Phd Defence 25 Jan09


Published on

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • A legend may improve the understability of the viewpoint
  • More explanation may be needed
  • Not Necessary
  • Discuss about PK and FK
  • Phd Defence 25 Jan09

    1. 1. Supply Chain Performance Improvement: The Role of IT Presented By: Bibhushan Entry No: 2002RME027 Supervisors: Prof. S. Wadhwa and Prof. Anoop Chawla
    2. 2. Presentation Outline <ul><li>Research Context and Motivation </li></ul><ul><li>Research Objectives </li></ul><ul><li>An Overview of the Research Work </li></ul><ul><li>Significant Contributions of Research Work </li></ul><ul><li>Publications </li></ul><ul><li>Response to Examiner’s Comments </li></ul>
    3. 3. Research Context and Motivation <ul><li>Simulation for Supply Chain Modeling and Analysis </li></ul><ul><ul><li>Used for analysis of complex systems </li></ul></ul><ul><ul><li>Type of problems modeled range from tactical to strategic </li></ul></ul><ul><li>Object-Oriented Simulation Modeling </li></ul><ul><ul><li>Detailed model of a complex system can be made by combining basic building blocks </li></ul></ul><ul><ul><li>Has advantages of inheritance, encapsulation, modularity, etc. </li></ul></ul><ul><li>Multiple Entity Flow Perspective </li></ul><ul><ul><li>Five flows: Material, Information, Money, Resource, Decision </li></ul></ul><ul><li>Focus on Inventory Management to improve IT facilitated SC performance </li></ul>
    4. 4. Research Objectives <ul><li>Highlight the research motivation to </li></ul><ul><ul><li>Develop an object-oriented supply chain simulation-modeling environment </li></ul></ul><ul><ul><li>Develop demonstrative models to illustrate the efficacy of the approach in SC performance </li></ul></ul><ul><ul><li>Study the inventory management in supply chains working under stochastic demands </li></ul></ul>
    5. 5. Research Objectives <ul><li>Develop an object-oriented supply chain modeling and simulation environment based on multiple-entity flow perspective which should be capable of: </li></ul><ul><ul><li>Modeling the flow of multiple entities </li></ul></ul><ul><ul><li>Stochastic modeling </li></ul></ul><ul><ul><li>Adding user-defined decision rules in addition to major control decision rules </li></ul></ul><ul><ul><li>User-friendly and cost effective </li></ul></ul><ul><ul><li>Robust modeling by means of effective error handling and fool-proofing in data input </li></ul></ul><ul><ul><li>Distributed simulation </li></ul></ul>
    6. 6. Research Objectives <ul><li>Analyze inventory management along multiple criteria (demand variance, inventory, service level etc.) </li></ul><ul><li>Understand the effect of Expected Service Quality (ESQ) on different inventory policies </li></ul><ul><ul><li>Determine optimal ESQ for each node </li></ul></ul><ul><ul><li>Determine optimal Information sharing level for the ESQ levels found above </li></ul></ul><ul><li>Understand the effect of ordering and capacity constraints on different inventory policies </li></ul><ul><ul><li>Determine Optimal Ordering and Capacity constraints for each node </li></ul></ul><ul><ul><li>Determine the optimal information sharing level for ordering and capacity constraint levels determined above </li></ul></ul><ul><li>Determine the effect of change in Coefficient of Variance (COV) on each supply chain node </li></ul><ul><ul><li>Determine the optimal Information sharing level for different COV levels </li></ul></ul>
    7. 7. Overview of Research Work <ul><li>Organization of Thesis </li></ul><ul><li>Conceptual Framework </li></ul><ul><li>Simulation Modeling Environment </li></ul><ul><li>Performance of Supply Chain under Controlled Variability </li></ul><ul><li>Optimizing ESQ for Supply Chain Nodes </li></ul><ul><li>Optimizing Optimal Ordering and Capacity Constraint levels for Each Supply Chain Node </li></ul><ul><li>Understand the Effect of Changing COV on supply chain </li></ul>
    8. 8. Organization of Thesis
    9. 9. Conceptual Framework <ul><li>A Generic Model of Supply Chain </li></ul><ul><li>Object Oriented Modeling Perspective </li></ul><ul><li>Modeling of Elementary Supply Chain Constructs </li></ul><ul><li>Hierarchy of Object Used in Supply Chain Modeling </li></ul><ul><li>Modeling Supply Chain Decisions </li></ul>
    10. 10. Simulation Modeling Environment <ul><li>Modeling the Supply Chain Building Blocks </li></ul><ul><ul><li>Modeling the manufacturing system </li></ul></ul><ul><ul><li>Modeling the transports </li></ul></ul><ul><ul><li>Modeling the Player Role </li></ul></ul><ul><ul><li>Modeling the Supply Chain Node </li></ul></ul><ul><ul><li>Modeling the Inter-Node Interactions </li></ul></ul><ul><ul><ul><li>Defining Inter-Node Relationships </li></ul></ul></ul><ul><ul><ul><li>Defining Inter-Node Lead Times </li></ul></ul></ul><ul><ul><ul><li>Defining Inter-Node Speeds </li></ul></ul></ul><ul><ul><ul><li>Defining Inter-Node Distances </li></ul></ul></ul><ul><ul><ul><li>Defining Product Demands </li></ul></ul></ul>
    11. 11. Simulation Modeling Environment <ul><li>Modeling Supply Chain Decisions </li></ul><ul><ul><li>Source Selection Policies </li></ul></ul><ul><ul><li>Inventory Control Decisions </li></ul></ul><ul><ul><li>Transportation Decisions </li></ul></ul><ul><ul><li>Production Planning Decisions </li></ul></ul><ul><li>Performance Metrics </li></ul><ul><ul><li>Inventory Related </li></ul></ul><ul><ul><li>Demand Related </li></ul></ul><ul><ul><li>Service Related </li></ul></ul><ul><li>Supply Chain Model for Research </li></ul><ul><li>Model Verification and Validation </li></ul>
    12. 12. Performance of Supply Chain under Controlled Variability <ul><li>Experimental Setup </li></ul><ul><ul><li>Demand impulses </li></ul></ul><ul><ul><li>Simulation parameters </li></ul></ul><ul><ul><li>Balancing the inventory policies </li></ul></ul><ul><ul><li>Performance metrics considered </li></ul></ul><ul><li>Effect of Transformed Relative Impulse Amplitude (TRIA) on the Supply Chain </li></ul><ul><ul><li>Effect of TRIA on the Supply Chain using Demand Flow Policy (DFP) </li></ul></ul><ul><ul><li>Effect of TRIA on the Supply Chain using Order Q Policy (OQP) </li></ul></ul><ul><ul><li>Effect of TRIA on the Supply Chain using (s, S) Policy (sSP) </li></ul></ul><ul><ul><li>Effect of TRIA on the Supply Chain using (s, Q) Policy (sQP) </li></ul></ul>
    13. 13. Performance of Supply Chain under Controlled Variability <ul><li>Effect of Balance Gap (BG) on the Supply Chain </li></ul><ul><ul><li>Effect of BG on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of Negative Impulse BG (NIBG) </li></ul></ul></ul><ul><ul><ul><li>Effect of Positive Impulse BG (PIBG) </li></ul></ul></ul><ul><ul><li>Effect of BG on the Supply Chain using OQP </li></ul></ul><ul><ul><ul><li>Effect of NIBG </li></ul></ul></ul><ul><ul><ul><li>Effect of PIBG </li></ul></ul></ul><ul><ul><li>Effect of BG on the Supply Chain using sSP </li></ul></ul><ul><ul><ul><li>Effect of NIBG </li></ul></ul></ul><ul><ul><ul><li>Effect of PIBG </li></ul></ul></ul><ul><ul><li>Effect of BG on the Supply Chain using sQP </li></ul></ul><ul><ul><ul><li>Effect of NIBG </li></ul></ul></ul><ul><ul><ul><li>Effect of PIBG </li></ul></ul></ul>
    14. 14. Performance of Supply Chain under Controlled Variability <ul><li>Effect of Number of Impulses (NI) on the Supply Chain </li></ul><ul><ul><li>Effect of NI on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of Number of Negative Impulses (NNI) </li></ul></ul></ul><ul><ul><ul><li>Effect of Number of Positive Impulses (NPI) </li></ul></ul></ul><ul><ul><li>Effect of NI on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NNI </li></ul></ul></ul><ul><ul><ul><li>Effect of NPI </li></ul></ul></ul><ul><ul><li>Effect of NI on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NNI </li></ul></ul></ul><ul><ul><ul><li>Effect of NPI </li></ul></ul></ul><ul><ul><li>Effect of NI on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NNI </li></ul></ul></ul><ul><ul><ul><li>Effect of NPI </li></ul></ul></ul>
    15. 15. Performance of Supply Chain under Controlled Variability <ul><li>Effect of Impulse Width (IW) on the Supply Chain </li></ul><ul><ul><li>Effect of IW on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of Negative Impulse Width (NIW) </li></ul></ul></ul><ul><ul><ul><li>Effect of Positive Impulse Width (PIW) </li></ul></ul></ul><ul><ul><li>Effect of IW on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NIW </li></ul></ul></ul><ul><ul><ul><li>Effect of PIW </li></ul></ul></ul><ul><ul><li>Effect of IW on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NIW </li></ul></ul></ul><ul><ul><ul><li>Effect of PIW </li></ul></ul></ul><ul><ul><li>Effect of IW on the Supply Chain using DFP </li></ul></ul><ul><ul><ul><li>Effect of NIW </li></ul></ul></ul><ul><ul><ul><li>Effect of PIW </li></ul></ul></ul>
    16. 17. Supply Chain Processes <ul><li>Plan </li></ul><ul><ul><li>Balances aggregate demand and supply </li></ul></ul><ul><li>Source </li></ul><ul><ul><li>Procures goods and services to meet planned or actual demand </li></ul></ul><ul><li>Make </li></ul><ul><ul><li>Transforms product to a finished state </li></ul></ul><ul><li>Deliver </li></ul><ul><ul><li>Provides finished goods and services </li></ul></ul><ul><li>Return </li></ul><ul><ul><li>Post-delivery customer support </li></ul></ul>
    17. 18. A Generic Model of Supply Chain
    18. 19. Supply Chain Flows <ul><li>Primary Flows (Between Nodes) </li></ul><ul><ul><li>Material Flow </li></ul></ul><ul><ul><li>Information Flow </li></ul></ul><ul><ul><li>Cash Flow </li></ul></ul><ul><li>Secondary Flows (Only inside Node) </li></ul><ul><ul><li>Resource Flow </li></ul></ul><ul><ul><li>Decision Flow </li></ul></ul>
    19. 20. Object Oriented Supply Chain Simulation <ul><li>Simulation is a technique where computers imitate the operations of various kinds of real-world facilities or processes (Law and Kelton 1991) </li></ul><ul><li>Discrete-event simulation </li></ul><ul><li>Object oriented modelling </li></ul><ul><li>OOPs based simulator for modeling flexible supply chains </li></ul>
    20. 21. Need for Object Oriented Supply Chain Simulation <ul><li>Supply chain flexibility offers many challenges and opportunities </li></ul><ul><li>It offers decision choices as the system evolves which is dynamic in nature </li></ul><ul><li>There is a need for developing a modeling environment to deal with flexibility and dynamic decision making </li></ul><ul><li>A OOPs based simulation system is developed and explored for its efficacy in this research </li></ul>
    21. 22. Advantages of Object Oriented Modeling <ul><li>Inheritance </li></ul><ul><ul><li>A class of objects can itself be linked to one or several super-classes from which it acquires characteristics and behavior </li></ul></ul><ul><li>Encapsulation </li></ul><ul><ul><li>Describes its characteristics along with its relationships to other components and the functionality of the object </li></ul></ul><ul><ul><li>Allows structured development of the model </li></ul></ul><ul><ul><li>Hides unimportant details </li></ul></ul><ul><li>Modularity </li></ul><ul><ul><li>Provides a very high degree of code reusability </li></ul></ul>
    22. 23. Advantages of Object Oriented Modeling <ul><li>Allows the model builder to develop the models with much less effort </li></ul><ul><li>Suitable for modeling distributed systems having client-server architecture </li></ul><ul><li>Plug-and-play software capability </li></ul><ul><li>Interoperability across the network </li></ul><ul><li>Platform independence </li></ul><ul><li>Allows complex systems to be constructed with minimum of redundant work </li></ul>
    23. 24. Advantages of Object Oriented Modeling <ul><li>A logical choice for developing custom or dedicated simulation models </li></ul><ul><li>Sub-components may be prefabricated by some expert group for a specific need or application </li></ul><ul><li>Productivity of software development improves if code is reused, since the specific modules are already extensively tested by their developers </li></ul>
    24. 25. Advantages of Object Oriented Modeling <ul><li>Provides a natural mapping paradigm which allows one-to-one mapping between objects in the system being modeled and their abstractions in the object model </li></ul><ul><ul><li>Allows the developer to achieve a faster transition of the conceptual model into the software implementation </li></ul></ul><ul><li>Object-oriented models generally have a cleaner structure than the event oriented ones </li></ul>
    25. 26. Overall Architecture <ul><li>Basic building blocks are used to create some lower level complex objects </li></ul><ul><li>Lower level objects are then used to define the higher level objects </li></ul><ul><li>Level 1 objects are made up of basic building blocks </li></ul><ul><li>Basic building blocks are combined with the object(s) of level 1 to form level 2 objects </li></ul>
    26. 27. Object Oriented Modeling of Supply Chains <ul><li>Supply chain decision making requires rapid and flexible modeling approach at various levels of detail </li></ul><ul><li>Object oriented modeling can be used for </li></ul><ul><ul><li>Designing and implementing reusable classes for building models of supply chains </li></ul></ul><ul><ul><li>Creating a supply chain object library </li></ul></ul><ul><ul><ul><li>Facilitates rapid model development </li></ul></ul></ul><ul><ul><li>Aid in application of the modeling architecture to specific scenarios at various levels of abstraction </li></ul></ul>
    27. 28. Object Oriented Features in Arena Simulation Environment <ul><li>Offers model development in object oriented manner by means of objects called “modules” </li></ul><ul><li>Modules are essentially composed of other basic level modules </li></ul><ul><li>Once properly developed, these modules can be reused in other simulation models </li></ul><ul><li>However… </li></ul>
    28. 29. Limitations of Object Oriented Features in Arena <ul><li>Modules can be run only on systems having ARENA </li></ul><ul><li>Version Conflicts </li></ul><ul><li>Not suitable for distributed computing </li></ul><ul><li>Cost of buying this simulation package </li></ul><ul><li>Additional cost of buying the customized module libraries </li></ul><ul><li>What is the solution then? </li></ul>
    29. 30. Generic Programming Languages <ul><li>Not as easy as developing models using simulation packages </li></ul><ul><li>However, </li></ul><ul><ul><li>It is more general and the SC flexibility related issues can be modeled in detail. </li></ul></ul><ul><ul><li>Availability of customized object libraries for a variety of applications can significantly reduce the time and effort involved in model building process </li></ul></ul><ul><ul><li>It offers platform independence to a large extent </li></ul></ul>
    30. 31. IT tool used: VB.Net <ul><li>Ease of designing the user interface </li></ul><ul><li>Now fully object-oriented </li></ul><ul><li>Provides a very high degree of platform independence </li></ul><ul><ul><li>only for Windows based platforms however </li></ul></ul><ul><li>Supply chain flexibility and dynamic decision making can be developed as a customized option. </li></ul>
    31. 32. Research Gaps <ul><li>Need to develop simulation tools ideally suited for flexible supply chain simulation </li></ul><ul><ul><li>Effective modeling of Supply Chain Flexibility </li></ul></ul><ul><ul><li>Web-based simulation environment </li></ul></ul><ul><ul><ul><li>Demonstrate benefits of collaborative decision making </li></ul></ul></ul><ul><ul><li>Non-deterministic and dynamic modeling </li></ul></ul><ul><ul><li>Analyzing the impact of different control decisions in an integrated manner </li></ul></ul><ul><ul><li>Distributed computing needs to be explored </li></ul></ul>
    32. 33. Research Gaps <ul><li>Need to study the impact of information sharing under different IT options </li></ul><ul><li>Supply Chain performance under different levels of Demand History, Service Level, Demand Variance needs to be studied </li></ul><ul><li>There is need for demonstrative models to illustrate the benefits of IT tools focused on modeling of the flexible supply chains. </li></ul>
    33. 34. Overview of the Research Work <ul><li>Development of the IT tools for modeling Flexibility and Dynamic decision making </li></ul><ul><ul><li>Manufacturing systems and supply chains were modelled in terms of five types of flows: information flow, decision flow, material flow, resource flow and money flow </li></ul></ul><ul><ul><li>Extended the Multiple Entity flow perspective proposed by Wadhwa & Rao (2003) </li></ul></ul><ul><li>Development of demonstrative simulation models for illustrating supply chain performance improvement by the use of IT </li></ul>
    34. 35. Overview of the Research Work <ul><li>Supply Chain performance improvement under flexibility and dynamic decision making. Focus on inventory management. </li></ul><ul><li>Comparison of Inventory Control Policies under Deterministic Variability </li></ul><ul><li>Effect of Demand History on Supply Chain Performance </li></ul><ul><li>Effect of Service Level on Supply Chain Performance </li></ul><ul><li>Effect of Demand Variance on Supply Chain Performance </li></ul>
    35. 36. Supply Chain Management Defined <ul><li>SCM is “the integration of business processes from end-user through original suppliers that provides products, services, and information that add value for customers” (Lambert et. al. (1998) </li></ul>
    36. 37. Modeling Elementary Supply Chain Constructs <ul><li>Classification of Objects </li></ul><ul><li>Multiple Entity Flow Perspective </li></ul><ul><li>Action Points as Processes in the System </li></ul>
    37. 38. Classification of Objects
    38. 39. Multiple Entity Flow Perspective
    39. 40. Action Points as Processes in the System
    40. 41. Hierarchy of Object Used in Supply Chain Modeling <ul><li>Modeling of a Supply Chain Network </li></ul><ul><li>Modeling of Supply Chain Nodes </li></ul><ul><li>Modeling of Supply Chain Operations </li></ul><ul><li>Modeling the Manufacturing System </li></ul>
    41. 42. Levels of Abstraction for Supply Chain Modeling
    42. 43. Modeling of a Supply Chain Network <ul><li>As a collection of supply chain nodes </li></ul><ul><li>Each node is a fully autonomous unit </li></ul><ul><li>Define relationships between each pair of nodes </li></ul><ul><li>Two types of relationships </li></ul><ul><ul><li>Buyers (can select Sellers) </li></ul></ul><ul><ul><li>Sellers (can only be selected) </li></ul></ul><ul><li>Constrained relationships </li></ul><ul><ul><li>By the level of respective nodes </li></ul></ul>
    43. 44. Integration of Supply Chain Nodes
    44. 45. Multiple Supply Chains in a Collection of Supply Chain Nodes
    45. 46. Modeling of Supply Chain Nodes <ul><li>Two kinds of Nodes: </li></ul><ul><ul><li>Manufacturing (Value-adding) </li></ul></ul><ul><ul><li>Non-Manufacturing ( store the material and supply it to other nodes ) </li></ul></ul><ul><li>Flows through each node: </li></ul><ul><ul><li>Material flow </li></ul></ul><ul><ul><li>Information flow </li></ul></ul><ul><ul><li>Money flow </li></ul></ul><ul><li>Flows Inside node </li></ul><ul><ul><li>Resource Flow </li></ul></ul><ul><ul><li>Decision Flow </li></ul></ul>
    46. 47. Modeling of Supply Chain Nodes <ul><li>Five Processes </li></ul><ul><ul><li>Plan, Source, Make, Deliver and Return </li></ul></ul><ul><li>Return </li></ul><ul><ul><li>Out of scope of this work </li></ul></ul><ul><li>Store </li></ul><ul><ul><li>Additional Process </li></ul></ul>
    47. 48. A Manufacturing Node
    48. 49. A Non-manufacturing Node
    49. 50. Integration of Major Supply Chain Operations
    50. 51. Make <ul><li>Manufacturing operations </li></ul><ul><li>Product quantity is decided by planning </li></ul><ul><li>Produces the goods according to the control policies determined by production planning </li></ul><ul><ul><li>Routing </li></ul></ul><ul><ul><li>Scheduling </li></ul></ul>
    51. 52. Source <ul><li>Decides the sellers from whom to procure necessary goods </li></ul><ul><li>A sourcing policy is a decision rule that determines the best seller(s) out of a number of available sellers in accordance with some predefined criterion e.g. Maximum Inventory, Minimum Lead Time etc. </li></ul>
    52. 53. Deliver (Transportation) <ul><li>Out of a number of transports one or more transports are selected based on some pre-defined transportation policy like </li></ul><ul><ul><li>Maximum Speed </li></ul></ul><ul><ul><li>Minimum Cost </li></ul></ul><ul><ul><li>Maximum Capacity </li></ul></ul>
    53. 54. Inventory Management <ul><li>Concerned with maintenance of sufficient amount of inventory to fulfil demands </li></ul><ul><li>Whenever the inventory of any item falls below the critical levels, the inventory management sends the order(s) to procure the required material or product to planning operation </li></ul><ul><li>Planning subsequently decides either to make or buy the required product </li></ul>
    54. 55. Modeling the Manufacturing System <ul><li>Can be modeled by combining two basic building blocks </li></ul><ul><ul><li>Materials (Transformed or Consumed) </li></ul></ul><ul><ul><li>Resources (Negligible Transformation/Consumption) </li></ul></ul><ul><li>One or more resource is used to perform some operation on the material (called process ) </li></ul><ul><li>Each product requires some processes to be performed in a specific sequence </li></ul><ul><li>Two decisions are taken before each process </li></ul><ul><ul><li>Resource selection </li></ul></ul><ul><ul><li>Material selection </li></ul></ul>
    55. 56. Typical Material Processing in a Manufacturing System
    56. 57. Modeling Supply Chain Decisions <ul><li>Source Selection Policies </li></ul><ul><li>Inventory Control Decisions </li></ul><ul><li>Transportation Decisions </li></ul><ul><li>Production Planning Decisions </li></ul>
    57. 58. Source Selection Policies <ul><li>Classification (based on no. of sources) </li></ul><ul><ul><li>Single Source </li></ul></ul><ul><ul><li>Multiple Source </li></ul></ul><ul><ul><li>Transport Based. </li></ul></ul><ul><li>Source Selection Rules </li></ul><ul><ul><li>Shortest distance </li></ul></ul><ul><ul><li>Minimum cost </li></ul></ul><ul><ul><li>Maximum inventory </li></ul></ul><ul><ul><li>Preference selection </li></ul></ul><ul><ul><li>Probability based selection (only for multiple source policies) </li></ul></ul><ul><ul><li>User defined selection (only for single source policies) </li></ul></ul>
    58. 59. Source Selection Policies
    59. 60. Probability Based Source Selection
    60. 61. Multiple Source Selection
    61. 62. Inventory Control Decisions <ul><li>Demand Flow </li></ul><ul><li>Order Q </li></ul><ul><li>Order Upto </li></ul><ul><li>(s, Q) Policy </li></ul><ul><li>(s, S) Policy </li></ul><ul><li>Updated (s, S) Policy </li></ul><ul><li>Days of Supply, Demand Based (DOS Demand) </li></ul><ul><li>Days of Supply, Forecast Based ( DOS Forecast) </li></ul>
    62. 63. Inventory Control Decisions
    63. 64. Updated (s, S) Policy
    64. 65. Updated (s, S) Policy <ul><li>Reorder Level ( s ) is calculated as </li></ul><ul><li>Where </li></ul><ul><ul><li>LT is the lead time of the selected source </li></ul></ul><ul><ul><li>σ is the estimate of standard deviation of the demand in previous n periods </li></ul></ul><ul><ul><li>Z is the standard normal variate corresponding to the desired service level </li></ul></ul><ul><li>Special Cases </li></ul><ul><ul><li>n -period moving average ( Z = 0 ) </li></ul></ul><ul><ul><li>Demand Flow ( n = 1, Z = 0 ) </li></ul></ul>
    65. 66. DOS Demand
    66. 67. DOS Forecast
    67. 68. Transportation Decisions <ul><li>Each transport uses some transportation mode e.g. rail , road , air , or water </li></ul><ul><li>Depending on the location, not all transports may be possible for a node pair </li></ul><ul><li>Alternative transports are selected based on which transport modes are available between a node pair </li></ul>
    68. 69. Transportation Decisions <ul><li>Alternative transports differ according to their specific characteristics </li></ul><ul><li>Each transport has some properties like capacity speed, cost, etc </li></ul><ul><li>Transport selection rules </li></ul><ul><ul><li>Maximum speed </li></ul></ul><ul><ul><li>Maximum volume capacity </li></ul></ul><ul><ul><li>Maximum weight capacity </li></ul></ul><ul><ul><li>Minimum cost </li></ul></ul><ul><ul><li>User defined transport selection </li></ul></ul>
    69. 70. Transportation Selection Policies
    70. 71. More Classifications in Transports <ul><li>The loading in the selected transport may again be of two types </li></ul><ul><ul><li>Pooled (all the products shipped between a node-pair are sent through the same transport) </li></ul></ul><ul><ul><li>Non-pooled (different products are shipped through different transports) </li></ul></ul><ul><li>Based on capacity utilization of transport </li></ul><ul><ul><li>FTL (Full Truck Load) </li></ul></ul><ul><ul><li>LTL (Less than Truck Load) </li></ul></ul>
    71. 72. Transport selection with pooled transports
    72. 73. Transport selection with non pooled transports
    73. 74. Production Planning Decisions <ul><li>Routing </li></ul><ul><ul><li>Concerned with selection of best possible resources out of a number of available resources </li></ul></ul><ul><li>Scheduling </li></ul><ul><ul><li>Decides the timing of each process or each job in the manufacturing system </li></ul></ul><ul><li>Quantity to be produced is determined by the inventory policy </li></ul>
    74. 75. Production Planning Decisions <ul><li>Options Available </li></ul><ul><ul><li>Produce as directed by inventory policy </li></ul></ul><ul><ul><li>Produce short batches </li></ul></ul><ul><li>Once the product is routed to a resource, it is added to the queue of the corresponding resource </li></ul><ul><li>Routing policy is used to select the next resource for the next process when current processing is over </li></ul><ul><li>Sequence of resource selection and allocation continues until all the processes on the job are completed </li></ul>
    75. 76. Production Planning Operation
    76. 77. Determining the Make Quantity
    77. 78. Resource Selection Policies
    78. 79. Modeling the Supply Chain Building Blocks <ul><li>Consists of </li></ul><ul><ul><li>Modeling the Manufacturing System </li></ul></ul><ul><ul><li>Modeling the Transports </li></ul></ul><ul><ul><li>Modeling the Player Role </li></ul></ul><ul><ul><li>Modeling the Supply Chain Node </li></ul></ul><ul><ul><li>Modeling Node Interactions </li></ul></ul><ul><li>Different objects in the SC Network are linked with each other, they can be represented using the concepts of Relational Database Management System (RDBMS) </li></ul>
    79. 80. Modeling the Manufacturing System
    80. 81. Modeling the Transports
    81. 82. Modeling the Player Role
    82. 83. Modeling the Supply Chain Node
    83. 84. Performance Metrics <ul><li>Inventory related </li></ul><ul><ul><li>Minimum Inventory </li></ul></ul><ul><ul><li>Maximum Inventory </li></ul></ul><ul><ul><li>Total Inventory </li></ul></ul><ul><ul><li>Average Inventory </li></ul></ul><ul><ul><li>Standard Deviation of Inventory </li></ul></ul>
    84. 85. Performance Metrics Used <ul><li>Service related </li></ul><ul><ul><li>Backorders </li></ul></ul><ul><ul><li>Stockouts </li></ul></ul><ul><ul><li>Fill Rate </li></ul></ul><ul><ul><li>Service Level </li></ul></ul><ul><li>Demand related </li></ul><ul><ul><li>Minimum Demand </li></ul></ul><ul><ul><li>Maximum Demand </li></ul></ul><ul><ul><li>Total Demand </li></ul></ul><ul><ul><li>Average Demand </li></ul></ul><ul><ul><li>Standard Deviation of Demand </li></ul></ul>
    85. 86. Supply Chain Performance Under Deterministic Variability <ul><li>Experimental Setup </li></ul><ul><ul><li>Demand Impulses </li></ul></ul><ul><ul><li>Simulation Parameters </li></ul></ul><ul><ul><li>Balancing the Inventory Policies </li></ul></ul><ul><li>Effect of Impulse Amplitude </li></ul><ul><li>Effect of Impulse Width </li></ul><ul><li>Effect of Step Width </li></ul><ul><li>Effect of Number of Impulses </li></ul>
    86. 87. Demand Impulses
    87. 88. Simulation Parameters Variable 1 1 1 Impulse Width 1 Variable 1 1 Number of Impulses 0 0 Variable 0 Balance Gap 0.9 and 1.9 0.9 and 1.9 0.9 and 1.9 Variable Impulse Amplitude 100 100 100 100 Mean Demand 2 2 2 2 Transportation Lead Time (Days) 2 2 2 2 Information Lead Time (Days) 90 90 90 90 Observation Period (Days) 20 20 20 20 Warmup Period (Days) 110 110 110 110 Run Length (Days) Step Width Number of Impulses Balance Gap Demand Amplitude Parameter
    88. 89. Balancing the Policies <ul><li>Each policy was balanced so that all of them gave same results for the test demand under steady state condition </li></ul><ul><li>Demand Flow: The test demand was a constant demand of 100 units per week. To fulfill the current obligations, each node has to keep a minimum of 100 units. Each node has to keep an initial inventory equal to four weeks of demand. As a result, an initial inventory of 400 units was allocated to each node. </li></ul><ul><li>Order Q: In this policy, orders are placed even when no there is no demand. Therefore, inventory builds up for each node, until the actual demand is received. As a result, all nodes only need to keep an inventory equal to the value of demand per week (100 units). </li></ul>
    89. 90. Balancing the Policies <ul><li>(s, Q) Policy: The initial inventories for each node were same as those for demand flow policy. A reorder point ( s ) of 400 and order quantity ( Q ) of 100 was set for this policy. </li></ul><ul><li>(s, S) Policy: Initial inventories were kept same as the demand flow policy. Both reorder point ( s ) and reorder level ( S ) were set to be 100 units. </li></ul>
    90. 91. Effect of Impulse Amplitude <ul><li>Effect on Individual Supply Chain Nodes </li></ul><ul><ul><li>Effect on Retailer </li></ul></ul><ul><ul><li>Effect on Wholesaler </li></ul></ul><ul><ul><li>Effect on Distributor </li></ul></ul><ul><ul><li>Effect on Manufacturer </li></ul></ul><ul><li>Effect of each policy on the Supply Chain </li></ul><ul><li>Effect along the Supply Chain </li></ul>
    91. 92. Effect of Amplitude on Individual Supply Chain Nodes <ul><li>Performance Metrics Used </li></ul><ul><li>Total Inventory </li></ul><ul><li>Std. Dev. of Inventory </li></ul><ul><li>Backorders </li></ul><ul><li>Stockouts </li></ul><ul><li>Std. Dev. of Demands </li></ul>
    92. 93. Retailer’s Total Inventory
    93. 94. Retailer’s Std. Dev. of Inventory
    94. 95. Retailer’s Backorders
    95. 96. Retailer’s Stockouts
    96. 97. Wholesaler’s Total Inventory
    97. 98. Wholesaler’s Std. Dev. of Inventory
    98. 99. Wholesaler’s Backorders
    99. 100. Wholesaler’s Stockouts
    100. 101. Wholesaler’s Std. Dev. of Demand
    101. 102. Distributor’s Total Inventory
    102. 103. Distributor’s Std. Dev. of Inventory
    103. 104. Distributor’s Backorders
    104. 105. Distributor’s Stockouts
    105. 106. Distributor’s Std. Dev. of Demand
    106. 107. Manufacturer’s Total Inventory
    107. 108. Manufacturer’s Std. Dev. of Inventory
    108. 109. Manufacturer’s Backorders
    109. 110. Manufacturer’s Stockouts
    110. 111. Manufacturer’s Std. Dev. of Demand
    111. 112. Effect of Amplitude on Supply Chain as a Whole Demand Flow Policy Order Q Policy (s, S) Policy (s, Q) Policy
    112. 113. Demand Flow Policy
    113. 114. Total Inventory
    114. 115. Std. Dev. of Inventory
    115. 116. Backorders
    116. 117. Stockouts
    117. 118. Std. Dev. of Demand
    118. 119. Total Inventory
    119. 120. Std. Dev. of Inventory
    120. 121. Backorders
    121. 122. Stockouts
    122. 123. Std. Dev. of Demand
    123. 124. Order Q Policy
    124. 125. Total Inventory
    125. 126. Std. Dev. of Inventory
    126. 127. Backorders
    127. 128. Stockouts
    128. 129. Std. Dev. of Demand
    129. 130. (s, S) Policy
    130. 131. Total Inventory
    131. 132. Std. Dev. of Inventory
    132. 133. Backorders
    133. 134. Stockouts
    134. 135. Std. Dev. of Demand
    135. 136. (s, Q) Policy
    136. 137. Total Inventory
    137. 138. Std. Dev. of Inventory
    138. 139. Backorders
    139. 140. Stockouts
    140. 141. Std. Dev. of Demand
    141. 142. Effect of Amplitude on the Supply Chain as a Whole <ul><li>Type of Impulse </li></ul><ul><ul><li>Positive Impulse (0.9) </li></ul></ul><ul><ul><li>Negative Impulse (-0.9) </li></ul></ul><ul><li>Performance Metrics Used </li></ul><ul><ul><li>Total Inventory </li></ul></ul><ul><ul><li>Std. Dev. of Inventory </li></ul></ul><ul><ul><li>Backorders </li></ul></ul><ul><ul><li>Stockouts </li></ul></ul><ul><ul><li>Std. Dev. of Demands </li></ul></ul>
    142. 143. Negative Impulse Total Inventory
    143. 144. Std. Dev. of Inventory
    144. 145. Backorders
    145. 146. Stockouts
    146. 147. Std. Dev. of Demand
    147. 148. Positive Impulse Total Inventory
    148. 149. Std. Dev. of Inventory
    149. 150. Backorders
    150. 151. Stockouts
    151. 152. Std. Dev. of Demand
    152. 153. Effect of Demand History on Supply Chain Performance <ul><li>Experimental Setup </li></ul><ul><li>No Information Sharing </li></ul><ul><ul><li>Effect on Individual Nodes </li></ul></ul><ul><ul><li>Effect on Whole Supply Chain and Effect along the Supply Chain </li></ul></ul><ul><li>Partial Information Sharing </li></ul><ul><li>Full Information Sharing </li></ul><ul><li>Comparison of Information Sharing Levels </li></ul>
    153. 154. No Information Sharing
    154. 155. Effect on Individual Supply Chain Nodes Retailer Wholesaler Distributor Manufacturer
    155. 156. Retailer’s Total Inventory
    156. 157. Retailer’s Maximum Inventory
    157. 158. Retailer’s Std. Dev. of Inventory
    158. 159. Retailer’s Backorders
    159. 160. Retailer’s Stockouts
    160. 161. Wholesaler’s Total Inventory
    161. 162. Wholesaler’s Std. Dev. of Inventory
    162. 163. Wholesaler’s Backorders
    163. 164. Wholesaler’s Stockouts
    164. 165. Wholesaler’s Std. Dev. of Demand
    165. 166. Distributor’s Total Inventory
    166. 167. Distributor’s Std. Dev. of Inventory
    167. 168. Distributor’s Backorders
    168. 169. Distributor’s Stockouts
    169. 170. Distributor’s Std. Dev. of Demand
    170. 171. Manufacturer’s Total Inventory
    171. 172. Manufacturer’s Std. Dev. of Inventory
    172. 173. Manufacturer’s Backorders
    173. 174. Manufacturer’s Stockouts
    174. 175. Manufacturer’s Std. Dev. of Demand
    175. 176. Effect on Supply Chain and Effect Along the Supply Chain
    176. 177. Total Inventory
    177. 178. Std. Dev. of Inventory
    178. 179. Backorders
    179. 180. Stockouts
    180. 181. Std. Dev. of Demand
    181. 182. Organization of Thesis
    182. 183. Organization of Thesis
    183. 184. Organization of Thesis
    184. 185. Organization of Thesis
    185. 186. Organization of Thesis
    186. 187. Significant Contributions of the Research Work <ul><li>Development of an object-oriented supply chain simulation environment </li></ul><ul><li>Role of IT based tools are developed and used to study IT facilitated information and decision flows in flexible supply chains is studied </li></ul><ul><li>Development of a framework that incorporates different IT facilitated control policies in SCs </li></ul><ul><li>Comparison for inventory policies under deterministic variability and information sharing </li></ul><ul><li>Analysis of Supply chain performance under different levels of demand information (IT focus) </li></ul>
    187. 188. Significant Contributions of the Research Work <ul><li>Analysis of Supply chain performance under different of Service levels </li></ul><ul><li>Analysis of Supply chain performance under different levels of demand variance </li></ul><ul><li>Analysis of supply chain performance under different level of information sharing with </li></ul><ul><ul><li>Different levels of demand history </li></ul></ul><ul><ul><li>Different service levels </li></ul></ul><ul><ul><li>Different demand variances </li></ul></ul>
    188. 189. Limitations and Scope for Future Research <ul><li>The modeling environment can be extended in more directions like </li></ul><ul><ul><li>Closed loop supply chains by adding return process </li></ul></ul><ul><ul><li>Manufacturing operations can be extended to include different kinds of production facilities </li></ul></ul><ul><ul><li>…. </li></ul></ul><ul><li>Focus on Inventory management only… </li></ul>
    189. 190. List of Publications <ul><li>Published/Accepted for Publication </li></ul><ul><ul><li>Postponement strategies for re-engineering of automotive manufacturing: knowledge-management implications , International Journal of Advanced Manufacturing Technology, Article in Press, doi 10.1007/s00170-006-0679-z. </li></ul></ul><ul><ul><li>Hybrid Tabu-Sample Sort Simulated Annealing (SSA) with Fuzzy Logic Controller: CIM System Context , Studies in Informatics and Control, June 2006, Volume 15, Number 2. </li></ul></ul><ul><ul><li>Flexible Supply Chains: A Context for Decision Knowledge Sharing and Decision Delays , Global Journal of Flexible Systems Management, Volume 7 Numbers 3 & 4, July -Dec 2006 (Accepted for Publication). </li></ul></ul><ul><ul><li>Impact of Supply Chain Collaboration on Customer Service Level and Working Capital , Global Journal of Flexible Systems Management (Accepted for Publication). </li></ul></ul>
    190. 191. List of Publications <ul><li>Under Review </li></ul><ul><ul><li>A multi-criteria customer allocation problem in supply chain environment: an artificial immune system with fuzzy logic controller based approach , International Journal of Computers Communication and Control. </li></ul></ul><ul><ul><li>Inventory performance of some supply chain inventory policies under impulse demands , International Journal of Production Research, Manuscript ID: TPRS-2007-IJPR-0111. </li></ul></ul><ul><li>Communicated </li></ul><ul><ul><li>An Object Oriented Framework for Modeling Control Policies in a Supply Chain , International Journal of Value Chain Management </li></ul></ul>
    191. 192. List of Publications National / International Conferences <ul><li>Web Based Virtual Supply Chain Modeling to Enhance Learning , The International Conference on e-Learning (ICEL 2006), University of Quebec in Montreal, Canada, June 22-23. </li></ul><ul><li>Supply Chain Modeling: The agent based Approach , 12th IFAC Symposium on Information Control Problems in Manufacturing (INCOM-2006), Saint-Etienne, France, May 17-19. </li></ul><ul><li>Object-Oriented Approach for Simulation of Supply Chain , International Congress on Logistics and SCM Systems (ICLS-2006), Kaohsiung, Taiwan, May 1-2. </li></ul><ul><li>Comparison of some Supply Chain Management Software Applications , National Conference on Advances in Mechanical Engineering (AIME-2006), January 20-21. </li></ul>
    192. 193. Response to Examiner’s Comments
    193. 194. Comments of Examiner 1 <ul><li>No Information Sharing: Is it best for individual wholesalers and retailers? </li></ul><ul><ul><li>As we move higher in the supply chain, the demand variability increases because of the inventory policy used </li></ul></ul><ul><ul><li>It is not that no information sharing is good for individual wholesalers and retailers, information sharing is just less important for them. </li></ul></ul><ul><li>Full Information Sharing: Is it best for the overall system? </li></ul><ul><ul><li>Whether full information sharing is best for the system or not is dependent on the inventory policy used </li></ul></ul><ul><ul><li>The thesis aims to demonstrate that after some particular level of information sharing, the investment in IT may not be economically justified </li></ul></ul>
    194. 195. Comments of Examiner 1 <ul><li>If answers to (1) and (2) above is yes, then explain why optimization on IS level (information sharing) is necessary? Why would an intermediate value (of IS) would be optimal? Whose objective have you considered? Individual wholesalers/retailers or the whole system? Or a combination of the two? </li></ul><ul><ul><li>It is important to find the level and type of information sharing </li></ul></ul><ul><li>On page xxvii: IT should be information technology </li></ul><ul><ul><li>The required change has been made. </li></ul></ul><ul><li>Uncertainty in supply chain is demand side and the lead time size. When you consider disturbances: you could have considered lead time disturbances. </li></ul><ul><ul><li>We consider this as a future area of research </li></ul></ul>
    195. 196. Comments of Examiner 1 <ul><li>Advanced IT means: continuous review policies (for inventory). What implications does it have for your thesis? </li></ul><ul><ul><li>In a continuous review policy, the inventory position is continuously monitored </li></ul></ul><ul><ul><li>Review period is one day; all the policies in our research are the continuous review policies </li></ul></ul><ul><li>For single node (such as wholesaler or retailer): given demand and lead time uncertainty: optimal policy for lot sizing can be devised. Then it could be used in your simulation. </li></ul><ul><ul><li>Decentralized decision making is found to deteriorate the supply chain performance </li></ul></ul><ul><ul><li>The decisions of one node may indirectly affect the performance of other (interaction effects) </li></ul></ul>
    196. 197. Comments of Examiner 1 <ul><li>A schematic diagram of supply chain (number of plants), distributor (numbers) and the wholesaler/retailers (numbers) considered in the thesis can be given. </li></ul><ul><ul><li>A schematic diagram of the supply chain considered in this thesis is given on page 136. Description of the same is given in section 4.5 </li></ul></ul><ul><li>Main focus of thesis is determination of optimal levels of controllable factors such as … modifying the thesis title. </li></ul><ul><ul><li>Motivation of this research is to bring the information technology (IT) as a performance improvement solution in the supply chain </li></ul></ul><ul><ul><li>Information sharing and IT are mutually complimentary </li></ul></ul><ul><ul><li>The research highlights where and how much information needs to be shared for the optimal performance </li></ul></ul><ul><li>Factors beyond the control of decision makers (uncertainty) and factors under decision-makers’ control … readability of the thesis. </li></ul><ul><ul><li>The required tables have been added in the Appendix A </li></ul></ul>
    197. 198. Comments of Examiner 2 <ul><li>The current developed framework is limited to only two players, i.e. manufacturing and inventory … more than three players? </li></ul><ul><ul><li>There are four players in the supply chain considered in this research: Retailer , Wholesaler , Distributor and Manufacturer </li></ul></ul><ul><ul><li>In addition to the inbuilt player roles like supplier, manufacturer, distributor, wholesaler and retailer, users can also define their own Player Roles . </li></ul></ul><ul><li>Network manufacturing is a new arena for modern manufacturing environment. How could … contribution in this field? </li></ul><ul><ul><li>For network manufacturing also, this framework can still handle the execution side </li></ul></ul><ul><ul><li>In network manufacturing, the manufacturing of the finished product takes place through a coordination of multiple autonomous players. Such a network will have most of the players as manufacturing type players. </li></ul></ul><ul><ul><li>This framework can be used where higher level modeling of the manufacturing system is sufficient </li></ul></ul>
    198. 199. Comments of Examiner 2 <ul><li>In this research, “overall supply chain cost” has been used as the major criterion for the supply chain performance. In fact, there are many Key Performance Indicators (KPI) reported in the supply chain management research work, such as agilability, lead time, flexibility, expandability, trust, etc. How could you consider these issues into your research framework? </li></ul><ul><ul><li>The research framework, in its present form, has only the KPIs which were required for this research work, i.e. those related to inventory management </li></ul></ul><ul><ul><li>Since the framework is based on object oriented methodology, multiple KPI libraries can be added to it as and when need arises </li></ul></ul><ul><li>What are the major bottlenecks in the implementation of the developed framework in real-life industrial case? </li></ul><ul><ul><li>The framework has been developed considering a very generic nature of the supply chain </li></ul></ul>
    199. 200. Comments of Examiner 2 <ul><li>What are the major limitations of the developed framework in this thesis? </li></ul><ul><ul><li>The return operation of a supply chain is not available in the framework. </li></ul></ul><ul><ul><li>In the future, some other major supply chain operations may be added in the framework. </li></ul></ul><ul><ul><li>The effectiveness of the simulation environment can be immensely improved by incorporating some optimization algorithms for simpler supply chain decisions and some meta-heuristics for complex problems. </li></ul></ul><ul><ul><li>Another important direction for future work is to provide animated simulation similar to that available in other simulation languages. </li></ul></ul>
    200. 201. Thank You
    201. 202. Questions