Speaker Event with Dr. Susan C. Pannullo - Brain Tumor Foundation


Published on

Stereotactic Radiosurgery: A Noninvasive Brain Tumor Treatment Option for THE BRAIN TUMOR FOUNDATION

Published in: Education, Health & Medicine
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • 210-230 pm
  • (minimally invasive)
  • Use differnet illlustrations for this slide
  • Picture of appropriate and inappropriate tumors
  • Consent form
  • Head frame
  • bubble
  • Picture of patient in the gamma knife or being loaded in
  • Picture of cyberknife treatment
  • Speaker Event with Dr. Susan C. Pannullo - Brain Tumor Foundation

    1. 1. Stereotactic Radiosurgery: A Noninvasive Brain Tumor Treatment Option <ul><li>Susan C. Pannullo, MD </li></ul><ul><li>Director of Neuro-Oncology </li></ul><ul><li>Department of Neurological Surgery </li></ul><ul><li>New York-Presbyterian Hospital/ Weill Cornell Medical College </li></ul><ul><li>Director of Neurosurgical Radiosurgery </li></ul><ul><li>New York Presbyterian Hospital </li></ul><ul><li>Associate Professor of Clinical Neurological Surgery </li></ul><ul><li>Weill Cornell Medical College </li></ul><ul><li>Adjunct Professor of Biomedical Engineering </li></ul><ul><li>Cornell University </li></ul>
    2. 2. Stereotactic Radiosurgery (SRS) <ul><li>Non-invasive technique for delivery of highly focused radiation with extreme precision </li></ul><ul><li>Creates a desired response (e.g. tumor cell death) </li></ul><ul><li>Minimal effect on normal surrounding structures </li></ul><ul><li>Uses high resolution imaging for “stereotactic” (3-D) treatment planning </li></ul><ul><li>Generally single session, can be multiple ( < 5) </li></ul><ul><li>Multidisciplinary team: Neurosurgeon, Radiation Oncologist, Medical Physicist </li></ul>
    3. 3. Stereotactic Radiosurgery: Indications <ul><li>Brain tumors </li></ul><ul><ul><li>Benign </li></ul></ul><ul><ul><li>Malignant </li></ul></ul><ul><ul><ul><li>Primary brain tumors </li></ul></ul></ul><ul><ul><ul><li>Brain metastases </li></ul></ul></ul><ul><li>Arteriovenous malformations </li></ul><ul><li>Functional disorders/ Pain </li></ul><ul><ul><li>Trigeminal neuralgia </li></ul></ul><ul><ul><li>Epilepsy </li></ul></ul><ul><ul><li>Psychiatric illness (e.g. obsessive compulsive disorder) </li></ul></ul><ul><li>Spine and other body cancers </li></ul>
    4. 4. Stereotactic Radiosurgery: Brief History <ul><li>1950s : Neurosurgeon Lars Leksell develops Stereotactic Radiosurgery technique at Karolinska Hospital – Stockholm </li></ul><ul><li>1960s: “ Gamma Knife ” </li></ul><ul><ul><li>Pituitary (sella visualized on xrays) </li></ul></ul><ul><ul><li>AVMs (angiogram) </li></ul></ul><ul><li>Mid-1970s : expanded applications of Gamma Knife due to CT </li></ul>
    5. 5. Stereotactic Radiosurgery: Brief History <ul><li>1980s : </li></ul><ul><ul><li>Linear accelerator modified  SRS for brain tumors </li></ul></ul><ul><ul><li>1987- Stereotactic Radiosurgery approved by FDA </li></ul></ul><ul><li>1990s: MRI  better targeting </li></ul><ul><li>2000 +: </li></ul><ul><ul><li>higher resolution imaging </li></ul></ul><ul><ul><li>clinical trials/data collection </li></ul></ul><ul><ul><li> increased use of SRS for variety of brain tumors </li></ul></ul>
    6. 6. Stereotactic Radiosurgery for Brain Tumors <ul><li>Stereotactic Radiosurgery is used alone or in addition to other brain tumor therapies such as surgery, “conventional” radiation, and chemotherapy. </li></ul>
    7. 7. Stereotactic Radiosurgery: Some Devices Used
    8. 8. Stereotactic Radiosurgery: 3 Types of Devices <ul><li>Gamma Knife </li></ul><ul><li>LINAC </li></ul><ul><li>Proton Beam </li></ul>
    9. 9. Stereotactic Radiosurgery: Technologies <ul><li>Gamma Knife </li></ul><ul><ul><li>201 beams of Co-60 (photons from decay) pass through various sized holes (“collimators”) in “helmet” </li></ul></ul><ul><ul><li>Target is placed in the center of the converging beams </li></ul></ul>
    10. 10. Stereotactic Radiosurgery: Technologies <ul><li>Linear Accelerator (LINAC) </li></ul><ul><ul><li>Most widely available </li></ul></ul><ul><ul><ul><li>Majority are modified multi-use LINACs </li></ul></ul></ul><ul><ul><ul><ul><li>Special software </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Special hardware </li></ul></ul></ul></ul><ul><ul><ul><li>Some are specially designed for SRS </li></ul></ul></ul><ul><ul><li>Accelerated photons </li></ul></ul><ul><ul><li>Multiple convergent arcs or beams of radiation </li></ul></ul>
    11. 11. Stereotactic Radiosurgery: Technologies <ul><li>Proton Beam </li></ul><ul><ul><li>Protons </li></ul></ul><ul><ul><li>Few active units in US </li></ul></ul><ul><ul><li>Expensive </li></ul></ul><ul><ul><li>Protons drop off their energy at one point (“Bragg Peak Effect”) </li></ul></ul><ul><ul><ul><li>Minimizes entry/exit dose </li></ul></ul></ul>
    12. 12. Stereotactic Radiosurgery: How Treatment May Be Done
    13. 13. Patient selection <ul><li>Tumor considerations: </li></ul><ul><ul><li>Tumor type </li></ul></ul><ul><ul><li>Size ( < 3 cm) </li></ul></ul><ul><ul><li>Location (“critical” structures) </li></ul></ul><ul><li>Patient considerations: </li></ul><ul><ul><li>Motivated, cooperative </li></ul></ul><ul><ul><li>Body shape (for Gamma Knife) </li></ul></ul><ul><ul><li>Can lie flat </li></ul></ul><ul><ul><li>Poor surgical risk ok </li></ul></ul><ul><ul><li>Anticoagulation ok </li></ul></ul>
    14. 14. Patient Preparation <ul><li>Same day surgery </li></ul><ul><li>Pre-op medications: </li></ul><ul><ul><ul><li>Edema  steroids </li></ul></ul></ul><ul><ul><ul><li>Seizures  anticonvulsants </li></ul></ul></ul><ul><li>Pre-op explanation/ consent </li></ul>
    15. 15. Frame Application <ul><li>Gamma Radiosurgery requires solid fixation of the patient’s head in a metal head frame </li></ul><ul><li>Patient comfort: </li></ul><ul><ul><li>Mild oral sedation </li></ul></ul><ul><ul><li>Local anaesthetic </li></ul></ul><ul><ul><li>Comforting environment </li></ul></ul>
    16. 16. Frame Placement <ul><li>Optimal frame placement- critical for frame based radiosurgery </li></ul><ul><ul><li>Avoid cranial defects </li></ul></ul><ul><ul><li>Place target(s) in the center of the frame </li></ul></ul><ul><ul><li>Anticipate collisions </li></ul></ul><ul><ul><li>Consider patient positioning and body shape limitations </li></ul></ul><ul><li>“ Bubble” measurements </li></ul>
    17. 17. Imaging and Treatment Planning <ul><li>Imaging </li></ul><ul><ul><li>MRI, CT in head frame </li></ul></ul><ul><ul><li>Image transfer to planning workstation </li></ul></ul><ul><li>Treatment planning </li></ul><ul><ul><li>Radiation oncologist, neurosurgeon, physicist, computer </li></ul></ul><ul><ul><li>Target and critical structures identification </li></ul></ul><ul><ul><li>Dose </li></ul></ul><ul><ul><li>Positioning in the machine </li></ul></ul>
    18. 18. Treatment Planning
    19. 19. Treatment Set Up <ul><li>Collimator helmet chosen for identified “shot” </li></ul><ul><li>x, y, z stereotactic coordinates “Gamma Angle” set </li></ul><ul><li>Helmet/frame/patient docked into machine </li></ul><ul><li>Exposure time set </li></ul>
    20. 20. Treatment Delivery
    21. 21. LINAC Stereotactic Radiosurgery Techniques <ul><li>LINAC Radiosurgery can be frame-based or frameless </li></ul><ul><li>CyberKnife: frameless LINAC radiosurgery </li></ul><ul><ul><li>Patient comfort </li></ul></ul><ul><ul><li>Permits fractionation </li></ul></ul><ul><ul><li>Allows treatment of extracranial sites (spine) </li></ul></ul>
    22. 22. CyberKnife Stereotactic Radiosurgery <ul><li>Mask fixation </li></ul><ul><li>Robot constantly adjusts beam trajectory using x-rays performed during treatment to track patient position </li></ul>
    23. 23. CyberKnife Stereotactic Radiosurgery
    24. 24. Stereotactic Radiosurgery: Some Tumor Types Treated
    25. 25. Stereotactic Radiosurgery: Some Tumor Applications <ul><li>Acoustic neuromas </li></ul><ul><li>Meningiomas </li></ul><ul><li>Brain metastases </li></ul><ul><li>Pituitary adenomas </li></ul><ul><li>Glioblastoma Multiforme </li></ul><ul><li>Craniopharyngiomas </li></ul><ul><li>Trigeminal and other cranial nerve schwannomas </li></ul><ul><li>Glomus Jugulare tumors </li></ul><ul><li>Hemangiopericytomas </li></ul><ul><li>Ependymomas </li></ul><ul><li>Recurrent medulloblastomas </li></ul>
    26. 26. Stereotactic Radiosurgery for Acoustic Neuroma <ul><li>Disease stabilization > 90% </li></ul><ul><li>Hearing preservation 60 % </li></ul><ul><ul><li>Possibly improved with fractionated stereotactic radiosurgery </li></ul></ul><ul><ul><li>Facial weakness 2-3 % </li></ul></ul><ul><ul><li>Face numbness 2-3 % </li></ul></ul><ul><li>Other complications 6 % </li></ul><ul><li>Minimal improvement of tinnitus (17 %) </li></ul>
    27. 27. Stereotactic Radiosurgery for Acoustic Neuroma <ul><li>Avoids hearing loss associated with some surgical approaches </li></ul><ul><li>Minimizes risk of facial weakness </li></ul><ul><li>Avoids anaesthesia complications, CSF leak, infection </li></ul><ul><li>May complicate future surgery, if needed </li></ul>
    28. 28. Stereotactic Radiosurgery for Acoustic Neuroma
    29. 29. Stereotactic Radiosurgery for Meningioma <ul><li>Inaccessible, recurrent, residual meningiomas </li></ul><ul><li>Disease stabilization 90 % </li></ul><ul><li>Complication rate 7 % </li></ul><ul><li>Higher control rate, fewer complications with smaller tumors </li></ul>
    30. 30. Stereotactic Radiosurgery for Meningioma
    31. 31. Stereotactic Radiosurgery for Brain Metastases <ul><li>Newly diagnosed, recurrent, residual brain metastases or sometimes to an area around a tumor after surgery </li></ul><ul><li>Control of treated tumors ranges 60 - 97 % </li></ul><ul><li>Can treat multiple metastases at one time </li></ul><ul><li>Single session therapy allows proceeding with treatment of systemic cancer </li></ul>
    32. 32. Stereotactic Radiosurgery for Brain Metastases <ul><li>Need known cancer diagnosis </li></ul><ul><li>Large tumors generally need an operation </li></ul><ul><li>May be used with or without additional radiation treatments </li></ul>
    33. 33. Stereotactic Radiosurgery for Brain Metastases
    34. 34. Stereotactic Radiosurgery for Brain Metastases
    35. 35. Stereotactic Radiosurgery for Pituitary Adenomas <ul><li>Radiosurgery can be used for residual, recurrent or occasionally for newly diagnosed pituitary adenomas </li></ul><ul><li>Secreting and nonsecreting pituitary adenomas </li></ul><ul><ul><li>Stable/decreased size = 92-100% </li></ul></ul><ul><ul><li>Sometimes the goal of treatment is to control tumor hormone secretion </li></ul></ul><ul><li>If tumor is near visual structures, fractionation may be used </li></ul>
    36. 36. Radiosurgery for Pituitary Adenomas
    37. 37. Stereotactic Radiosurgery for Glioblastoma Multiforme <ul><li>Potential indications for radiosurgery for GBM </li></ul><ul><ul><li>“ boost” following initial conformal radiation therapy </li></ul></ul><ul><ul><li>salvage at time of recurrence </li></ul></ul><ul><ul><li>upfront therapy </li></ul></ul><ul><li>Use of stereotactic radiosurgery for GBM is controversial </li></ul><ul><li>Possibly appropriate for use in localized GBM to achieve local control </li></ul>
    38. 38. Stereotactic Radiosurgery for Glioblastoma Multiforme
    39. 39. Stereotactic Radiosurgery: Risks and Benefits
    40. 40. Radiosurgery for Brain Tumors: General Risks <ul><li>Time of presentation: </li></ul><ul><ul><li>Acute (hours to days) </li></ul></ul><ul><ul><li>Early (weeks to months) </li></ul></ul><ul><ul><li>Late (months to years) </li></ul></ul><ul><li>Complications determined by various factors </li></ul><ul><ul><li>Tumor type, size, location </li></ul></ul><ul><ul><li>Prior radiation </li></ul></ul><ul><ul><li>Radiation dose given </li></ul></ul>
    41. 41. Radiosurgery for Brain Tumors: General Risks <ul><li>Necrosis/inflammation  </li></ul><ul><ul><li>edema </li></ul></ul><ul><ul><li>mass effect </li></ul></ul><ul><ul><li>seizures </li></ul></ul><ul><li>Late radiation effects on normal structures </li></ul><ul><ul><li>Cranial nerves </li></ul></ul><ul><ul><li>Optic chiasm </li></ul></ul><ul><ul><li>Brainstem </li></ul></ul><ul><li>? Radiation-induced secondary tumors </li></ul>
    42. 42. Stereotactic Radiosurgery for Brain Tumors: Potential Benefits <ul><li>Minimally/ Non-Invasive </li></ul><ul><ul><li>Well tolerated </li></ul></ul><ul><ul><li>Outpatient procedure </li></ul></ul><ul><ul><li>Immediate return to normal activities </li></ul></ul><ul><li>Single (or few) treatments  sustained effect </li></ul><ul><li>Treats a wide variety of tumors </li></ul><ul><li>Can treat multiple tumors at one sitting </li></ul><ul><li>Avoids systemic toxicity </li></ul><ul><li>May be combined with other therapies </li></ul>
    43. 43. Stereotactic Radiosurgery for Brain Tumors: Conclusions
    44. 44. Stereotactic Radiosurgery for Brain Tumors: Conclusions <ul><li>Treats a wide range of brain tumor types </li></ul><ul><li>Single or few sessions </li></ul><ul><li>Minimally/ Non-invasive </li></ul><ul><li>Safe </li></ul><ul><li>Effective </li></ul>
    45. 45. Stereotactic Radiosurgery for Brain Tumors: Conclusions <ul><li>A powerful tool in the treatment of brain (and spine) tumors… </li></ul>
    46. 46. New York Presbyterian Hospital Weill Cornell Medical College