Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Distributed Sensing in Horticultural Environments

896 views

Published on

George Kantor

Published in: Education
  • Be the first to comment

  • Be the first to like this

Distributed Sensing in Horticultural Environments

  1. 1. Distributed Sensing in Horticultural Environments<br />George Kantor<br />Carnegie Mellon University<br />International Horticultural Congress Lisboa 2010<br />Colloquium 6: Technical Innovation in Horticulture<br />25 August 2010<br />
  2. 2. Sensor Networks for Agriculture<br /><ul><li>self-contained “nodes” (radio+IO)
  3. 3. ad-hoc network
  4. 4. data collected, relayed back to central point
  5. 5. can also send control signals</li></ul>Sensors<br />(leaf wetness, temperature, humidity, etc.)<br />node<br />field<br />Internet<br />base<br />station<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  6. 6. G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  7. 7. Visualizing Time Series(PSU FREC, ZedX Inc.)<br />FREC Building<br />University<br />Drive<br />North<br />50m<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  8. 8. Visualizing Spatial Variation<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />
  9. 9. Sensor Net Sensor Requirements<br />Hands off operation<br />No/little calibration required<br />Extremely rugged<br />Inexpensive<br />Generate small amounts of data<br />Require low computational power<br />Require low electrical power<br />Examples: <br />today: temperature, RH, PAR, light, rain, soil moisture, soil EC, leaf wetness, wind speed/direction, etc.<br />future: stem water potential, fruit temperature, fruit size, sap flow, others???<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  10. 10. Technology Overview: Robot<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  11. 11. G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  12. 12. Laser Scanning<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  13. 13. Building Point Clouds<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  14. 14. point cloud created by <br />Ben Grocholsky<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  15. 15. Technology Overview: Robot<br />NDVI<br />cameras<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  16. 16. Robot Sensing Requirements<br />Hands off operation<br />Can have non-trivial calibration step<br />Moderately rugged<br />Can be expensive<br />Can generate large amounts of data<br />Can require large computing power<br />Can require large electrical power<br />Examples: <br />today: laser scanners, cameras, hyperspectral imagery <br />future: gas exchange, chlorophyll, pheromone, leaf area,… <br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  17. 17. Robots vs. Sensor Nets<br />High spatial resolution<br />Low temporal resolution<br />Sophisticated sensing<br />More Expensive<br />Moderate spatial resolution<br />High temporal resolution<br />Simple sensing<br />Less expensive<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  18. 18. Robots vs. Sensor Nets<br />x<br />High spatial resolution<br />Low temporal resolution<br />Sophisticated sensing<br />More Expensive<br />Moderate spatial resolution<br />High temporal resolution<br />Simple sensing<br />Less expensive<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  19. 19. Robots living together in harmony with Sensor Nets<br />High spatial resolution<br />Low temporal resolution<br />Sophisticated sensing<br />More Expensive<br />Moderate spatial resolution<br />High temporal resolution<br />Simple sensing<br />Less expensive<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  20. 20. Information is Worthless…<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  21. 21. Information is Worthless…<br />…unless you use it to do something!<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  22. 22. Set Point Irrigation<br />low setpoint<br />high setpoint<br />soil moisture measurement<br />irrigation events<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  23. 23. Ongoing Work: Experimental Setup<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  24. 24. Human in the Loop<br />soil moisture sensors at 12 locations<br />38% increase in #1 stems<br />Charles Bauers<br />John Lea-Cox<br />base<br />station<br />irrigation<br />scheduler<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  25. 25. Automatic Decision Making: Modeling Approach<br />Model Parameters<br />model<br />outputs<br />Model<br />Mapping to Control Decision<br />sensor<br />inputs<br />control<br />signal<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  26. 26. Example: Petunia Model [van Iersel et al.]<br />Model Parameters<br />variety<br />plant age<br />Mapping to Control Decision (replace amount of water used)<br />model <br />output:<br />water use<br />sensor inputs:<br />temperature<br />RH<br />light<br />Model<br />irrigation<br />command<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  27. 27. Feedforward Modification<br />At the beginning of each day:<br />weather forecast:<br />temperature<br />RH<br />light<br />predicted<br />water use<br />set daily irrigation schedule<br />Model<br />(with parameters)<br />irrigation<br />schedule<br />At the end of each day:<br />sensor inputs:<br />temperature<br />RH<br />light<br />Model<br />(with parameters)<br />replace difference<br />water use<br />irrigation<br />command<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  28. 28. Example: MAESTRA [e.g., Bauerle et al.]<br />Model Parameters<br />tree location, geometry, soil type, LAI, leaf physiology…<br />Mapping to Control Decision (replace amount of water used)<br />model <br />output:<br />water use<br />sensor inputs:<br />temperature<br />RH<br />PAR<br />wind<br />Model<br />irrigation<br />command<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  29. 29. Example: MAESTRA [e.g., Bauerle et al.]<br />Model Parameters<br />tree location, geometry, soil type, LAI, leaf physiology…<br />Mapping to Control Decision (replace amount of water used)<br />model <br />output:<br />water use<br />sensor inputs:<br />temperature<br />RH<br />PAR<br />wind<br />Model<br />irrigation<br />command<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  30. 30. G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />
  31. 31. Obrigado<br />USDA SCRI CASC Project: CMU, Penn State, Washington State, Purdue, Oregon State, Vision Robotics<br />USDA SCRI MINDS Project: U. Maryland, CMU, Georgia, Colorado State, Cornell, Decagon Devices, Antir Software <br />Jim McFerson and WTFRC<br />IHC 2010 Organizers<br />G. Kantor<br />CMU Robotics Institute<br />IHC 2010Lisboa<br />25 August 2010<br />Sensing for Horticulture<br />
  32. 32. O Fim<br />

×