Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Talk by Charles Parker (BigML) at BigMine12 at KDD12.
In machine learning, scale adds complexity. The most obvious consequence of scale is that data takes longer to process. At certain points, however, scale makes trivial operations costly, thus forcing us to re-evaluate algorithms in light of the complexity of those operations. Here, we will discuss one important way a general large scale machine learning setting may differ from the standard supervised classification setting and show some the results of some preliminary experiments highlighting this difference. The results suggest that there is potential for significant improvement beyond obvious solutions.