aplying the maximum entropy algorithm </li></ul><ul><ul><li>Macoubea guianensis Aubl.: food for rural indigenous communities in the Amazon </li></ul></ul>Data harvesting from GBIF Building the presence model Projecting on future climates NULL MIGRATION UNLIMITED MIGRATION Potential habitat expansion NULL MIGRATION UNLIMITED MIGRATION
  9. 9. Results: Current and future predicted species richness <ul><li>Important hotspots in Latin America, Europe, Australasia and Central Africa </li></ul><ul><li>Displacement and loss of niches </li></ul>CURRENT NULL MIGRATION UNLIMITED MIGRATION
  10. 10. Results: changes in species richness <ul><li>Null migration: losses everywhere </li></ul><ul><li>Unlimited migration: mostly displacement </li></ul>
  11. 11. Results: changes in species richness <ul><li>Null migration: losses everywhere </li></ul><ul><li>Unlimited migration: mostly displacement </li></ul>UNLIMITED MIGRATION NULL MIGRATION
  12. 12. Results: changes within AVOID regions <ul><li>Changes in species richness under both migration scenarios </li></ul>
  13. 13. Results: in situ conservation under the context of CC <ul><li>No matter if the best ‘adaptation’ scenario (unlimited dispersal) is chosen, negatives are expected in most regions </li></ul><ul><li>There are regions with gains in species richness, but fairly due to displacement of niches </li></ul>
  14. 14. Results: in situ conservation under the context of CC <ul><li>Expected changes within protected areas (PAs) sometimes occur at a greater extent </li></ul><ul><li>Current gaps in in situ conservation to be larger in changing climates </li></ul><ul><li>Current protected areas to be strengthened, expanded, or re-located if necessary </li></ul>NULL MIGRATION UNLIMITED MIGRATION
  15. 15. Results: in situ conservation under the context of CC <ul><li>Loss in extent of in situ conservation </li></ul><ul><li>Loss of suitable habitats for several species </li></ul><ul><li>Opposite cases? </li></ul><ul><li>Mixed conditions? </li></ul>NULL MIGRATION UNLIMITED MIGRATION (+)RPT (-)DIV (-)RPT (-)DIV (+)RPT (-)DIV (+)RPT (+)DIV (+)RPT (-)DIV (-)RPT (+)DIV
  16. 16. Refugia identification <ul><li>Migration patterns </li></ul><ul><ul><li>Population plasticity </li></ul></ul><ul><ul><li>Population migration rate </li></ul></ul><ul><li>Cellular automaton </li></ul><ul><li>Select similar migration patterns </li></ul>
  17. 17. Refugia identification <ul><li>Intensification of deforestation processes: where and when to locate a reserve? </li></ul>Intense habitat degradation period Detections to 2009… but can be extrapolated to 2100 Date Number of Pixels with LUC Test area in Bolivia
  18. 18. Conclusions <ul><li>In situ conservation needs to be oriented under the context of climate change </li></ul><ul><ul><li>Areas to be strengthened (more control) </li></ul></ul><ul><ul><li>Areas to be expanded </li></ul></ul><ul><ul><li>Areas to be re-located (if migration does occur) </li></ul></ul><ul><li>Measuring impacts within each PA is required </li></ul><ul><li>Conservation must be focused on priority protected areas </li></ul><ul><ul><li>Amount of diversity </li></ul></ul><ul><ul><li>Predicted loss in suitable habitats </li></ul></ul><ul><ul><li>Number of species likely to be extinct and… most important… WHEN? </li></ul></ul>
  19. 19. Next steps… scientific rigor <ul><li>A far more detailed approach is required including </li></ul><ul><ul><li>Individual GCM results </li></ul></ul><ul><ul><li>Other emission and policy scenarios </li></ul></ul><ul><ul><li>All GBIF species with more taxonomic and georreferencing corrections </li></ul></ul><ul><ul><li>Other time slices: 2020s, 2030s, 2040s… </li></ul></ul><ul><ul><li>Validation metrics of Maxent models </li></ul></ul><ul><ul><li>Intermediate migration scenarios </li></ul></ul><ul><ul><li>Measure the number of extinct species for each region </li></ul></ul>
  20. 20. Next steps… analysis of policy implications <ul><li>Similarities/dissimilarities between regions </li></ul><ul><ul><li>Do current criteria for PA selection stand up to climate change? </li></ul></ul><ul><ul><li>What makes one protected area system more effective than another in combating climate change? [Australasia vs. South America] </li></ul></ul><ul><ul><li>What needs to change? </li></ul></ul><ul><li>What levels of biodiversity loss should be we preparing for? Which would be ‘acceptable’? </li></ul>

×