Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Download to read offline
Networks (i.e., graphs) appears in many high-impact applications. Often these networks are collected from different sources, at different times, at different granularities. In this talk, I will present our recent work on mining such multiple networks. First, we will present two models - one on modeling a set of inter-connected networks (NoN); and the other on modeling a set of inter-connected co-evolving time series (NoT). For both models, we will show that by treating networks as context, we are able to model more complicate real-world applications. Second, we will present some algorithmic examples on how to do mining with such new models, including ranking, imputation and prediction. Finally, we will demonstrate the effectiveness of our new models and algorithms in some applications, including bioinformatics, and sensor networks.
Networks (i.e., graphs) appears in many high-impact applications. Often these networks are collected from different sources, at different times, at different granularities. In this talk, I will present our recent work on mining such multiple networks. First, we will present two models - one on modeling a set of inter-connected networks (NoN); and the other on modeling a set of inter-connected co-evolving time series (NoT). For both models, we will show that by treating networks as context, we are able to model more complicate real-world applications. Second, we will present some algorithmic examples on how to do mining with such new models, including ranking, imputation and prediction. Finally, we will demonstrate the effectiveness of our new models and algorithms in some applications, including bioinformatics, and sensor networks.
Total views
1,138
On Slideshare
0
From embeds
0
Number of embeds
585
Downloads
14
Shares
0
Comments
0
Likes
2
The SlideShare family just got bigger. You now have unlimited* access to books, audiobooks, magazines, and more from Scribd.
Cancel anytime.