Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ep 121: How Artificial Intelligence Creates Discrimination in HR & Recruiting


Published on

Workology Podcast interview with Dr. Jutta Treviranus discussing how artificial intelligence can create opportunities for discrimination. The interview discusses how inclusive design can help eliminate discrimination in hiring, recruiting and employment decisions.

Published in: Business
  • Be the first to comment

  • Be the first to like this

Ep 121: How Artificial Intelligence Creates Discrimination in HR & Recruiting

  1. 1. Episode​ ​121:​ ​Future​ ​of​ ​Work:​ ​How​ ​Artificial  Intelligence​ ​Creates​ ​Discrimination​ ​in​ ​HR​ ​&  Recruiting     Episode​ ​Link:​ ​​ INTRO:​ ​​[00:00:00]​ ​​Welcome​ ​to​ ​the​ ​Workology​ ​podcast​ ​a​ ​podcast​ ​for​ ​the​ ​disruptive  workplace​ ​leader.​ ​Join​ ​host​ ​Jessica​ ​Miller-​ ​Merrell​ ​founder​ ​of​ ​​ ​as​ ​she  sits​ ​down​ ​and​ ​gets​ ​to​ ​the​ ​bottom​ ​of​ ​trends​ ​tools​ ​and​ ​case​ ​studies​ ​for​ ​the​ ​business  leader​ ​HR​ ​and​ ​recruiting​ ​professional​ ​who​ ​is​ ​tired​ ​of​ ​this​ ​status​ ​quo.​ ​Now​ ​here's  Jessica​ ​with​ ​this​ ​episode​ ​of​ ​Workology.    Jessica:​ ​​[00:00:25]​ ​​Welcome​ ​to​ ​a​ ​new​ ​series​ ​on​ ​the​ ​Workology​ ​podcast​ ​we're​ ​kicking  off​ ​that​ ​focuses​ ​on​ ​the​ ​future​ ​of​ ​work.​ ​This​ ​series​ ​is​ ​in​ ​collaboration​ ​with​ ​the  partnership​ ​on​ ​employment​ ​and​ ​accessible​ ​technology​ ​or​ ​PEAT.​ ​You​ ​can​ ​learn​ ​more  about​ ​PEAT​ ​at​ ​    Jessica:​ ​​[00:00:38]​ ​​Everywhere​ ​I​ ​turn​ ​there​ ​seems​ ​to​ ​be​ ​conversations​ ​in​ ​the​ ​human  resources​ ​and​ ​recruiting​ ​industry​ ​centered​ ​around​ ​artificial​ ​intelligence.​ ​It​ ​is​ ​truly  permeating​ ​our​ ​landscape,​ ​however,​ ​myself,​ ​along​ ​with​ ​PEAT​ ​we​ ​wondered​ ​if​ ​A.I.​ ​was  as​ ​inclusive​ ​as​ ​it​ ​could​ ​be.​ ​We’re​ ​talking​ ​digging​ ​deep​ ​looking​ ​at​ ​the​ ​inclusiveness​ ​of  machine​ ​learning​ ​technology​ ​and​ ​exploring​ ​the​ ​implications​ ​for​ ​people​ ​with​ ​disabilities.     I’m​ ​joined​ ​with​ ​Dr.​ ​Jutta​ ​Treviranus.​​ ​She​ ​​is​ ​the​ ​director​ ​of​ ​the​ ​​Inclusive​ ​Design​ ​Research  Centre​​ ​and​ ​a​ ​professor​ ​at​ ​OCAD​ ​University.​ ​Jutta​ ​has​ ​been​ ​working​ ​towards​ ​more  inclusive​ ​and​ ​accessible​ ​technology​ ​for​ ​much​ ​of​ ​her​ ​life.​ ​Her​ ​focus​ ​is​ ​now​ ​on​ ​improving  artificial​ ​intelligence​ ​systems​ ​so​ ​they​ ​can​ ​better​ ​serve​ ​everyone,​ ​including​ ​people​ ​with  disabilities,​ ​and​ ​organizes​ ​​hackathons​​ ​towards​ ​this​ ​goal.    Jutta,​ ​welcome​ ​to​ ​the​ ​Workology​ ​Podcast.​ ​Can​ ​you​ ​talk​ ​a​ ​little​ ​bit​ ​about​ ​your  background​ ​because​ ​I​ ​think​ ​it's​ ​really​ ​interesting​ ​and​ ​different​ ​than​ ​many​ ​of​ ​the​ ​guests  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  2. 2. on​ ​this​ ​podcast​ ​previously?    Jutta:​ ​​[00:01:42]​ ​​Ok.​ ​Sure.​ ​I've​ ​been​ ​interested​ ​in​ ​the​ ​liberating​ ​potential​ ​and​ ​worried  about​ ​the​ ​exclusionary​ ​risks​ ​of​ ​computers​ ​and​ ​networks​ ​and​ ​digital​ ​systems​ ​since​ ​the  emergence​ ​of​ ​personal​ ​computers​ ​in​ ​the​ ​late​ ​70s.​ ​I​ ​was​ ​working​ ​with​ ​a​ ​very​ ​very  diverse​ ​group​ ​of​ ​individuals​ ​at​ ​a​ ​university​ ​and​ ​I​ ​felt​ ​that​ ​computers​ ​and​ ​networks​ ​and  digital​ ​systems​ ​had​ ​the​ ​potential​ ​to​ ​be​ ​wonderful​ ​translators.     So​ ​I​ ​worked​ ​in​ ​that​ ​particular​ ​field​ ​getting​ ​to​ ​know​ ​the​ ​technology​ ​better​ ​and​ ​I​ ​started  the​ ​inclusive​ ​Design​ ​Research​ ​Center​ ​in​ ​1993​ ​to​ ​proactively​ ​work​ ​to​ ​make​ ​sure​ ​that  emerging​ ​socio​ ​technical​ ​practices​ ​new​ ​technologies​ ​are​ ​inclusive​ ​of​ ​everyone.​ ​The  team​ ​that​ ​I​ ​created​ ​which​ ​continues​ ​and​ ​will​ ​be​ ​25​ ​years​ ​as​ ​of​ ​next​ ​June​ ​is​ ​a​ ​very​ ​very  diverse​ ​distributed​ ​community​ ​with​ ​project​ ​partners​ ​all​ ​around​ ​the​ ​globe.​ ​We​ ​grew​ ​up  with​ ​the​ ​web​ ​and​ ​have​ ​espoused​ ​open​ ​practices​ ​and​ ​communicate​ ​practices​ ​before​ ​I  think​ ​even​ ​open​ ​was​ ​a​ ​common​ ​term.     We​ ​moved​ ​to​ ​Oxford​ ​University​ ​in​ ​2010​ ​and​ ​I​ ​started​ ​a​ ​graduate​ ​program​ ​in​ ​inclusive  design​ ​and​ ​the​ ​graduate​ ​program​ ​is​ ​intended​ ​to​ ​pioneer​ ​a​ ​more​ ​diversity​ ​supportive  form​ ​of​ ​education.​ ​We're​ ​experimenting​ ​with​ ​an​ ​inclusive​ ​education​ ​to​ ​prepare  graduates​ ​for​ ​all​ ​of​ ​the​ ​variety​ ​of​ ​things​ ​that​ ​they're​ ​encountering​ ​and​ ​the​ ​many  changes​ ​that​ ​are​ ​happening​ ​in​ ​our​ ​community.​ ​So​ ​one​ ​of​ ​the​ ​things​ ​I'd​ ​love​ ​to​ ​tell​ ​you  about​ ​is​ ​our​ ​perspective​ ​on​ ​Disability​ ​at​ ​the​ ​DRC​ ​we​ ​define​ ​disability​ ​not​ ​as​ ​a​ ​personal  trait​ ​but​ ​as​ ​a​ ​mismatch​ ​between​ ​the​ ​needs​ ​of​ ​the​ ​individual​ ​and​ ​the​ ​service​ ​product​ ​or  environment​ ​offered.​ ​So​ ​in​ ​that​ ​sense​ ​we​ ​are​ ​all​ ​experiencing​ ​disability​ ​when​ ​the  system​ ​is​ ​not​ ​designed​ ​to​ ​match​ ​our​ ​needs.     I'm​ ​hoping​ ​that​ ​we​ ​can​ ​see​ ​disability​ ​as​ ​a​ ​design​ ​issue​ ​that​ ​can​ ​be​ ​addressed​ ​not​ ​as​ ​a  personal​ ​trait​ ​that​ ​creates​ ​an​ ​us​ ​them​ ​scenario.​ ​And​ ​so​ ​designing​ ​our​ ​artificial  intelligence​ ​in​ ​our​ ​HR​ ​systems​ ​and​ ​the​ ​way​ ​that​ ​recruit​ ​in​ ​our​ ​our​ ​workplace​ ​ultimately  to​ ​be​ ​more​ ​inclusive​ ​means​ ​that​ ​we're​ ​creating​ ​it​ ​to​ ​be​ ​better​ ​for​ ​all​ ​of​ ​us​ ​and​ ​to​ ​ensure  that​ ​fewer​ ​and​ ​fewer​ ​of​ ​us​ ​experience​ ​disability.    Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  3. 3. Jessica:​ ​​[00:04:19]​ ​​This​ ​is​ ​fascinating​ ​to​ ​me​ ​because​ ​you​ ​have​ ​been​ ​working​ ​in​ ​this  area​ ​this​ ​field​ ​for​ ​25​ ​years.​ ​And​ ​I​ ​think​ ​long​ ​before​ ​maybe​ ​anyone​ ​had​ ​certainly​ ​thought  about​ ​artificial​ ​intelligence​ ​but​ ​really​ ​focused​ ​on​ ​inclusive​ ​technology​ ​and​ ​its​ ​use​ ​for​ ​a  very​ ​long​ ​time.    Jutta:​ ​​[00:04:35]​ ​​Yes.​ ​Actually​ ​25​ ​years​ ​ago​ ​I​ ​started​ ​the​ ​center​ ​but​ ​I​ ​started​ ​in​ ​this  when​ ​the​ ​apple​ ​two​ ​plus​ ​merged​ ​and​ ​Tandy​ ​Model​ ​100​ ​and​ ​all​ ​of​ ​those​ ​things​ ​that​ ​I'm  sure​ ​very​ ​few​ ​people​ ​remember.    Jessica:​ ​​[00:04:49]​ ​​Can​ ​you​ ​talk​ ​to​ ​our​ ​podcast​ ​listeners​ ​about​ ​your​ ​work​ ​in​ ​artificial  intelligence​ ​and​ ​disability​ ​inclusion?    Jutta:​ ​​[00:04:55]​ ​​Sure.​ ​I've​ ​been​ ​concerned​ ​about​ ​how​ ​diversity​ ​human​ ​variability​ ​and  especially​ ​outliers​ ​fare​ ​in​ ​quantified​ ​data​ ​systems​ ​for​ ​some​ ​time​ ​this​ ​predates​ ​our​ ​use  of​ ​data​ ​and​ ​big​ ​data​ ​analytics​ ​in​ ​artificial​ ​intelligence​ ​when​ ​we​ ​use​ ​or​ ​require​ ​big  numbers​ ​of​ ​homogenous​ ​outcomes​ ​to​ ​draw​ ​any​ ​conclusions.​ ​People​ ​with​ ​disabilities  are​ ​often​ ​the​ ​casualties.​ ​If​ ​you​ ​take​ ​say​ ​the​ ​needs​ ​and​ ​characteristics​ ​of​ ​any​ ​group​ ​of  people​ ​and​ ​plot​ ​them​ ​on​ ​a​ ​scatterplot​ ​you​ ​get​ ​something​ ​like​ ​a​ ​star.     First,​ ​it​ ​looks​ ​like​ ​an​ ​exploding​ ​star​ ​in​ ​the​ ​middle​ ​there​ ​will​ ​be​ ​a​ ​dense​ ​cluster​ ​and​ ​then  other​ ​deeds​ ​and​ ​characteristics​ ​will​ ​spread​ ​out​ ​toward​ ​the​ ​periphery.​ ​People​ ​with  disabilities​ ​are​ ​represented​ ​some​ ​distance​ ​from​ ​that​ ​dense​ ​core​ ​and​ ​if​ ​you​ ​look​ ​at​ ​the  needs​ ​and​ ​characteristics​ ​at​ ​the​ ​periphery​ ​or​ ​where​ ​people​ ​with​ ​disabilities​ ​are​ ​in​ ​that  starburst​ ​you​ ​will​ ​see​ ​that​ ​they​ ​are​ ​much​ ​further​ ​apart​ ​despite​ ​the​ ​fact​ ​that.     And​ ​this​ ​demonstrates​ ​that​ ​people​ ​with​ ​disabilities​ ​are​ ​more​ ​diverse​ ​than​ ​people​ ​in​ ​the  center​ ​but​ ​we​ ​tend​ ​to​ ​treat​ ​anyone​ ​beyond​ ​a​ ​certain​ ​invisible​ ​boundary​ ​away​ ​from​ ​the  dense​ ​core​ ​the​ ​same​ ​that​ ​huge​ ​variability​ ​between​ ​people​ ​with​ ​disabilities​ ​becomes​ ​a  problem​ ​because​ ​it​ ​means​ ​that​ ​you​ ​can​ ​never​ ​muster​ ​the​ ​numbers​ ​to​ ​be​ ​seen​ ​as  significant​ ​and​ ​quite​ ​quantify​ ​data​ ​systems​ ​even​ ​though​ ​the​ ​people​ ​we​ ​relegate​ ​to​ ​the  disability​ ​category​ ​are​ ​the​ ​world's​ ​largest​ ​minority.    Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  4. 4. Jutta:​ ​​[00:06:27]​ ​​If​ ​not​ ​a​ ​majority​ ​as​ ​far​ ​as​ ​quantified​ ​data​ ​that​ ​requires​ ​statistical  power​ ​and​ ​that's​ ​what​ ​we've​ ​required​ ​in​ ​all​ ​of​ ​our​ ​data​ ​systems​ ​is​ ​concerned​ ​people  with​ ​disabilities​ ​are​ ​outliers​ ​and​ ​noise​ ​in​ ​the​ ​data​ ​set​ ​and​ ​what​ ​we​ ​do​ ​with​ ​noise​ ​and  with​ ​outliers​ ​is​ ​that​ ​we​ ​lemonade​ ​it​ ​when​ ​we​ ​clean​ ​the​ ​data​ ​or​ ​when​ ​we​ ​norm​ ​the​ ​data.  The​ ​difficulty​ ​with​ ​AI​ ​and​ ​why​ ​this​ ​becomes​ ​such​ ​a​ ​huge​ ​issue​ ​with​ ​AI​ ​is​ ​that​ ​AI​ ​bases  its​ ​decisions​ ​on​ ​this​ ​data​ ​and​ ​these​ ​are​ ​hugely​ ​important​ ​decisions​ ​that​ ​we​ ​don't  question​ ​because​ ​we​ ​think​ ​that​ ​artificial​ ​intelligence​ ​is​ ​not​ ​biased​ ​that​ ​is​ ​subjective​ ​that  it's​ ​not​ ​subject​ ​to​ ​human​ ​foibles.     So​ ​what​ ​happens​ ​is​ ​that​ ​AI​ ​AI​ ​does​ ​not​ ​recognize​ ​or​ ​understand​ ​people​ ​with​ ​disabilities  people​ ​with​ ​disabilities​ ​don't​ ​appear​ ​in​ ​or​ ​fit​ ​the​ ​models.​ ​Machines​ ​used​ ​to​ ​make  inferences​ ​and​ ​worse​ ​than​ ​that.​ ​I​ ​automates​ ​this​ ​bias​ ​against​ ​the​ ​outliers​ ​and​ ​amplifies  it.​ ​If​ ​AI​ ​is​ ​a​ ​black​ ​box​ ​we​ ​can​ ​we​ ​can't​ ​challenge​ ​the​ ​ai​ ​ai​ ​decisions.​ ​And​ ​so​ ​what​ ​is  happening​ ​is​ ​that​ ​people​ ​with​ ​disabilities​ ​are​ ​being​ ​impacted​ ​in​ ​quite​ ​a​ ​number​ ​of  pernicious​ ​ways.​ ​One​ ​of​ ​your​ ​top​ ​you​ ​we're​ ​talking​ ​about​ ​H.R.​ ​and​ ​especially  competitive​ ​HR​ ​decisions​ ​we​ ​use​ ​AI​ ​to​ ​filter​ ​the​ ​applications​ ​to​ ​determine​ ​who's​ ​going  to​ ​be​ ​the​ ​most​ ​promising​ ​candidate​ ​who's​ ​going​ ​to​ ​get​ ​an​ ​interview.    Jutta:​ ​​[00:08:04]​ ​​And​ ​if​ ​you're​ ​not​ ​part​ ​of​ ​the​ ​data​ ​set​ ​there's​ ​no​ ​data​ ​about​ ​your  positive​ ​performance​ ​and​ ​so​ ​someone​ ​with​ ​a​ ​disability​ ​who​ ​is​ ​an​ ​outlier​ ​who​ ​isn't​ ​part  of​ ​the​ ​model​ ​won't​ ​be​ ​selected.​ ​It​ ​however​ ​also​ ​permeates​ ​into​ ​other​ ​areas​ ​of​ ​our​ ​life  loans​ ​and​ ​credit​ ​insurance.​ ​If​ ​your​ ​asset​ ​portfolio​ ​or​ ​profile​ ​is​ ​not​ ​something​ ​the  machine​ ​is​ ​used​ ​to​ ​it​ ​won't​ ​determine​ ​that​ ​you​ ​are​ ​a​ ​good​ ​loan​ ​risk​ ​and​ ​if​ ​you​ ​have​ ​an  anomalous​ ​medical​ ​history​ ​then​ ​insurance​ ​will​ ​not​ ​be​ ​something​ ​that​ ​will​ ​be​ ​decided​ ​to  be​ ​a​ ​low​ ​risk​ ​if​ ​there​ ​is​ ​a​ ​security​ ​assessment​ ​or​ ​someone​ ​is​ ​determining​ ​sentencing  predicting​ ​recidivism.     Flagging​ ​security​ ​risks​ ​because​ ​you​ ​are​ ​unknown​ ​and​ ​something​ ​that​ ​is​ ​not​ ​part​ ​of  what​ ​is​ ​part​ ​of​ ​the​ ​model​ ​or​ ​what​ ​is​ ​understood​ ​by​ ​the​ ​machine​ ​then​ ​you're​ ​more​ ​likely  to​ ​get​ ​flagged.​ ​And​ ​so​ ​what​ ​you​ ​have​ ​is​ ​a​ ​vicious​ ​cycle.​ ​You​ ​are​ ​not​ ​part​ ​of​ ​the​ ​data  set​ ​you're​ ​not​ ​understood.​ ​You're​ ​not​ ​therefore​ ​going​ ​to​ ​become​ ​part​ ​of​ ​the​ ​data​ ​set.  So​ ​it's​ ​not​ ​a​ ​case​ ​of​ ​let's​ ​just​ ​add​ ​more​ ​data​ ​because​ ​the​ ​problem​ ​is​ ​that​ ​all​ ​of​ ​that  data​ ​is​ ​eliminating​ ​you.​ ​And​ ​so​ ​you'll​ ​never​ ​get​ ​an​ ​opportunity​ ​to​ ​be​ ​part​ ​of​ ​the​ ​data  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  5. 5. set.    Jessica:​ ​​[00:09:29]​ ​​This​ ​is​ ​fascinating​ ​because​ ​I​ ​feel​ ​like​ ​the​ ​sell​ ​in​ ​human​ ​resources  and​ ​recruiting​ ​industry​ ​for​ ​artificial​ ​intelligence​ ​is​ ​that​ ​it's​ ​going​ ​to​ ​remove​ ​bias​ ​and​ ​help  make​ ​better​ ​more​ ​consistent​ ​hiring​ ​decisions.​ ​But​ ​you're​ ​saying​ ​that​ ​it's​ ​removing  eliminating​ ​an​ ​important​ ​group​ ​of​ ​people​ ​from​ ​even​ ​being​ ​considered​ ​for​ ​hire​ ​or  promotion​ ​or​ ​any​ ​of​ ​these​ ​things​ ​related​ ​to​ ​the​ ​workplace.    Jutta:​ ​​[00:09:59]​ ​​Right.​ ​Because​ ​it's​ ​based​ ​on​ ​past​ ​data.​ ​So​ ​it​ ​will​ ​perpetuate​ ​what​ ​has  happened​ ​in​ ​the​ ​past.​ ​The​ ​evidence​ ​that​ ​someone​ ​has​ ​done​ ​well​ ​within​ ​a​ ​job​ ​will​ ​be  based​ ​upon​ ​past​ ​data​ ​and​ ​the​ ​anomalous​ ​data.​ ​Most​ ​data​ ​brokerages​ ​will​ ​eliminate​ ​the  anomalous​ ​state​ ​or​ ​they're​ ​trying​ ​to​ ​find​ ​the​ ​dominant​ ​patterns​ ​the​ ​strongest​ ​largest  group​ ​so​ ​that​ ​it​ ​can​ ​be​ ​a​ ​certain​ ​decision​ ​that​ ​is​ ​being​ ​made.​ ​And​ ​so​ ​in​ ​that​ ​way​ ​it​ ​is  eliminating​ ​what​ ​is​ ​seen​ ​as​ ​noise​ ​but​ ​in​ ​fact​ ​it's​ ​the​ ​individuals​ ​that​ ​are​ ​at​ ​the​ ​periphery  of​ ​that​ ​scatterplot​ ​I​ ​was​ ​talking​ ​about​ ​or​ ​people​ ​who​ ​are​ ​in​ ​small​ ​minorities.    Jessica:​ ​​[00:10:47]​ ​​So​ ​one​ ​of​ ​the​ ​areas​ ​that​ ​we've​ ​talked​ ​about​ ​throughout​ ​this​ ​Future  of​ ​Work​ ​podcast​ ​series​ ​with​ ​PEAT​ ​is​ ​a​ ​look​ ​at​ ​the​ ​gig​ ​economy​ ​and​ ​some​ ​of​ ​these​ ​web  based​ ​platforms.​ ​And​ ​there's​ ​a​ ​lot​ ​of​ ​different​ ​platforms​ ​in​ ​human​ ​resources​ ​and  recruiting​ ​as​ ​well​ ​as​ ​the​ ​gig​ ​economy​ ​that​ ​that​ ​use​ ​AI​ ​and​ ​machine​ ​learning  components.​ ​How​ ​can​ ​these​ ​technologies​ ​do​ ​better​ ​at​ ​incorporating​ ​all​ ​different​ ​types  of​ ​individuals​ ​outside​ ​of​ ​that​ ​scatterplot​ ​so​ ​that​ ​they​ ​aren't​ ​impacting​ ​those​ ​who​ ​are  different​ ​and​ ​were​ ​failing​ ​to​ ​bring​ ​those​ ​people​ ​into​ ​the​ ​community​ ​or​ ​giving​ ​them  opportunities.    Jutta:​ ​​[00:11:26]​ ​​So​ ​platforms​ ​and​ ​the​ ​flexible​ ​economy​ ​the​ ​sharing​ ​economy​ ​holds​ ​a  lot​ ​of​ ​promise​ ​for​ ​people​ ​who​ ​previously​ ​face​ ​barriers​ ​to​ ​employment​ ​or​ ​who​ ​have  difficulty​ ​participating​ ​in​ ​traditional​ ​employment​ ​and​ ​they​ ​hold​ ​a​ ​great​ ​deal​ ​of​ ​promise  for​ ​people​ ​with​ ​disabilities​ ​when​ ​you​ ​are​ ​an​ ​outlier​ ​it​ ​is​ ​hard​ ​to​ ​find​ ​someone​ ​nearby  with​ ​the​ ​same​ ​d​ ​that​ ​you​ ​have​ ​your​ ​subject​ ​to.​ ​As​ ​I​ ​was​ ​mentioning​ ​these​ ​vicious  economic​ ​cycles​ ​products​ ​are​ ​not​ ​made​ ​for​ ​you​ ​if​ ​they​ ​are​ ​they​ ​cost​ ​more.​ ​Meaning  you're​ ​scarce​ ​dollars​ ​worth​ ​less​ ​education.​ ​It's​ ​not​ ​optimized​ ​for​ ​you.​ ​Work  opportunities​ ​don't​ ​recognize​ ​your​ ​potential.​ ​If​ ​you're​ ​lucky​ ​enough​ ​to​ ​get​ ​a​ ​position  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  6. 6. the​ ​tools​ ​you​ ​need​ ​to​ ​do​ ​your​ ​work​ ​won't​ ​be​ ​accessible​ ​meaning​ ​you​ ​can't  demonstrate​ ​your​ ​optimal​ ​performance​ ​so​ ​that​ ​someone​ ​who​ ​is​ ​has​ ​a​ ​disability​ ​and  faces​ ​barriers​ ​to​ ​employment​ ​in​ ​the​ ​current​ ​job​ ​market.     There's​ ​many​ ​things​ ​that​ ​you're​ ​needing​ ​to​ ​battle.​ ​Platforms​ ​are​ ​a​ ​potential​ ​way​ ​to  support​ ​people​ ​in​ ​recognizing​ ​their​ ​diverse​ ​needs​ ​and​ ​thereby​ ​diversifying​ ​the​ ​demand  as​ ​well​ ​which​ ​can​ ​then​ ​help​ ​to​ ​trigger​ ​a​ ​diversification​ ​of​ ​production​ ​and​ ​supply.​ ​The  more​ ​we​ ​push​ ​both​ ​the​ ​demand​ ​and​ ​the​ ​supply​ ​out​ ​to​ ​those​ ​edges​ ​the​ ​better​ ​it​ ​is​ ​for  inclusion​ ​and​ ​for​ ​people​ ​that​ ​are​ ​outliers​ ​and​ ​it​ ​makes​ ​it​ ​it​ ​provides​ ​more​ ​choices​ ​for  everybody​ ​and​ ​when​ ​there​ ​are​ ​more​ ​choices​ ​than​ ​you​ ​can​ ​find​ ​choices​ ​that​ ​fit​ ​you  whether​ ​it's​ ​a​ ​product​ ​or​ ​whether​ ​it's​ ​a​ ​job​ ​or​ ​whether​ ​it's​ ​a​ ​service.     So​ ​platforms​ ​can​ ​reduce​ ​fragmentation​ ​allowing​ ​lú​ ​the​ ​sharing​ ​and​ ​pooling​ ​of  resources​ ​which​ ​makes​ ​it​ ​easier​ ​to​ ​address​ ​the​ ​requirements​ ​of​ ​individuals​ ​who​ ​can  benefit​ ​from​ ​economies​ ​of​ ​scale.​ ​They​ ​also​ ​provide​ ​feedback​ ​loops​ ​to​ ​continuously  refine​ ​available​ ​resources​ ​and​ ​not​ ​only​ ​can​ ​tools​ ​and​ ​resources​ ​be​ ​shared​ ​but​ ​also​ ​the  building​ ​blocks​ ​are​ ​development​ ​tools​ ​needed​ ​to​ ​create​ ​things​ ​like​ ​inclusive​ ​product  support​ ​training​ ​of​ ​people​ ​that​ ​face​ ​barriers​ ​to​ ​employment​ ​or​ ​to​ ​address​ ​gaps  however​ ​there.    Jutta:​ ​​[00:13:45]​ ​​So​ ​I've​ ​been​ ​a​ ​great​ ​proponent​ ​of​ ​platforms​ ​for​ ​those​ ​reasons.​ ​But  some​ ​of​ ​the​ ​platforms​ ​are​ ​largely​ ​extractive​ ​platforms.​ ​The​ ​value​ ​comes​ ​from​ ​the  workers​ ​but​ ​the​ ​workers​ ​don't​ ​govern​ ​the​ ​platform​ ​nor​ ​do​ ​they​ ​receive​ ​the​ ​profit.  Because​ ​the​ ​focus​ ​is​ ​on​ ​short​ ​term​ ​competitive​ ​wealth​ ​production​ ​for​ ​the​ ​owners.  These​ ​platforms​ ​are​ ​less​ ​likely​ ​to​ ​invest​ ​in​ ​diversification.​ ​Most​ ​of​ ​the​ ​AI​ ​products​ ​are  used​ ​to​ ​have​ ​a​ ​quick​ ​win.​ ​Not​ ​only​ ​will​ ​people​ ​with​ ​disabilities​ ​fare​ ​badly​ ​in​ ​the  predictive​ ​analytics.     But​ ​as​ ​I​ ​was​ ​mentioning​ ​if​ ​you​ ​are​ ​not​ ​dissipating​ ​there​ ​won't​ ​be​ ​data​ ​that​ ​proves​ ​your  successful​ ​performance​ ​and​ ​the​ ​AI​ ​that​ ​is​ ​frequently​ ​used​ ​in​ ​these​ ​systems​ ​is​ ​to​ ​find  the​ ​quickest​ ​way​ ​to​ ​address​ ​an​ ​immediate​ ​demand.​ ​There​ ​is​ ​an​ ​alternative​ ​and​ ​that​ ​is  there​ ​are​ ​there​ ​there's​ ​a​ ​platform​ ​co-op​ ​movements​ ​and​ ​they​ ​are​ ​governed​ ​by​ ​workers  and​ ​the​ ​workers​ ​share​ ​the​ ​profit.​ ​They​ ​are​ ​motivated​ ​to​ ​create​ ​a​ ​thriving​ ​diverse  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  7. 7. community.​ ​If​ ​you're​ ​interested​ ​in​ ​the​ ​greater​ ​social​ ​good​ ​it​ ​pays​ ​to​ ​be​ ​as​ ​inclusive​ ​as  possible.​ ​And​ ​so​ ​there​ ​there​ ​is​ ​an​ ​evolution​ ​of​ ​some​ ​of​ ​these​ ​platforms​ ​and​ ​there​ ​are  these​ ​emergent​ ​platforms​ ​that​ ​are​ ​not​ ​looking​ ​at​ ​data​ ​to​ ​support​ ​the​ ​immediate​ ​quick  win​ ​but​ ​data​ ​to​ ​support​ ​a​ ​thriving​ ​community​ ​with​ ​a​ ​diversification​ ​of​ ​jobs​ ​and​ ​better  benefits​ ​for​ ​the​ ​workers​ ​but​ ​also​ ​for​ ​the​ ​employers​ ​and​ ​for​ ​the​ ​consumers​ ​of​ ​the  services​ ​at​ ​the​ ​inclusive​ ​Research​ ​Center.    Jessica:​ ​​[00:15:40]​ ​​Let's​ ​talk​ ​a​ ​little​ ​bit​ ​of​ ​a​ ​reset.​ ​This​ ​is​ ​Jessica​ ​Miller-Merrell.​ ​You're  listening​ ​to​ ​the​ ​Workology​ ​Podcast​ ​in​ ​partnership​ ​with​ ​PEAT.​ ​.​ ​Today​ ​we​ ​are​ ​talking  about​ ​machine​ ​learning​ ​and​ ​inclusion​ ​with​ ​Jutta​ ​Treviranus.​ ​You​ ​can​ ​connect​ ​with​ ​her  on​ ​Twitter​ ​@juttatrevira.     Sponsor​ ​tag:​ ​​[00:15:40]​ ​​Future​ ​of​ ​Work​ ​series​ ​is​ ​supported​ ​by​ ​PEAT​ ​the​ ​partnership  on​ ​employment​ ​and​ ​accessible​ ​technology.​ ​PEAT's​ ​initiative​ ​is​ ​to​ ​foster​ ​collaboration  and​ ​action​ ​around​ ​accessible​ ​technology​ ​in​ ​the​ ​workplace.​ ​PEAT​ ​is​ ​funded​ ​by​ ​the​ ​U.S.  Department​ ​of​ ​Labor's​ ​office​ ​of​ ​disability​ ​employment​ ​policy​ ​ODEP​ ​learn​ ​more​ ​about  PEAT​ ​at​ ​     Jessica:​ ​​[00:15:40]​ ​​What​ ​suggestions​ ​do​ ​you​ ​have​ ​for​ ​podcast​ ​listeners​ ​maybe​ ​who  are​ ​thinking​ ​about​ ​adding​ ​artificial​ ​intelligence​ ​technology​ ​to​ ​to​ ​their​ ​human​ ​resources  are​ ​creating​ ​our​ ​workplace​ ​sort​ ​of​ ​technology​ ​stack​ ​so​ ​that​ ​maybe​ ​they​ ​select​ ​the​ ​right  one​ ​or​ ​maybe​ ​select​ ​one​ ​that​ ​is​ ​more​ ​inclusive​ ​than​ ​the​ ​other.You​ ​focus​ ​on​ ​three  dimensions​ ​of​ ​inclusive​ ​design.​ ​Can​ ​you​ ​walk​ ​us​ ​through​ ​these​ ​and​ ​maybe​ ​talk​ ​about  how​ ​they​ ​apply​ ​to​ ​machine​ ​learning​ ​and​ ​AI​ ​technologies.    Jutta:​ ​​[00:15:50]​ ​​Sure.​ ​So​ ​Universal​ ​Design​ ​has​ ​a​ ​set​ ​of​ ​principles​ ​and​ ​accessibility​ ​has  a​ ​checklist.​ ​And​ ​one​ ​of​ ​the​ ​things​ ​that​ ​I​ ​was​ ​encouraged​ ​to​ ​do​ ​was​ ​to​ ​come​ ​up​ ​with​ ​a  set​ ​of​ ​principles​ ​for​ ​inclusive​ ​design​ ​but​ ​inclusive​ ​design​ ​is​ ​intended​ ​to​ ​be​ ​relative​ ​to  the​ ​individual.​ ​So​ ​it's​ ​not​ ​a​ ​one​ ​size​ ​fits​ ​all​ ​approach​ ​it's​ ​a​ ​one​ ​size​ ​fits​ ​one​ ​approach  because​ ​we​ ​grew​ ​up​ ​in​ ​the​ ​digital​ ​domain​ ​and​ ​the​ ​digital​ ​can​ ​be​ ​adaptive.​ ​Unlike​ ​a  building​ ​where​ ​you​ ​have​ ​to​ ​have​ ​the​ ​entrance​ ​work​ ​for​ ​everyone​ ​that​ ​might​ ​approach  the​ ​building​ ​on​ ​a​ ​digital​ ​system​ ​can​ ​morphin​ ​adapt​ ​and​ ​present​ ​a​ ​different​ ​design​ ​to  each​ ​one​ ​that​ ​that​ ​visits​ ​that​ ​digital​ ​says.   Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  8. 8.   So​ ​instead​ ​of​ ​a​ ​set​ ​set​ ​of​ ​principles​ ​I​ ​devised​ ​the​ ​three​ ​dimensions​ ​and​ ​the​ ​three  dimensions​ ​are​ ​the​ ​first​ ​dimension​ ​is​ ​that​ ​recognize​ ​that​ ​everybody​ ​unique​ ​and​ ​help  people​ ​to​ ​understand​ ​their​ ​own​ ​uniqueness​ ​and​ ​create​ ​systems​ ​that​ ​fit​ ​that​ ​unique  diversity​ ​of​ ​requirements​ ​or​ ​one​ ​size​ ​fits​ ​one​ ​the​ ​the​ ​second​ ​dimension​ ​is​ ​ensure​ ​that  there​ ​is​ ​an​ ​inclusive​ ​process.​ ​This​ ​means​ ​designing​ ​the​ ​tables​ ​so​ ​that​ ​everyone​ ​can  participate​ ​in​ ​the​ ​decision​ ​making​ ​and​ ​in​ ​the​ ​design​ ​because​ ​we​ ​all​ ​benefit​ ​from  diverse​ ​perspectives.     We​ ​have​ ​far​ ​better​ ​planning​ ​better​ ​prediction​ ​and​ ​much​ ​greater​ ​creativity​ ​if​ ​we​ ​have​ ​a  diversity​ ​of​ ​perspectives​ ​participating​ ​in​ ​the​ ​design​ ​and​ ​what​ ​you​ ​want​ ​in​ ​inclusive  design​ ​as​ ​co-designer​ ​so​ ​authentic​ ​code​ ​design​ ​where​ ​the​ ​individual​ ​that​ ​the​ ​design​ ​is  intended​ ​to​ ​be​ ​used​ ​by​ ​is​ ​part​ ​of​ ​the​ ​design​ ​process​ ​and​ ​then​ ​the​ ​third​ ​dimension​ ​is  recognize​ ​that​ ​we're​ ​in​ ​a​ ​complex​ ​adaptive​ ​system.​ ​No​ ​design​ ​decision​ ​is​ ​made​ ​in  isolation.​ ​It​ ​reverberates​ ​out​ ​to​ ​all​ ​of​ ​the​ ​connected​ ​systems​ ​that​ ​are​ ​in​ ​the​ ​context​ ​of  the​ ​design.​ ​So​ ​create​ ​a​ ​design​ ​that​ ​benefits​ ​everyone​ ​and​ ​create​ ​virtuous​ ​not​ ​vicious  cycles.    Jessica:​ ​​[00:18:17]​ ​​I​ ​feel​ ​like​ ​all​ ​of​ ​these​ ​could​ ​be​ ​extremely​ ​helpful​ ​in​ ​many​ ​of​ ​these  artificial​ ​intelligence​ ​machine​ ​learning​ ​companies​ ​that​ ​are​ ​building​ ​these​ ​platforms​ ​or  anyone​ ​in​ ​really​ ​in​ ​technology​ ​to​ ​consider​ ​when​ ​when​ ​they​ ​are​ ​trying​ ​to​ ​to​ ​create​ ​a  community​ ​or​ ​a​ ​technology​ ​that's​ ​inclusive​ ​to​ ​all.    Jutta:​ ​​[00:18:41]​ ​​Yes​ ​definitely.​ ​Yeah.​ ​The​ ​Actually​ ​when​ ​we​ ​take​ ​it​ ​inclusive​ ​design  approach​ ​to​ ​AI​ ​AI​ ​one​ ​of​ ​the​ ​things​ ​that​ ​that​ ​we​ ​frequently​ ​do​ ​with​ ​it​ ​in​ ​our​ ​inclusive  design​ ​sessions​ ​or​ ​one​ ​activity​ ​that​ ​I​ ​often​ ​do​ ​is​ ​an​ ​activity​ ​called​ ​the​ ​grandparent  grandchild​ ​conversation.​ ​I​ ​don't​ ​know​ ​if​ ​you​ ​have​ ​a​ ​toddler​ ​or​ ​if​ ​you​ ​don't​ ​have​ ​a  toddler​ ​there's​ ​that​ ​continuously​ ​the​ ​unpacking​ ​of​ ​why​ ​are​ ​we​ ​doing​ ​this.     And​ ​that​ ​is​ ​a​ ​little​ ​bit​ ​of​ ​a​ ​characterization​ ​of​ ​what​ ​happened​ ​when​ ​I​ ​started​ ​to​ ​look​ ​at  the​ ​inclusive​ ​design​ ​of​ ​artificial​ ​intelligence​ ​because​ ​it​ ​prompted​ ​us​ ​to​ ​unpack​ ​not​ ​just  what​ ​is​ ​happening​ ​with​ ​in​ ​a​ ​eye​ ​but​ ​also​ ​being​ ​part​ ​of​ ​an​ ​academic's​ ​situation.​ ​It  prompted​ ​us​ ​to​ ​think​ ​about​ ​how​ ​are​ ​we​ ​dealing​ ​with​ ​evidence​ ​how​ ​do​ ​we​ ​determine  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  9. 9. truth.​ ​Are​ ​our​ ​research​ ​methods​ ​that​ ​we're​ ​using​ ​research​ ​methods​ ​that​ ​are​ ​supportive  of​ ​diversity​ ​and​ ​understanding​ ​of​ ​diversity.     And​ ​you​ ​can​ ​trace​ ​the​ ​the​ ​history​ ​of​ ​where​ ​we​ ​ended​ ​up​ ​with​ ​a​ ​I​ ​and​ ​with​ ​machine  learning​ ​and​ ​how​ ​we're​ ​teaching​ ​our​ ​machines.​ ​It​ ​traces​ ​right​ ​back​ ​to​ ​statistical  research​ ​and​ ​how​ ​we​ ​are​ ​determining​ ​what​ ​is​ ​true​ ​and​ ​what​ ​is​ ​statistically​ ​significant​ ​or  what​ ​has​ ​statistical​ ​power​ ​within​ ​all​ ​of​ ​our​ ​research​ ​and​ ​academia​ ​the​ ​in​ ​terms​ ​of  applying​ ​those​ ​three​ ​dimensions.​ ​Diversity​ ​supportive​ ​data​ ​and​ ​evidence​ ​is​ ​something  that​ ​has​ ​benefit​ ​for​ ​all.​ ​We​ ​have​ ​been​ ​exploring​ ​something​ ​called​ ​small​ ​thick​ ​bottom​ ​up  data​ ​that​ ​understands​ ​the​ ​outliers.     Making​ ​ourselves​ ​smarter​ ​not​ ​just​ ​machines​ ​smarter​ ​as​ ​well.​ ​Small​ ​data​ ​is​ ​is​ ​also  called​ ​and​ ​equals​ ​me​ ​data​ ​or​ ​and​ ​equals​ ​one​ ​Data​ ​think​ ​data​ ​is​ ​looking​ ​at​ ​data​ ​in  context.​ ​The​ ​process​ ​that​ ​we​ ​try​ ​to​ ​encourage​ ​is​ ​transparent​ ​parent​ ​purchase​ ​the  parent​ ​patrie​ ​AI​ ​code​ ​design​ ​inclusive​ ​process​ ​and​ ​in​ ​adding​ ​diverse​ ​perspectives.    Jutta:​ ​​[00:21:16]​ ​​And​ ​the​ ​third​ ​dimension​ ​understanding​ ​the​ ​complex​ ​adaptive​ ​system  that​ ​we​ ​are​ ​in​ ​if​ ​we​ ​create​ ​machines​ ​that​ ​understand​ ​and​ ​recognize​ ​diversity​ ​and​ ​have  inclusion​ ​embedded​ ​in​ ​their​ ​rules​ ​and​ ​models​ ​it​ ​will​ ​definitely​ ​benefit​ ​everyone​ ​in​ ​all​ ​of  the​ ​experiments​ ​that​ ​we've​ ​done​ ​so​ ​far​ ​show​ ​that​ ​this​ ​is​ ​something​ ​that's​ ​critical​ ​not  just​ ​for​ ​people​ ​with​ ​disabilities​ ​but​ ​for​ ​all​ ​of​ ​us.​ ​The​ ​goals​ ​that​ ​we​ ​have​ ​for​ ​artificial  intelligence​ ​are​ ​better​ ​match​ ​when​ ​we​ ​don't​ ​ignore​ ​the​ ​outliers​ ​when​ ​in​ ​fact​ ​we​ ​are​ ​a  diversity​ ​friendly​ ​in​ ​our​ ​knowledge​ ​and​ ​understanding.     The​ ​really​ ​interesting​ ​and​ ​this​ ​is​ ​not​ ​part​ ​of​ ​your​ ​question​ ​but​ ​the​ ​really​ ​interesting​ ​thing  that​ ​I​ ​found​ ​is​ ​that​ ​previously​ ​when​ ​we​ ​talked​ ​about​ ​stereotypes​ ​or​ ​bias​ ​or​ ​prejudice​ ​in  conversations​ ​with​ ​hard​ ​scientists​ ​or​ ​with​ ​our​ ​fellow​ ​academia​ ​and​ ​it​ ​was​ ​seen​ ​as​ ​a  soft​ ​science​ ​as​ ​something​ ​that​ ​was​ ​not​ ​easily​ ​verifiable​ ​and​ ​therefore​ ​in​ ​a​ ​sort​ ​of  hierarchy​ ​of​ ​academic​ ​rigor​ ​it​ ​wasn't​ ​seen​ ​as​ ​something​ ​that​ ​was​ ​as​ ​well​ ​respected.  And​ ​but​ ​now​ ​that​ ​we​ ​can​ ​actually​ ​manifest​ ​the​ ​issues​ ​within​ ​artificial​ ​intelligence​ ​we  can​ ​show​ ​that​ ​look​ ​at​ ​if​ ​you​ ​don't​ ​include​ ​the​ ​state​ ​here​ ​or​ ​if​ ​you​ ​use​ ​only​ ​the​ ​dominant  patterns​ ​and​ ​you​ ​ignore​ ​the​ ​full​ ​diversity​ ​if​ ​you​ ​base​ ​all​ ​of​ ​your​ ​knowledge​ ​and  assumption​ ​on​ ​homogenous​ ​data​ ​or​ ​the​ ​same​ ​effect​ ​in​ ​one​ ​large​ ​data​ ​group​ ​then  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  10. 10. you're​ ​not​ ​going​ ​to​ ​do​ ​all​ ​of​ ​the​ ​things​ ​that​ ​you​ ​hope​ ​to​ ​achieve.​ ​Whether​ ​it's  innovation​ ​or​ ​whether​ ​it's​ ​risk​ ​detection​ ​or​ ​whether​ ​it's​ ​better​ ​prediction​ ​or​ ​planning.    Jessica:​ ​​[00:23:14]​ ​​I​ ​felt​ ​like​ ​that​ ​last​ ​piece​ ​is​ ​I​ ​think​ ​something​ ​that​ ​employers​ ​or  businesses​ ​can​ ​can​ ​really​ ​take​ ​advantage​ ​and​ ​think​ ​about​ ​right.​ ​What​ ​happens​ ​when  you​ ​aren't​ ​including​ ​all​ ​people​ ​from​ ​different​ ​backgrounds​ ​education​ ​levels​ ​interests.  And​ ​how​ ​does​ ​that​ ​impact​ ​creativity​ ​the​ ​success​ ​of​ ​your​ ​organization​ ​moving​ ​forward  with​ ​a​ ​project​ ​now.​ ​You​ ​have​ ​some​ ​data​ ​maybe​ ​some​ ​research​ ​to​ ​support​ ​the​ ​case​ ​for  diversity​ ​work​ ​itself​ ​is​ ​changing​ ​quite​ ​significantly.    Jutta:​ ​​[00:23:48]​ ​​We​ ​still​ ​have​ ​systems​ ​and​ ​understandings​ ​that​ ​come​ ​from​ ​the  industrial​ ​age​ ​when​ ​we​ ​need​ ​a​ ​direct​ ​replicate​ ​able​ ​workers.​ ​And​ ​that's​ ​really​ ​not​ ​the  reality​ ​at​ ​the​ ​moment.​ ​If​ ​a​ ​organization​ ​wishes​ ​to​ ​survive​ ​in​ ​the​ ​current​ ​reality​ ​then​ ​what  you​ ​need​ ​is​ ​you​ ​need​ ​an​ ​agile​ ​diverse​ ​collaborative​ ​team​ ​and​ ​we've​ ​set​ ​up​ ​our​ ​systems  and​ ​the​ ​data​ ​that​ ​we're​ ​teaching​ ​those​ ​systems​ ​information​ ​and​ ​rules​ ​and​ ​algorithms  from​ ​another​ ​era​ ​the​ ​best​ ​way​ ​to​ ​effect​ ​the​ ​cultural​ ​change​ ​that​ ​we​ ​need​ ​within​ ​work​ ​is  to​ ​create​ ​AI​ ​systems​ ​that​ ​are​ ​diversity​ ​supportive​ ​that​ ​doesn’t​ ​rid​ ​us​ ​of​ ​those​ ​that  outlying​ ​information​ ​and​ ​that​ ​don't​ ​ignore​ ​people​ ​who​ ​are​ ​at​ ​the​ ​periphery​ ​and​ ​who  offer​ ​an​ ​alternative​ ​or​ ​greater​ ​variability​ ​of​ ​skills​ ​and​ ​understandings​ ​and​ ​perspectives.    Jutta:​ ​​[00:25:54]​ ​​So​ ​the​ ​question​ ​was​ ​what​ ​advice​ ​to​ ​give.​ ​In​ ​choosing​ ​the​ ​AI​ ​and  machine​ ​learning​ ​programs​ ​like​ ​if​ ​somebody​ ​was​ ​purchasing​ ​it​ ​is​ ​that.    Jessica:​ ​​[00:26:03]​ ​​Yes​ ​so​ ​let​ ​me​ ​give​ ​you​ ​an​ ​example.​ ​There​ ​isn't​ ​an​ ​artificial  intelligence​ ​technology​ ​it's​ ​a​ ​video​ ​technology.​ ​And​ ​they​ ​use​ ​AI​ ​to​ ​measure  truthfulness​ ​and​ ​your​ ​body​ ​language​ ​to​ ​determine​ ​if​ ​you're​ ​happy​ ​angry​ ​sad​ ​mad​ ​if​ ​you  are​ ​what​ ​type​ ​of​ ​personality​ ​are​ ​so​ ​HR​ ​and​ ​recruiting​ ​leaders​ ​are​ ​seeing​ ​a​ ​lot​ ​of  different​ ​types​ ​of​ ​technology​ ​that​ ​whether​ ​it's​ ​video​ ​or​ ​sourcing​ ​technology​ ​that​ ​will  pull​ ​the​ ​best​ ​candidates​ ​to​ ​the​ ​front​ ​lines​ ​and​ ​score​ ​them​ ​and​ ​present​ ​them​ ​to​ ​an  employer.     What​ ​kind​ ​of​ ​things​ ​should​ ​they​ ​be​ ​thinking​ ​about​ ​when​ ​they're​ ​looking​ ​at​ ​these​ ​these  technologies.​ ​Because​ ​all​ ​of​ ​them​ ​are​ ​not​ ​created​ ​equal​ ​and​ ​they're​ ​certainly​ ​not​ ​all  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  11. 11. likely​ ​thinking​ ​about​ ​inclusive​ ​design.    Jutta:​ ​​[00:26:55]​ ​​The​ ​first​ ​thing​ ​that​ ​I​ ​would​ ​recommend​ ​is​ ​that​ ​you​ ​choose​ ​a​ ​system  where​ ​it's​ ​apparent​ ​what​ ​the​ ​rules​ ​are​ ​and​ ​you​ ​know​ ​what​ ​set​ ​of​ ​data​ ​the​ ​system​ ​is  trained​ ​on.​ ​Is​ ​the​ ​system​ ​trained​ ​on​ ​a​ ​full​ ​diversity​ ​of​ ​the​ ​types​ ​of​ ​employees​ ​that​ ​you  hoped​ ​to​ ​choose.​ ​Or​ ​is​ ​it​ ​trained​ ​on​ ​a​ ​homogenous​ ​data​ ​set​ ​that​ ​has​ ​been​ ​cleaned​ ​of  edge​ ​scenarios.​ ​The​ ​other​ ​thing​ ​that​ ​I​ ​would​ ​encourage​ ​you​ ​to​ ​do​ ​is​ ​to​ ​find​ ​a​ ​system  where​ ​there​ ​is​ ​the​ ​opportunity​ ​for​ ​a​ ​feedback​ ​loop​ ​where​ ​new​ ​data​ ​can​ ​be​ ​added  where​ ​you​ ​can​ ​add​ ​additional​ ​filters​ ​or​ ​at​ ​least​ ​query​ ​the​ ​filters​ ​and​ ​remove​ ​filters​ ​that  cause​ ​that​ ​may​ ​cause​ ​bias.     The​ ​other​ ​thing​ ​that​ ​I​ ​would​ ​do​ ​is​ ​to​ ​choose​ ​a​ ​system​ ​that​ ​is​ ​reactive​ ​or​ ​that​ ​is  responsive​ ​to​ ​the​ ​scenario​ ​that​ ​you​ ​that​ ​you​ ​are​ ​working​ ​in.​ ​So​ ​not​ ​something​ ​that​ ​only  gives​ ​you​ ​generic​ ​data​ ​but​ ​that​ ​allows​ ​you​ ​to​ ​continuously​ ​adapt​ ​the​ ​system​ ​to​ ​fine  tune​ ​the​ ​working​ ​environment​ ​and​ ​the​ ​requirements​ ​that​ ​you​ ​have.     And​ ​then​ ​lastly​ ​I​ ​would​ ​encourage​ ​you​ ​to​ ​get​ ​a​ ​system​ ​that​ ​allows​ ​you​ ​to​ ​do​ ​some  predictive​ ​modeling​ ​so​ ​scenarios​ ​that​ ​may​ ​not​ ​have​ ​been​ ​found​ ​within​ ​the​ ​current​ ​data  set​ ​because​ ​the​ ​the​ ​one​ ​thing​ ​as​ ​I​ ​was​ ​describing​ ​people​ ​with​ ​disabilities​ ​or​ ​people  who​ ​have​ ​been​ ​traditionally​ ​left​ ​out​ ​of​ ​a​ ​work​ ​environment​ ​will​ ​not​ ​have​ ​data​ ​that​ ​can  be​ ​used​ ​for​ ​decisions.​ ​But​ ​there​ ​are​ ​ways​ ​to​ ​model​ ​current​ ​situations​ ​that​ ​were​ ​not  there​ ​in​ ​the​ ​past​ ​to​ ​see​ ​well​ ​what​ ​with​ ​this​ ​particular​ ​skill​ ​what​ ​with​ ​this​ ​new​ ​strategy  what​ ​would​ ​this​ ​add​ ​to​ ​the​ ​team​ ​that​ ​I​ ​have.     That's​ ​the​ ​the​ ​last​ ​piece​ ​that​ ​I​ ​would​ ​say​ ​is​ ​that​ ​you​ ​want​ ​any​ ​system​ ​that​ ​understands  a​ ​team​ ​not​ ​in​ ​a​ ​system​ ​that​ ​is​ ​trying​ ​to​ ​produce​ ​a​ ​set​ ​of​ ​repeatable​ ​similar​ ​homogenous  workers.​ ​So​ ​the​ ​an​ ​AI​ ​system​ ​that​ ​can​ ​orchestrate​ ​a​ ​variety​ ​of​ ​diverse​ ​perspectives​ ​and  diverse​ ​skills​ ​to​ ​make​ ​a​ ​good​ ​team​ ​within​ ​the​ ​workplace.    Jessica:​ ​​[00:29:18]​ ​​Awesome.​ ​Well​ ​thank​ ​you​ ​so​ ​much​ ​for​ ​taking​ ​the​ ​time​ ​to​ ​talk​ ​with  us​ ​today.​ ​Where​ ​can​ ​people​ ​go​ ​to​ ​learn​ ​more​ ​about​ ​you​ ​and​ ​you​ ​what​ ​you​ ​do.    Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology
  12. 12. Jutta:​ ​​[00:29:27]​ ​​They​ ​can​ ​go​ ​to​ ​the​ ​inclusive​ ​Design​ ​Research​ ​Center​ ​Web​ ​site.  Actually​ ​my​ ​name​ ​is​ ​a​ ​unique​ ​identifier​ ​so​ ​if​ ​you​ ​search​ ​from​ ​my​ ​name​ ​many​ ​things​ ​will  come​ ​up​ ​related​ ​to​ ​inclusive​ ​design.You​ ​can​ ​learn​ ​more​ ​about​ ​the​ ​challenges​ ​that​ ​we  design​ ​challenges​ ​that​ ​we've​ ​been​ ​engaging​ ​in​ ​to​ ​stretch​ ​the​ ​design​ ​of​ ​artificial  intelligence​ ​to​ ​be​ ​more​ ​inclusive.    And​ ​there​ ​we​ ​have​ ​a​ ​design​ ​challenge​ ​called​ ​start​ ​your​ ​machine​ ​learning​ ​engines​ ​and  race​ ​to​ ​the​ ​edge​ ​in​ ​it.​ ​We​ ​have​ ​many​ ​different​ ​schools​ ​that​ ​are​ ​putting​ ​together​ ​edge  scenarios​ ​that​ ​current​ ​artificial​ ​intelligence​ ​systems​ ​may​ ​not​ ​understand​ ​or​ ​may​ ​not  have​ ​heard​ ​of​ ​or​ ​recognize​ ​and​ ​we​ ​are​ ​using​ ​those​ ​edge​ ​scenarios​ ​to​ ​challenge​ ​the​ ​ai  ai​ ​developers​ ​to​ ​see​ ​which​ ​one​ ​is​ ​better​ ​at​ ​encompassing​ ​the​ ​full​ ​range​ ​of​ ​human  diversity.    Jessica:​ ​​[00:30:36]​ ​​Well​ ​we'll​ ​go​ ​ahead​ ​and​ ​put​ ​links​ ​to​ ​the​ ​​ ​and​ ​then​ ​kad  your​ ​program​ ​and​ ​then​ ​as​ ​well​ ​as​ ​some​ ​other​ ​research​ ​that​ ​I​ ​have​ ​found​ ​that​ ​was  pretty​ ​interesting​ ​in​ ​your​ ​work.​ ​I'm​ ​focused​ ​on​ ​inclusive​ ​design​ ​so​ ​thank​ ​you​ ​so​ ​much  for​ ​taking​ ​the​ ​time​ ​to​ ​talk​ ​with​ ​us.​ ​Thank​ ​you.     This​ ​by​ ​far​ ​has​ ​been​ ​a​ ​really​ ​eye​ ​opening​ ​discussion​ ​for​ ​me​ ​and​ ​hopefully​ ​for​ ​you​ ​on  the​ ​subject​ ​of​ ​artificial​ ​intelligence​ ​and​ ​human​ ​resources​ ​and​ ​recruitment.​ ​I’m​ ​looking  at​ ​some​ ​ways​ ​that​ ​this​ ​tech​ ​might​ ​identify​ ​patterns​ ​that​ ​a​ ​know​ ​and​ ​only​ ​eliminate  candidates​ ​or​ ​employees​ ​who​ ​don't​ ​fit​ ​traditional​ ​patterns​ ​or​ ​models.​ ​While​ ​I​ ​love  technology​ ​I​ ​absolutely​ ​do.​ ​It​ ​is​ ​such​ ​an​ ​important​ ​part​ ​of​ ​what​ ​I​ ​do.     We​ ​do​ ​need​ ​to​ ​push​ ​back​ ​a​ ​bit​ ​on​ ​these​ ​AI​ ​technologies​ ​in​ ​our​ ​industry​ ​and​ ​educate  ourselves​ ​outside​ ​of​ ​their​ ​demos​ ​and​ ​slick​ ​marketing​ ​to​ ​really​ ​understand​ ​the​ ​things  that​ ​we​ ​need​ ​to​ ​be​ ​asking​ ​questions​ ​about.​ ​Thank​ ​you​ ​for​ ​joining​ ​the​ ​work​ ​I'll​ ​you  podcast​ ​a​ ​podcast​ ​for​ ​the​ ​disruptive​ ​workplace​ ​leader​ ​who​ ​is​ ​tired​ ​of​ ​the​ ​status​ ​quo.  This​ ​is​ ​Jessica​ ​Miller-Merrell.​ ​Until​ ​next​ ​time​ ​can​ ​visit​ ​work​ ​alci​ ​dot​ ​com​ ​to​ ​listen​ ​to​ ​all  our​ ​previous​ ​podcast​ ​episodes.    Episode​ ​Link:​ ​​  Workology​ ​Podcast​​ ​​|​ ​​ ​|​ ​@workology