Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

FWP 2017 l Pierre PEYSSON, WPD Offshore France

125 views

Published on

FWP 2017 l Pierre PEYSSON, WPD Offshore France
“LCOE: 5 levers for cost reduction”

Published in: Environment
  • Be the first to comment

  • Be the first to like this

FWP 2017 l Pierre PEYSSON, WPD Offshore France

  1. 1. HOW TO DEVELOP & STRUCTURE AN OWF IN ORDER TO OPTIMIZE THE LCOE ?
  2. 2. #FWPAtlantic CONTENTS 1. Why floating ? 2. OWF Spatial planning 3. Optimizing the development
  3. 3. 3 WPD, UN GROUPE D’ÉLECTRICITÉ RENOUVELABLE Réparations et Maintenances Développement, construction et exploitation Gestion commerciale et technique des parcs éoliens • Identification des sites propices • Etude de faisabilité • Gestion de projet • Concertation • Demande d’autorisations • Coordination des études d’impact et des études techniques • Montage administratif, juridique et financier • Financement du développement de projets • Modélisation et planification économique • Investissement projets • Négociation avec les fournisseurs • Conduite d’appel d’offres • Gestion de projets (qualité, coûts, délais) • Vente de projets par appel d’offres • Vente de projets à des partenaires stratégiques ou à des investisseurs • Exploitation en propre - IRPP (capacité > 1300 MW) • Gestion commerciale (comptabilité, assurances, banques, etc.) • Gestion technique (Opération et Maintenance, en lien avec les fabricants et fournisseurs de service) Développement de projets Structuration et financement Procédure d’achat et construction Vente / IRPP* Gestion technique et commericale IRPP* : producteur indépendant d’électricité d’origine renouvelable
  4. 4. 4 3 PARCS INSTALLÉS, 10 POST FID, 5400 MW EN COURS Allemagne Baltic 1 (48.3 MW)* *projet acquis par EnbW en 2008 Butendiek (288 MW) Nordergründe (111 MW) Kaikas (581 MW) Spinnaker (160 MW) Gennaker (640 MW) France Courseulles (450 MW) Fécamp (498 MW) Dunkerque (250-750 MW) Oléron (500 MW) Boulogne Grand Large (250 MW) Finlande Suurhiekka (480 MW) Suède Storgrundet (420 MW) Pays-Bas Hollandse Kust Zuid (700 MW) Taiwan Guanyin (250 MW) Taoyuan (100 MW) Yunlin (500 MW) Changhua (200 MW) Phase de projet (capacité totale) En exploitation (336,3 MW) En construction (111 MW) En processus d‘achat des composants (948 MW) Approuvé (1 481 MW) Participation aux appels d’offres (1 950 MW) En phase préliminaire d‘autorisation (2 050 MW)
  5. 5. 5 WHY FLOATING ? More space Possibly better wind ressource
  6. 6. 6 OWF SPATIAL PLANNING ~375 000 km² Some GWs in operation Ex : - 10GW installed = 1 500 km² / 0,4 % or the total sea space - 20GW installed = 3 000 km² / 0,8 % of the total sea space
  7. 7. 7 OWF SPATIAL PLANNING ~375 000 km² ~170 000 km²
  8. 8. 8 OWF SPATIAL PLANNING ~375 000 km² ~170 000 km² ~135 000 km² - D<70km : 82 000 km² - D<100km : 100 000 km²
  9. 9. 9 OWF SPATIAL PLANNING ~375 000 km² ~170 000 km² ~135 000 km² - D<70km : 82 000 km² - D<100km : 100 000 km² Politic decision for medium term objectives (? GW 2030) BE
  10. 10. 10 OWF SPATIAL PLANNING ~375 000 km² ~170 000 km² ~135 000 km² - D<70km : 82 000 km² - D<100km : 100 000 km² Politic decision for medium term objectives (? GW 2030) Projects development & optimization
  11. 11. 11 OPTIMIZING THE DEVELOPMENT (ONLY SOME ELEMENTS…) 1. Fix the process : CfD, FIT, etc… a. Greenfield development with fixed price €/MWh depending on technology & efficiency (flh) : good to promote the development of projects but difficult for the State to anticipe and have visibility b. Tender with CfD : could be good for getting the best price per project but need to have strong State decision in the projects planning & objectives 2. Minimize the risks of the project development a. Preliminary technival investigations (meteocean, wind ressources, soil conditions, etc…) are key factors that could, if not well know, increase the uncertainty on the project and then will lead the candidate to budget contigencies that will have an impact on the economy of the project b. Secure the project development planning & optimize the delay between tender award & FID c. Fix the industrial plan not to early d. For cost efficiency on a tender, put 100% of the criteria on the price €/MWh e. Justify your tecnical choices and set up a specific procurement plan (EPC & I, or E, PC & I or EPCI) f. Anticipate the grid !!
  12. 12. 12 SOME VARIOUS PROCESS IN EUROPE 1. ~1st french tender process : tender at a very early stage 2. ~NL/DK tender process : tender once permits are secured 3. ~NL/DK tender process deteriorated : tender once permits are authorized but not 100% secured 4. ~UK process (with price competition): tender after preliminary tecnical investigations & permits to obtain from the candidate awarded
  13. 13. 13 ~1ST TENDER IN FRANCE Strategy Development phase Année N Année N+1 Année N+2 Année N+3 Année N+4 Année N+5 Année N+6 Année N+7 Année N+8 Année N+9 A TENDER A Environmental investigations A EIA & authorization documents to submit A State services analysis for authorization A Legal issues / claims A Consent secure A Preliminary technical investigations A Detailled engineering & procurement A FID 5 to 5,5 years after award 6 to 6,5 years of development
  14. 14. 14 ~NL/DK PROCESS Strategy Development phase Année N Année N+1 Année N+2 Année N+3 Année N+4 Année N+5 Année N+6 Année N+7 Année N+8 Année N+9 D TENDER D Environmental investigations D EIA & authorization documents to submit D State services analysis for authorization D Legal issues / claims D Consent secure D Preliminary technical investigations D Detailled engineering & procurement D FID 3 to 3,5 years after award (2 years more efficient) 8 to 8,5 years of development (2 years longer) = minimize the contigencies during the tender due to technical uncertainties Resultsduringtender
  15. 15. 15 ~NL/DK PROCESS DETERIORATED Strategy Development phase Année N Année N+1 Année N+2 Année N+3 Année N+4 Année N+5 Année N+6 Année N+7 Année N+8 Année N+9 C TENDER C Environmental investigations C EIA & authorization documents to submit C State services analysis for authorization C Legal issues / claims C Consent secure C Preliminary technical investigations C Detailled engineering & procurement C FID 3 to 3,5 years after award (2 years more efficient) 6 to 6,5 years of development (same time) = minimize the contigencies during the tender due to technical uncertainties Resultsduringtender
  16. 16. 16 ~UK PROCESS Strategy Development phase Année N Année N+1 Année N+2 Année N+3 Année N+4 Année N+5 Année N+6 Année N+7 Année N+8 Année N+9 B TENDER B Environmental investigations B EIA & authorization documents to submit B State services analysis for authorization B Legal issues / claims B Consent secure B Preliminary technical investigations B Detailled engineering & procurement B FID = minimize the contigencies during the tender due to technical uncertainties 3,5 to 4 years after award (1,5 year more efficient) 5 to 5,5 years of development (1 year more efficient) 1. Tenders launched at short term 2. 30 % reduction of delay between Tender award (€/kwh negociated) & FID 3. 1 year reduction of the total project development periodResultsduringtender
  17. 17. 17 OPTIMIZING THE DEVELOPMENT : FIND THE GOOD PROCESS Process Tecnical investigations on site before tender Administrative documents secured after tender Who get the authorizations Development phase period (years) Delay between tender Award & FID (years) Delay between start of development & tender (years) 1st tender in France Tender laureate 6 to 6,5 5 to 5,5 0 ~DK/NL process State 8 to 8,5 3 to 3,5 4 ~DK/NL process deteriorated State 6 to 6,5 3 to 3,5 2 ~UK process (with price competition during tender) Tender laureate 5 to 5,5 3,5 to 4 0,5
  18. 18. MANY THANKS ! PIERRE PEYSSON WPD OFFSHORE FRANCE NEW PROJECTS DEVELOPMENT MANAGER P.PEYSSON@WPD-OFFSHORE.FR

×