DataMiner Presentation 2011 05-24 v0.3

338 views

Published on

Presentation for the course of Human-Computer Interaction.
Our final iteration of our social news application.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
338
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

DataMiner Presentation 2011 05-24 v0.3

  1. 1. DataMiner<br />
  2. 2. DataMiner<br />What is DataMiner?<br />Our goal<br />Demo<br />Resultsiterations 1-3<br />Functionalityafter iteration 3<br />Iteration 4<br />Conclusion<br />
  3. 3. What is DataMiner?<br />DataMiner is a socialnewsgame.<br />The user mines the underground forarticles. Mineralsrepresent different kinds of articles.<br />The applicationlearnswhicharticles the user likes.<br />
  4. 4. Our goal<br />Bringactuality in a playful way.<br />We want toreachgroupswho’sprimaryinterestsaren’trelatedtonews.<br />We want touse the game element topersuade these groupstoreadnews more often.<br />
  5. 5.
  6. 6. Results<br />Iteration 1 (9/4 – 24/4)<br />2.45 clicks per article, keystrokesseverelyunderused<br />Balanced ratings<br />Some users never minedanarticle<br />Users didn’tlike the graphics<br />Some minor glitches<br />Users askedfora legenda<br />
  7. 7. Results<br />Iteration 2 (25/4 – 3/5)<br />Some users found the help, othersdidn’t<br />Only 9 users <br />
  8. 8. Results<br />Iteration 3 (4/5 – 9/5)<br />On average 8.15 minutes foreachvisit<br />Only 7 users <br />
  9. 9. Iteration 3<br />Availablefunctionality<br />Miningarticles<br />Rating articles<br />Badges<br />Legend<br />Statistics<br />Improvedgraphics<br />
  10. 10. Iteration 4 (10/5 – 23/5)<br />New functionality<br />Invite friends<br />
  11. 11. Iteration 4<br />Goals & Methods<br />Attract more users<br />Measurenumber of users<br />Google analytics<br />Trytofindwhy users aren’tcoming<br />Measureifall users canstill mine andratearticles<br />Make the few users we have come back<br />Google analytics<br />
  12. 12. Iteration 4<br />Results<br />29 users <br />41% comes back at leastonce<br />Balancedratings<br />
  13. 13. Conclusion<br />The application is easy touse!<br />A reasonableamount of users come back toourapplication.<br />Users find the applicationineffectiveforfindingarticles. (dueto bug)<br />Most users don’tbecome more interested in news.<br />
  14. 14. Questions?<br />

×