Highlights of the new BRT Planning Guide

1,253 views

Published on

Session of our webinar “Highlights of the new BRT Planning Guide – Comparison between modes and new approaches to Service Planning” by Dr. Walter Hook

Published in: Engineering
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,253
On SlideShare
0
From Embeds
0
Number of Embeds
101
Actions
Shares
0
Downloads
36
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Highlights of the new BRT Planning Guide

  1. 1. What’s new in the BRT Planning Guide, 2nd Edi i ?Edition? Projected release date: Fall, 2015j , Dr.Walter Hook, President, BRT Pl i I l LLCBRT Planning, Intl. LLC whook@brtplan.com (former CEO, ITDP) BRTPlanning International, LLC
  2. 2. Main ChangesMain Changes • Chapter 2: Why BRT? (Comparing transit modes) p y ( p g ) revised with up to date data, better related to  TCQSM 3rd Edition  • Entirely new Service Planning Chapter (6) the• Entirely new Service Planning Chapter (6): the  black box explained • Best practice in Institutional Structures andBest practice in Institutional Structures and  Business Planning defined  • More guidance on transit industry transition  h d l imethodologies • Entirely new Infrastructure Design chapter with  construction details more station design detailconstruction details, more station design detail
  3. 3. Better correlated to the BRT StandardBetter correlated to the BRT Standard
  4. 4. Ch t 2 R i iChapter 2 Revisions: Looking for additional data! Feedback welcome! Comparative Cost Data from about 100 systems:    Developing Developed Country Average Cost per Kilometer by Mode p g p y Mode Cost/Km (US 2013) Cost/Km (US 2013) Bus Rapid Transit 9,770,287$ 9,183,885$ Light Rail Transit n a 40 425 978$Light Rail Transit n.a. 40,425,978$ Heavy Rail Transit 92,106,918$ 384,891,792$
  5. 5. Country City Project Project Total Cost (2013 USD) Length (km) Cost/Km Quality (BRT Classification) Brazil Curitiba BRT "Linha Verde" 241,542,000$ 33.8 7,146,213$ Gold Brazil Rio de Janeiro TransOeste 838 258 000$ 54 9 15 268 816$ Gold Developing Countries Bus Rapid Transit Projects Capital Cost data  compiled from  43 BRT systems.  Brazil Rio de Janeiro TransOeste 838,258,000$ 54.9 15,268,816$ Gold Brazil Rio de Janeiro TransCarioca 573,942,000$ 39 14,716,462$ Gold Brazil Belo Horizonte Antônio Carlos-Pedro 1 361,870,000$ 14.7 24,617,007$ [likely Gold] Brazil Belo Horizonte Cristiano Machado 28,284,000$ 7 4,040,571$ Gold Brazil Average 13,157,814$ Gold China Beijing BRT Line 1 84,058,342$ 79 1,064,030$ Bronze China Lanzhou Lanzhou BRT 38,340,000$ 9 4,260,000$ Silver China Changzhou Changzhou BRT line 1 46,123,522$ 24.5 1,882,593$ Bronze China Guangzhou Guangzhou BRT 110,270,200$ 22.9 4,815,293$ Gold China Average 3,005,479$ Silver Colombia Bogotá TransMilenio Phase 1 761,560,732$ 41 18,574,652$ Gold y Conclusions:  No cost g Colombia Bogotá TransMilenio Phase 2 1,387,547,763$ 42 33,036,852$ Gold Colombia Bogotá TransMilenio Phase 3 909,542,468$ 37 24,582,229$ Gold Colombia Barranquilla Transmetro 270,135,988$ 14 19,295,428$ Silver Colombia Cali Mio 835,293,533$ 49 17,046,807$ Silver Colombia Cartagena Transcaribe 551,884,038$ 13 42,452,618$ Colombia Pereira Megabús 143,811,800$ 27 5,326,363$ Silver Colombia Bucaramanga Metrolínea 345,876,940$ 50 6,917,539$ Colombia Average 20,904,061$ Gold India Indore Indore iBus BRT 54,125,347$ 11 4,920,486$ [likely Bronze] India Ahmedabad Janmarg BRT Phase 1 + 2 264,313,320$ 88 3,003,560$ Silver I di D lhi D lhi Hi h C it B S t (HCBS) 23 458 613$ 5 8 4 044 588$ B i BRT No cost  difference  between  developed and  India Delhi Delhi High Capacity Bus System (HCBS) 23,458,613$ 5.8 4,044,588$ Basic BRT India Surat Surat BRTS 137,081,466$ 11 12,461,951$ Bronze India Pimpri Chinchwad Primpri Chinchwad BRTS 246,719,614$ 44.775 5,510,209$ [likely Bronze] India Average 5,988,159$ Bronze Indonesia Jakarta Transjakarta - Line 12 34,310,346$ 23.8 1,441,611$ Basic BRT Indonesia Jakarta Transjakarta - Line 11 37,028,244$ 11.4 3,248,092$ Basic BRT Indonesia Jakarta Transjakarta - Line 2 & 3 81,378,081$ 14 5,812,720$ Bronze Indonesia Avg 3,500,808$ Basic Mexico Monterrey Ecovía Line 1 128,230,227$ 30 4,274,341$ Silver Mexico Puebla RUTA, Line 1 123,998,824$ 19 6,526,254$ Bronze Mexico Puebla RUTA Line 2 248 665 446$ 20 12 433 272$ developing  countries. No cost Mexico Puebla RUTA, Line 2 248,665,446$ 20 12,433,272$ Mexico Chihuahua Vivebús 77,138,153$ 20 3,856,908$ [likely Silver] Mexico Estado de Mexico Mexíbus Línea 1 - Cd Azteca - Tecamac 125,791,216$ 16.3 7,717,253$ Silver Mexico Estado de Mexico Mexíbus Línea 3 Chimalhuacán - Pantitlá 134,024,021$ 14.75 9,086,374$ Silver Mexico Mexico City Metrobús Líneas 1-4 578,173,869$ 93 6,216,923$ Silver Mexico Mexico City Metrobús Línea 5 63,523,884$ 10 6,352,388$ Silver Mexico León Optibús Etapa 1 66,957,736$ 25 2,678,309$ [likey Silver] Mexico Average 6,571,335.86$ Silver South Africa Johannesburg Rea Vaya 1a 311,634,023$ 30 10,387,801$ Silver (IA) South Africa Johannesburg Rea Vaya Phase 1b 234,725,000$ 18 13,040,278$ Bronze (IB) South Africa Tshwane A Re YengPhase IA 96,840,800$ 7 13,834,400$ Unknown No cost  difference  between Bronze  and Silver  South Africa Cape Town MyCiTiPhase IA as of 2010 404,514,085$ 17 23,794,946$ Bronze South Africa Average 15,264,356$ Bronze France Paris TVM Rungis - Croix de Berny RER 107,767,000$ 22 4,898,500$ Silver France Rouen TEOR (Phase 1) 205,592,000$ 38 5,410,316$ Silver France Average 5,154,408$ Silver USA Cleveland HealthLine 207,680,000$ 11 18,880,000$ Silver USA Eugene Franklin Corridor (Green Line) 26,567,460$ 6 4,427,910$ Bronze USA Los Angeles Orange Line (Original) 375,640,000$ 23 16,332,174$ Bronze USA Average 13,213,361$ Bronze 9 770 287$ Developed Country Standard.   Gold Standard  Cost is double Developing Country Avg 9,770,287$ Developed Country Avg 9,183,885$ Global Average 10,654,383$ Gold Average 16,310,899$ Gold Silver Average 8,725,432$ Silver Bronze Average 8,706,686$ Bronze
  6. 6. LRT Data from 13 LRT systems, all in y , developing world,  Country City Project Project Total Cost (2013 USD) Length (km) Cost/km Quality(BRT Classification) Light Rail Transit Projects y y j Cost (2013 USD) (km) Classification) England London Docklands $1,731,600,000 39 $44,400,000 France Besançon Line 1 Tramway 289,175,000$ 15 19,278,333$ France Dijon Line 1+2 Tramway 506,060,000$ 19 26,634,737$ France Le Havre Line 1+2 Tramway 541,490,000$ 13 41,653,077$ France Reims Line 1 Tramway 486,070,000$ 11 44,188,182$y , ,$ , ,$ France Lyon Line 4 Tramway 310,360,000$ 16 19,397,500$ European Average 32,591,971$ USA Charlotte LYNX Blue Line 503,130,000$ 16 31,445,625$ Silver USA Minneapolis METRO Blue Line 902,914,600$ 20 45,145,730$ USA Denver Denver Central Valley Corridor 171,413,006$ 5.3 32,342,077$ Bronze USA Denver Denver - South West Corridor 225,019,591$ 8.7 25,864,321$ Bronze USA Portland Portland Blue 1,764,113,368$         33 53,457,981$ Silver USA Phoenix Phoenix 1,417,894,781$ 20 70,894,739$ Bronze USA Pittsburgh Pittsburgh LRT 1,001,978,081$ 26.2 38,243,438$ Bronze USA Average 42,484,844$ Average 40,425,977.76$
  7. 7. Heavy Rail Transit from 27 systems:Heavy Rail Transit from 27 systems:  Country City Project Project Total Cost (2013 USD) Length (km) Cost/km Heavy Rail Transit Projects Brazil Rio de Janeiro Metro Line 4 3,824,000,000$ 16 $ 239,000,000 Brazil Sao Paulo (Line 4) Heavy Rail Transit 2,842,000,000.00$ 14 $ 203,000,000 China Lanzhou Lanzhou Metro Line 1 3,168,000,000$ 34 93,176,471$ China Guangzhou Guangzhou Metro Line 1 1,623,000,000$ 18.5 87,729,730$ China Shenzhen Shenzhen Metro Line3 1,855,408,197$ 33 56,224,491$ China Guangzhou Guangzhou Metro Line 2 1,449,180,328$ 18.284 79,259,480$ China Guangzhou Guangzhou Metro Line 3 2,458,403,066$ 36 68,288,974$ China Shanghai Metro Line 2 1,540,983,607$ 19 81,104,400$ Developing Country HRT cost on  average 4 times  more in the g China Beijing Metro Line 4 2,573,770,492$ 29 88,750,707$ Colombia Medellín Tranvía de ayacucho 324,599,000$ 4 81,149,750$ Colombia Bogotá Metro de Bogotá 3,450,000,000$ 35 98,571,429$ India Delhi Delhi Metro Phase 1 + 2 7,310,987,706$ 167.3 43,699,867$ India Mumbai Mumbai Metro Line 1 811,107,286$ 11.4 71,149,762$ India Hyderabad Hyderabad Metro Phase I 3,900,000,000$ 72 54,166,667$ India Bangalore Bangalore Namma Metro Phase 1 4,427,089,468$ 42.3 104,659,325$ India Kochi Kochi Metro Phase 1 934,630,895$ 25.612 36,491,914$ Indonesia Jakarta MRT 1,539,009,855$ 14 109,929,275$ $ $ more in the  developed world Mexico Mexico City Metro Línea 12 Extension 621,687,640$ 4 155,421,910$ Mexico Mexico City Línea 12 Metro Ciudad de México 2,167,883,661$ 25 86,715,346$ Mexico Zona Metropolitana/Valle d Suburban Rail Line 1 2,109,555,525$ 27 78,131,686$ Mexico Monterrey Línea 3 Tren subterráneo de Monterrey 438,554,217$ 7.5 58,473,896$ South Africa Johannesburg Gautrain 4,100,568,824$ 80 51,257,110$ France Paris Grand Paris Metro expansion $29,500,000,000 200 $147,500,000 UK London Jubilee Line Extension $5,476,800,000 16 $342,300,000 USA Washington, DC Silver Line 3,140,700,000$ 19 $ 165,300,000 USA L A l R d/P l Li 7 167 500 000$ 25 $ 286 700 000 Developed Country USA Los Angeles Red/Purple Lines 7,167,500,000$ 25 $ 286,700,000 USA New York 2nd Avenue Subway 17,000,000,000$ 17.3 982,658,960$ Average 126,307,609$ Developing Country Avg 92,106,918$ Developed Country Avg 384,891,792$
  8. 8. ConclusionsConclusions • Main difference between BRT & LRT is cost ofMain difference between BRT & LRT is cost of  the rails and electric catenary, cost of the  vehicles and cost of a depot near the tracksvehicles, and cost of a depot near the tracks.  • Need better comparative data on operating  costs hard to collectcosts, hard to collect.   
  9. 9. Main drivers of capacity differencesMain drivers of capacity differences • Single lane BRT and LRT have very similar capacity. g y p y • LRT has bigger vehicles with more doors where  passengers can board simultaneously (minimizing  i bl d ll ti ) BUTvariable dwell time) BUT… • LRT has lower maximum frequency. • Bottleneck for LRT is Usually block length (sets vehicle• Bottleneck for LRT is Usually block length (sets vehicle  length, usually under 61 meters) and headways set by  traffic signals, usually >90 sec. (can only handle 1 train  per signal phase, and in real world 1 train per 2 signal  phase) • Bottleneck for BRT is the station• Bottleneck for BRT is the station
  10. 10. IF BRT has passing lanes and express  services… • BRT can handle much higher frequencies • BRT can simulate the long LRT vehicles by having many  buses boarding and alighting at multiple sub‐stations.  • BRT has no constraint at the traffic signal as many• BRT has no constraint at the traffic signal, as many  buses can pass through a single signal phase.   • Saturation of the critical station can be reduced by  h i id d d d b li it d thaving some corridor demand served by limited stop  services that bypass saturated stations. • These possibilities can be measured (formulas Chapter p ( p 7) in the BRT Planning Guide, but are not  acknowledged by TCQSM 3rd Edition: The major  distinction 
  11. 11. Boarding time per door is virtually  d l f didentical for BRT, LRT, and HRT Variable Dwell Times Mode Seconds per door HRT& LRTAlighting at level 1 39‐ 2 0HRT & LRT Alighting at level 1.39   2.0 HRT & LRT Alighting with Steps 3.36 ‐ 3.97 HRT& LRTBoarding at level 1 11 2 61HRT & LRT Boarding at level 1.11 ‐ 2.61 HRT & LRT Boarding with Steps 2.91 ‐ 4.21 BRTB di T Mil i 1 2BRT Boarding TransMilenio 1.2 Standard at ‐ level  BRT boarding 1.6
  12. 12. Theoretical and Observed CapacityTheoretical and Observed Capacity V hi l it L d F t F C it Theoretical capacities of different rapid transit alternatives  Vehicle capacity  Load Factor Frequency Capacity HRT 8 car single track, best imaginable  signaling system 1408 0.85 30 35904 HRT 8 car double track  1408 0.85 60 71808 LRT 8 module module, no turning  restrictions, 2 minute signal  632 0.85 15 8058 LRT 8 module, no turns allowed, 90 second  signal*  632 0.85 20 10744 LRT 8 module double track 632 0.85 40 21488 BRT Largest Bi‐articulated 220 0.85 60 11220 BRT w/ Passing Lanes  220 0.85 193 36000 BRT w/ Passing lanes & limiteds bypassing  bottleneck station 220 0.85 241 45000 *TCQSM 3rd Edition p 8‐87 provides 20 as the number of trains that can be processed at grade with a 90 second signal.  They  reach a capacity of 12,000 pphpd by assuming trains with larger capacity than is commercially available or operable in most  on‐street contexts.  
  13. 13. Observed Capacities:  no street level LRT with capacity higher than 6000 P h k di i b d BRT LRT HRT P h k di i b d BRT LRT HRT Corridor Type PPHPD Level Tracks/ Lanes Source  Bogota BRT 37,700        Surface 2 # Guangzhou BRT 27,400        Surface 2 # Istanbul BRT 18,900        Highway 1 # Lima BRT 13,950        Highway 2 # C li BRT 11 100 S f 2 # Passengers per hour per peak direction observed: BRT, LRT, HRT BRT Corridor Type PPHPD Level Tracks/ Lanes Source  Tunis‐ LRT LRT          13,400  Underground  Junctions 1 ?  Calgary LRT 5,900           Surface 1 + Portland MAX Blue Line LRT LRT 4,741           Surface 1 * Denver Central Corridor LRT LRT 4 484 Surface 1 * LRT Passengers per hour per peak direction observed: BRT, LRT, HRT Cali BRT 11,100        Surface 2 # Ottawa West Transitway BRT 11,100        Surface 1 & Curitiba‐ Eixo Sul BRT          10,640 Surface 1 & Xiamen BRT 8,360           Elevated 1 # Brisbane BRT  7,700           Surface 2 # Mexico City  BRT 7,550           Surface 1 # Zhengzhou BRT 7,230           Surface 1 # Urumqi BRT 6,230           Surface 1 # Denver Central Corridor LRT LRT 4,484         Surface 1 * Edmonton LRT 3,800           Surface 1 + Phoenix Metro LRT LRT 2,985           Surface 1 * Pittsburgh "The T" LRT LRT 2,017           Surface 1 * Toronto Spadina LRT 2,000           Surface 1 + Newark   LRT 1,800           Surface 1 + Sacramento LRT 1,500           Surface 1 + Charlotte Lynx LRT LRT 1,000           Surface 1 * Denver Southwest Corridor LRT LRT 1 268 Surface 1 * Chengdu BRT 6,650           Elevated 1 # Lanzhou BRT 6,550           Surface 2 # Dalian BRT 6,430           Surface 1 # Hangzhou BRT 6,300           Surface 1 # Quito BRT 6,000           Surface 1.5 # Johannesburg BRT 4,510           Surface 2 # Hefei BRT 3,600           Surface 1 # Yinchuan BRT 3,600           Surface 1 # Denver Southwest Corridor LRT LRT 1,268         Surface 1 * Seattle South Lake Union (SLU) Streetcar LRT  214              Surface 1 * Portland Streetcar LRT 814              Surface 1 * Hong Kong‐ Subway HRT         84,000  Underground 2 ? São Paulo‐ Line 1 HRT         60,000  Underground 2 ? NYC Green Lines Combined HRT 56,100        Underground 2 + Santiago‐ La Moneda HRT         36,000  Underground 1 ?  HRT Jakarta BRT 3,400           Surface 1 # Beijing BRT 2,750           Surface 1 # Changzhou BRT 2,650           Surface 1 # Los Angeles Orange Line BRT 2,357           Surface 2 * Jinan BRT 2,050           Surface 1 # Leon, MX BRT 1,950           Surface 1 # Pittsburgh Martin Luther King, Jr. East Busway  BRT 1,714           Surface 2 *  Lianyungang BRT 1,650 Surface 1 # NYC 4,5, express trains HRT 30,200      Underground 1 + Toronto Spadina HRT 26,200        Underground 1 + Manila‐ MRT‐3 HRT         26,000  Elevated 1 ? NYC 6 train HRT 25,900        Underground 1 + London‐ Victoria Line HRT         25,000  Underground 1 ? Montreal HRT 24,400        Underground 1 + Bangkok‐ SkyTrain HRT         22,000  Elevated 1 ? Buenos Aires‐ Line D HRT         20,000  Underground 1 ? Lianyungang BRT 1,650           Surface 1 # Zaozhuang BRT 1,400           Surface 1 # Yancheng BRT 1,300           Surface 1 # Ahmedabad BRT 1,200           Surface 1 # Bangkok BRT 1,200           Surface 1 # Nantes BRT 1,200           Surface 1 # Las Vegas Strip & Downtown Express (SDX) BRT BRT 1,199           Surface 1 * Cleveland HealthLine BRT BRT 1,129           Surface 1 * Eugene Emerald Express Green Line (EmX) BRT BRT 714 Surface 1 * Newark Path HRT 17,800      Underground 1 + Washington DC Red HRT  12,700        Underground 1 + Chicago Red HRT 11,900        Elevated 1 + San Fran BART HRT 6,200           Underground 1 + Atlanta  HRT 5,100           Underground 1 + Sources:  * Extrapolated from daily demand collected by ITDP for "More Development " https://www itdp org/more developmen + Taken from TCQSM 2nd Ed, Annex.  http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp100/part%205.pdf, p. 5 ‐ 123 Eugene Emerald Express Green Line (EmX) BRT BRT 714              Surface 1 * Pittsburgh South Busway BRT BRT 662              Surface 1 * Pittsburgh West Busway BRT BRT 601              Surface 1 * Las Vegas Metropolitan Area Express (MAX)  BRT 529              Surface 1 * ? BRT Planning Guide, 2007 (cant find original source) & Taken frm TCQSM 2nd Ed. Part 2: Transit in North America, p. 2‐13 # Counted by ITDP China staff, from:   http://www.chinabrt.org/en/cities/param‐quan.aspx?param=2 * Extrapolated from daily demand collected by ITDP for  More Development… , https://www.itdp.org/more‐developmen for‐your‐transit‐dollar‐an‐analysis‐of‐21‐north‐american‐transit‐corridors/ using a ratio of 1/14 derived from TCQSM 2nd  Ed data
  14. 14. BRT systems with express  Corridor Type Speed (km/hr) Source Pittsburgh West Busway Pennsylvania, BRT 54 [ii] Comparative Observed Speeds, BRT, LRT, HRT BRT services (passing lanes)  had higher speeds than  LRT  Pittsburgh Martin Luther King, Jr. East Busway BRT 54 [x] Pittsburgh South Busway, Pennsylvania, BRT 54 [iii] Ottawa Transitway, Canada BRT 52 [i] Orange Line, Los Angeles BRT 32 [v] Bogotá, Colombia, TransMilenio BRT 27 [x] Curitiba, Brazil, Linha Verde BRT 25 [x] Beijing (Lines 1, 2, 3, 4) BRT 24 [iv] Ahmedabad, India, Janmarg BRT 24 [x] Otherwise speed  explained by stop  distances and BRT Ahmedabad, India, Janmarg BRT 24 [x] Guangzhou, China, GBRT BRT 23 [x] Las Vegas Metropolitan Area Express (MAX) BRT 22 [x] Curitiba, Brazil, RIT corridors BRT 18 [x] Los Angeles OrangeLine BRT 18 [x] Cleveland HealthLine BRT 18 [x] Mexico City, Mexico, Insurgentes BRT 17 [x] Eugene Emerald Express Green Line (EmX) BRT 17 [x] LRTdistances, and BRT  Standard elements  (dedicated ROW, at level  boarding, off board fare Sound Transit Central Link, Seattle, Washington, USA LRT 40 [vi] Ottawa O-Train LRT 40 [x] LYNX Blue Line, Charlotte, North Carolina, USA LRT 37 [vi] Portland MAX Blue Line LRT LRT 30 [x] Denver Central Corridor LRT LRT 23 [x] Denver Southwest Corridor LRT LRT 23 [x] Phoenix Metro LRT LRT 19 [x] LRT boarding, off board fare  collection, etc.) Phoenix Metro LRT LRT 19 [x] Budapest, Hungary, Grand Boulevard LRT LRT 18 [x] Portland Streetcar LRT 16 [x] Seattle South Lake Union (SLU) Streetcar LRT 8 [x] Manila MRT 3 (Metrostar Express), Philippines HRT 48 [viii] Expo/Millennium Lines, Vancouver, Canada HRT 43.5 [vii] Tren Urbano San Juan Puerto Rico HRT 33 2 [ix] HRT Tren Urbano, San Juan, Puerto Rico HRT 33.2 [ix] Sources:  [ii] US Department of Transportation. Evaluation of Port A uthority of A llegheny County's West Busway Bus Rapid Transit Project . Washington DC, 2003. Report No. FTA-PA-26-7010-03.1 http://www.fta.dot.gov/documents/Pittsburgh_West_Busway_BRT_Evaluation-April_2003.pdf [iii] "Pittsburgh, Pensylvania South, East, and West Busways." Transportation Research Board. http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp90v1_cs/Pittsburgh.pdf [iv] National BRT Institute. "Perspectives on Bus Rapid Transit (BRT) Developments in China." Presentation. National BRT Institute. May 1, 2006.  http://www.nbrti.org/docs/pdf/Darido_China BRT_051106_presentation.pdf. Transportation Research Metro Orange Line BRT Project Evaluation Vol 0004 Washington DC: Federal Transit Administration 2011 [i]Ottawa Ontario BRT Case Study." Transportation Research Board. http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp90v1_cs/Ottawa.pdf. Transportation Research. Metro Orange Line BRT Project Evaluation . Vol. 0004. Washington DC: Federal Transit Administration, 2011. http://www.fta.dot.gov/documents/FTA_Research_Report_0004_FINAL_2.pdf [vi] Speeds for Charlotte Lynx, Central Link, and WMATA Silver line calculated from posted schedules. [vii] "Vancouver SkyTrain—A Proven Success Story." Japan Railway & Transport Review, no. 16 (1998): 44‐45.  http://www.jrtr.net/jrtr16/pdf/f44_vancouver.pdf. [viii] Antiporda, Jefferson. "DOTC Promises Better MRT Service next Year." Manila Times, August 15, 2014. http://www.manilatimes.net/dotc‐promises‐ better‐mrt‐service‐next‐year/119302/. [ix] "Subways of Puerto Rico." My Transit Guide. http://mapa‐metro.com/en/Puerto Rico/San Juan/San Juan‐Tren‐Urbano‐map.htm. [x] "More Development for your transit dollar", 2013 ITDP. https://www.itdp.org/more‐development‐for‐your‐transit‐dollar‐an‐analysis‐of‐21‐north‐ american‐transit‐corridors/, derived from interviews with transit authority staff.
  15. 15. Big emphasis on service planningBig emphasis on service planning • Service plans determine new system’sService plans determine new system s  demand, the fleet size needed, the existing  routes affected the speed and capacity of theroutes affected, the speed and capacity of the  system, the needed sizing of the system • Yet most BRT design is done without• Yet…most BRT design is done without  reference to a service plan, and service plan  has to accommodate whatever infrastructurehas to accommodate whatever infrastructure  was designed .
  16. 16. Intermediate Terminals transfer stations Trunk‐feeder services Direct services
  17. 17. When there was less experience on BRT… Mexico City
  18. 18. Good but expensive  connection tunnels ($40  million+) 1km
  19. 19. TransJakarta did not consider routes going from Blok M (south) to Pulogadung  (East), or other options.  As a result, a huge transfer bottleneck occurred at  HarmonyHarmony Kota StationKota StationKota StationKota StationKota StationKota StationKota StationKota StationKota Station HarmoniHarmoniHarmoniHarmoniHarmoniHarmoniHarmoniHarmoniHarmoni MonasMonasMonasMonasMonasMonasMonasMonasMonas Kalideras Pulogadung Bunderan SenayanBunderan SenayanBunderan SenayanBunderan SenayanBunderan SenayanBunderan SenayanBunderan SenayanBunderan SenayanBunderan Senayan Blok MBlok MBlok MBlok MBlok MBlok MBlok MBlok MBlok M
  20. 20. Harmoni Station, Jakarta
  21. 21. But over time, methods evolve
  22. 22. Harmoni bottleneck partially resolved by adding second sub‐stop  d i l b t di till j bland passing lane but crowding still a major problem.  
  23. 23. Rea Vaya BRT,  Johannesburgg A hybrid of trunk/feeder and direct  (complementary) services
  24. 24. 560 Route using corridor /route length more than 30%296 210 Route using corridor /route length more than 30% 561  242 Flexible Operation Turning buses just leave busway and enter  general traffic.  Openings in the physical barrier
  25. 25. BRT routes at Shidajida ‐ Guangzhou
  26. 26. New Service planning questions  danswered • How many and which existing routes toHow many and which existing routes to  incorporate into a BRT system service plan? • When to split a direct service into a trunk• When to split a direct service into a trunk  route and a feeder route? Li i d i• Limited stop services – When should stops be eliminated,  – When should limited stop services be introduced  – With what stopping pattern?
  27. 27. What existing routes to include in a  lnew BRT Service Plan?   • All of them, except… • Services with so little overlap with the BRT trunk  infrastructure the cost of a new bus cannot beinfrastructure the cost of a new bus cannot be  recouped with the time savings benefit • Services outside the administrative authority of y the regulator of the BRT infrastructure – Intercity buses, charter buses, informal minibuses  with bus types incompatible with BRT trunkwith bus types incompatible with BRT trunk  infrastructure • Services most likely to saturate the BRT trunk  idcorridor
  28. 28. Rank routes based on  “maximum passengers on a route that passes station ‘I’ for the  least amount of total dwell time that route uses at the  bottleneck station ‘i’.  Keep adding routes until the addition of the last route slows the  total passengers inside the busway down more than the value of  the benefit to the new passengers using the busway.   Priority = Pax(i)/Td(i) y ( ) ( ) Where:Where:  Pax (i) is the Load on the buses of a specific bus route passing  the bottleneck station ‘I’.   To(i) is the total dwell time in seconds per bus on that route.  
  29. 29. Advantages of Direct  S i Advantages from Trunk  d dServices • Less fleet needed as a • Optimizes bus size and and Feeder Services Less fleet needed as a  result of peak effect.            • Avoids very significant  Optimizes bus size and  type • Can reduce station y g transfer delays and  costs platform saturation • May improve regularity y p g y of service on trunk 
  30. 30. Trunk and Feeder system requires more total fleet than Direct Service Option Fleet size is set by the maximum peak load for a specific cycle time.  In normal  operating conditions, the fleet needed to serve two 1‐hour cycle time  routes (one trunk and one feeder) is more than the fleet needed to serve one Original Formula:  routes (one trunk and one feeder) is more than the fleet needed to serve one  two hour cycle time:  Fleet = (Lmhour * TC) / Cbhour b Revised formula:Revised formula: Fleet = Loadmax cycle time/Cb
  31. 31. Load max(TC=1) = 63+69+67+66 = 265 Loadmax(TC=2) =Loadmax(TC 2)    51+63+69+67+66+53+45+34 = 448 15 Minute  Accumulated  Peak Period Critical Link Demand Profile Time Loads load Lm(TC=1) Lm(TC=2) 6:00 15 15 118 383 6:15 21 36 166 421 6:30 31 67 214 4456:30 31 67 214 445 6:45 51 118 250 448 7:00 63 181 265 429 7:15 69 250 255 387 7:30 67 317 231 3397:30 67 317 231 339 7:45 66 383 198 293 8:00 53 436 164 248 8:15 45 481 132 216 8:30 34 515 108 1928:30 34 515 108 192 8:45 32 547 95 179 9:00 21 568 84 168
  32. 32. Lm(Trunk) (TC=1) = 265 Fleet = 265/60 = 4.417 Lm(TC=2) = 448 Fleet: Direct Service Option Fleet: Trunk and Feeder Option / Lm(Feeder) (TC=1) = 265 Fleet = 265/60 = 4.417 Total Fleet: 8.84  600 ( ) Fleet = 448/60 = 7.468 500 600 400 15 Minute Loads Lm(TC=2) = 448 Fleet = 448/60 = 7.468 200 300 Accumulated load Lm(TC=1) Lm(TC=2) Lm(TC=1) = 265 100 Lm(TC 1)   265 Fleet = 265/60 = 4.417 0 6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00
  33. 33. Original Services on BRT Corridor  Trunk and Feeder Alternative for BRT  C idCorridor 
  34. 34. Potential Benefit from  Bus size optimization Higher Potential Benefit from Trunk – Feeder Service Bus size optimization g Less Potential Benefit from Trunk – Feeder Service Two conditions where Trunk Feeder benefits:  1 A high % of the total route operates along the trunk route so most of the passengers1. A high % of the total route operates along the trunk route so most of the passengers  benefit from the efficiencies of larger bus size 2.  The total demand in the corridor is divided up among a large number of routes, each  with relatively low frequency so long waiting times.     In these conditions, Trunk and Feeder functions like small businesses joining a cooperative  to reach returns to scale.   Trunk feeder becomes like a ‘black hole’, the more that join, the  more the benefits. 
  35. 35. Include which routes in Trunk Feeder operation to optimize bus size?  Sort by fewest “Places” brought by each route to the Trunk  (Pl = Lm(TC)max= Lm(hour) * TC)( ( ) ( ) ) The low demand routes have more to gain by joining a ‘co‐op’ for the trunk portion  of the route (they can use bigger buses for more of the route). As more routes join the trunk, bus size on trunk increases as does frequency. Scenario feeder original  route Lm Pl Trunk bus  size frequency Trunk  Cost Feeders Direct  Routes total trunk accumulated costscosts (COF+Cw) trunk 0 0 0 11346 11346 C 529 680 100 130 18.2 5 427 529 10666 11622 B  443 749 300 390 31.6 9 739 972 9917 11629 F 335 917 700 910 48 3 15 1129 1307 9000 11437F 335 917 700 910 48.3 15 1129 1307 9000 11437 A 529 1005 1100 1430 60.5 18 1416 1837 7995 11248 D 648 1154 1600 2080 73.0 22 1708 2485 6841 11034 E 670 1381 2400 3120 89.4 27 2091 3155 5461 10707 G 1059 1606 3200 4160 103.2 31 2415 4214 3855 10484 H 3349 3855 5200 6760 131.6 40 3078 7563 0 10641 total 7563 11346
  36. 36. With very high Trunk Route cycle times as a share of the total route bus costsWith very high Trunk Route cycle times as a share of the total route,  bus costs  continue to fall as more routes are converted to Trunk and Feeder.
  37. 37. With a very short Trunk Route cycle time,  bus costs continue to rise  as more routes are converted to Trunk and Feeder
  38. 38. With l ti l h t t k t f ll ft t i iti l f tWith a relatively short trunk, costs fall after a certain critical mass of routes  have been converted to Trunk and Feeder, but the cost reductions never drop  below the cost of the original direct service. 
  39. 39. With long Trunk Route cycle times,  and high demand on the two routes  continuing far beyond the end of the corridor, costs fall as all but the  two highest demand and longest routes are added 8200 8300 d) trunk feeder system‐ coverage and total cost  7800 7900 8000 8100 ng +vehicle fixe 7400 7500 7600 7700 costs (waiti none B C F A D E G H sucessive routes entering the trunk feeder system
  40. 40. Costs of the new transfer: Indirectness  fof route • Delay #1: Walking and waiting related  to the new transfer. Internal terminal design  should minimize this delayshould minimize this delay.  • Delay #2 The transfer terminal is  unlikely to be in a locationunlikely to be in a location  optimal to all routes.   Some routes will be forced  off their original route.
  41. 41. Delay #3.  T i l l lik l t b l t d di tlTerminal also unlikely to be located directly  on the trunk corridor due to lack of land  availability.  
  42. 42. ExamplesExamples terminal
  43. 43. 500 m s 500 m terminal feeders
  44. 44. Empirical data on these delays.  Benefits of Bus size  optimization will rarely be greater than these additional p y g costs + additional fleet requirements T i l R f Additi l T i l D l Description minimum average maximum Typical Ranges of Additional Terminal Delays bus & passenger delay i Rerouting to Terminals  0 4 10 Bad Terminal Location 0 6 15 l d l l minutes Internal and External Circulation  2 4 6 Additional Boarding & Alighting Delay 1 3 5 Passenger Delay Only Walking inside  terminal 0 2 6  Additional waiting due to transfer 2 4 6 Total time/ passenger:  minutes 5 23 48 Equivalent time/passenger: minutes 7 31 66
  45. 45. Station platform saturation may be the  f k d dmajor cause of Trunk and Feeder use • Direct services leave  passengers waiting on the  station platform longer  (frequency per route is lower  lso passengers accumulate on  the platform.   • If the platform width is  il blunavailable, some routes may  be converted to trunk and  feeder routes to relocate the  necessary platform space to anecessary platform space to a  transfer terminal where land  is more readily available.   
  46. 46. Stop removal Optimal distance between station:  l b id 450normal urban corridor 450 meters 30 35 15 20 25 me(minutes) 0 5 10 Tim In-vehicle time Walking time Total travel time 200 300 400 500 600 700 800 900 1000 1100 1200 Distance (metres)
  47. 47. Remove stops  with low code location boarding alighting code location boarding alighting 14182 Western & Berwyn Terminal 3 0 0 6648 Western & Ogden 49 40 2 14529 Western & Berwyn 1013 1 0 8245 Western & 14th Street 11 21 1 1717 W t & F t 390 14 0 14531 W t & 16th St t 41 32 0 bus stop daily demand  elimination  code bus stop daily demand  elimination  code with low  demand, or if  1717 Western & Foster 390 14 0 14531 Western & 16th Street 41 32 0 1718 Western & Carmen 51 0 1 8249 Western & 18th Street  27 40 1 1719 Western & Winnemac 66 4 0 8250 Western & 19th Street 28 38 2 1720 Western & Ainslie 73 12 2 15059 Western Pink Line Station 278 221 0 14591 Western & Lawrence 513 73 0 14555 Western & Cermak 350 393 0 8184 Western & Leland (Brown Line) 419 206 0 17058 Western & 23rd street 38 57 1 8185 Western & Wilson 83 16 2 8255 Western & 24th Street 88 56 0 8186 Western & Sunnyside 36 17 1 8256 Western & 25th Street 19 14 1 8187 Western & Montrose 326 133 0 8257 Western & 26th Street 190 184 0 8188 Western & Cullom 29 22 2 8258 Western & 27th Street 24 24 1 8190 Western & Belle Plaine 20 46 1 8259 Western & 28th Street 60 30 2 14964 Western & Irving Park 341 133 0 8260 Western & 31st Street 17 11 0 stops simply too  close together 8192 Western & Byron 14 5 1 8262 Western & 33rd Street 4 27 1 8193 Western & Grace 70 49 2 8263 Western & 34th Street 10 26 0 8195 Western & Addison 512 358 0 8264 Western & 35th Street 78 131 0 8196 Western & Cornelia 68 128 1 8265 Western & 36th Street 11 31 1 8197 Western & Roscoe 157 101 0 16085 Western & Archer 171 268 0 8198 Western & School 91 33 1 14575 Western & Pershing 36 36 1 8199 Western & Belmont 391 233 0 8268 Western & 40th Street 18 29 0 8200 Western & Barry 37 10 1 8269 4102 S Western 16 14 1 8202 Western & George 31 51 2 8270 Western & 42nd Street 32 54 0 14585 Western & Elston/Diversey 323 260 0 8271 Western & 43rd Street 92 95 1 8204 Western & Schubert 99 111 1 8272 Western & 44th Street 21 53 0 8205 Western & Logan/Jones 283 68 0 15743 Western & 45th Street 33 52 1 close together,   if there is  h 8206 Western & Altgeld  352 259 0 8274 Western & 46th Street 27 61 2 8207 Western & Fullerton 86 42 2 8275 Western & 47th Street 315 445 0 8208 Western & Belden 68 35 1 8276 Western & 48th Street 12 13 1 8210 Western & Palmer  49 54 2 14132 Western Orange Line Station 860 439 0 8211 Western & Charleston  126 215 0 8278 Western & 50th Street 4 19 2 8212 Western & Armitage 184 244 1 8279 Western & 51st Street 92 155 0 8213 Western & Milwaukee 431 271 0 8280 Western & 52nd Street 5 34 1 8214 Western & Cortland (Blue Line) 389 219 0 8281 Western & 53rd Street 75 99 0 8215 Western & St. Paul 26 19 1 8282 Western & 54th Street 55 77 1 8216 Western & Wabansia  57 98 2 8283 Western & 55th Street/Garfield 274 282 0 14581 Western & North Avenue 344 288 0 8284 Western & 56th Street  65 66 1 17343 Western & Le Moyne 70 126 2 15143 Western & 57th Street 56 70 0 another station  in a reasonable  y 8219 Western & Hirsch 87 118 0 8286 Western & 58th Street 27 89 1 8220 Western & Potomac 42 93 1 14578 Western & 59th Street 135 165 0 8221 Western & Division 407 598 0 8288 Western & 60th Street 24 54 1 8222 Western & Thomas 46 106 1 8289 Western & 61st Street 76 106 0 8223 Western & Augusta 90 212 0 8290 Western & 62nd Street 62 179 0 8224 Western & Iowa 34 109 1 14576 Western & 63rd Street 476 441 0 8225 Western & Chicago 374 491 0 8292 Western & 64th Street 38 65 1 8226 Western & Huron 14 17 1 14857 Western & 65th Street 80 124 0 8227 Western & Ohio 23 36 0 8294 Western & 66th Street 35 116 1 8228 Western & Grand 125 104 1 14823 Western & Marquette Rd 99 200 0 15344 Western & Hubbard 95 66 2 8296 Western & 68th Street 15 93 1 8230 Western & Fulton 31 81 1 10117 Western & 69th Street 147 394 0 distance 8230 Western & Fulton 31 81 1 10117 Western & 69th Street 147 394 0 8231 Western & Lake 56 91 0 8298 Western & 70th Street 17 61 1 8233 Western & Warren 95 131 1 8299 Western & 71st Street 154 336 0 14546 Western & Madison 364 241 0 8300 Western & 72nd Street 35 92 1 8236 Western & Adams 96 68 1 15783 Western & 73rd Street 27 98 0 8237 Western & Jackson 92 147 0 8302 Western & Columbus 48 74 2 8239 Western Blue Line Station 499 282 0 8303 7521 S Western 5 12 1 14769 Western & Harrison 110 116 0 8304 Western & 76th Street  5 13 0 17312 Western & Polk  59 111 2 8305 Western & 77th Street 1 17 1 15345 Western & Taylor  79 143 0 8306 Western & 78th Street 0 626 0
  48. 48. When to add express routesWhen to add express routes • When the removal of fixed dwell time (perWhen the removal of fixed dwell time (per  stop)  benefits more riders than the additional  delay caused by lower frequency of servicedelay caused by lower frequency of service  • When adding a service reduces the irregularity  of boarding and alighting delayof boarding and alighting delay.   – Boarding and alighting delay becomes irregular  and causes bunching at frequencies of greaterand causes bunching at frequencies of greater  than 30 per hour, with 22 per hour optimal.  
  49. 49. Two conditions where adding limited  bstop or express services is obvious • When demand is so high on a single route thatWhen demand is so high on a single route that  the frequency is greater than 30 buses/hour.   In this case the addition of a limited stopIn this case, the addition of a limited stop  service will yield benefits in almost all cases. • When demand is highly concentrated in a• When demand is highly concentrated in a  limited number of station stops. 
  50. 50. If demand is relatively uniform, the below  i i ll i lstopping pattern is usually optimal.  8000 9000 express route ‐ example of demand boarding alighting 3000 4000 5000 6000 7000 8000 pass/hour Load 0 1000 2000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 p normal                                                    express                                 normal A B CA                    B                    C Passengers traveling within zone A or within Zone C can take local or express  so no loss of benefit.  So for 2 OD pairs there is no change.   Passengers traveling from A to C or C to A can all take Express and gain Td * 7  stops.  So for 2 OD pairs, there is a big time savings benefit.  Passengers traveling between A and B or B and C lose 50% of frequency orPassengers traveling between A and B or B and C lose 50% of frequency, or  waiting time * 2.  So for 2 OD pairs there will be a disbenefit.   The outcome depends on the demand profile
  51. 51. Empirical evidence shows Benefits of express routes tend to be  higher for Trunk and Feeder systems (on average in the 40%higher for Trunk and Feeder systems (on average in the 40%  range) than for Direct Service systems (in the 20% range)  because demand is concentrated at the terminal and the  downtown 12000 express route ‐ example of demand 6000 8000 10000 ss/hour boarding alighting 0 2000 4000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 pa normal                                                    express                                 normal Load A                    B                    C Optimal pattern likely to be two services: one stopping  everywhere and one stopping only at the two extremes, the  terminal and downtown
  52. 52. If demand is very high, more patterns y g , p can probably be sustained keeping the  frequency per route in the optimal 15frequency per route in the optimal 15  – 30 range.  This is the reason  TransMilenio services have this look Express 3 E 2Express 2 Express 1 Local
  53. 53. Early return services allow for higherEarly return services allow for higher  frequency on high demand portion with  the same fleet or reduction in fleetthe same fleet, or reduction in fleet and n and n engerdem rdirecition B A engerdem rdirecition B A Passe pe B Passe pe B Travel time along corridor RT Travel time along corridor RT
  54. 54. l l b fSplitting a longer route is a combination of  two early returns. and n and n engerdema rdirecition B A engerdema rdirecition B A Passe per B Passe per B Travel time along corridor RT Travel time along corridor RT
  55. 55. An example from YichangAn example from Yichang Actual itinerary for routes 101,102  Proposed itinerary for routes  101 102 & 103 cut integrating in y , & 103 101,102 & 103 cut integrating in  BRT corridor
  56. 56. Decreasing load from a transfer  t i l d t E l fterminal or a downtown: Example of  Santa Amaro Corridor in Sao Paulo 14000 16000 example of continuous decrescing load boarding 8000 10000 12000 pass/h alighting load 0 2000 4000 6000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 stations
  57. 57. Optimal pattern turns out something  like this: (also likely to be used onlike this: (also likely to be used on  TransBrasil BRT) 12000 13000 14000 15000 16000 demand and express routes boarding alighting load Local.1 exp 1 7000 8000 9000 10000 11000 pass/h exp 1 exp 2 exp 3 local 1000 2000 3000 4000 5000 6000 0 1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 stations This combines clustered stop removal with early return services.  Fleet does not  need to go all the way to the end, so there is a big reduction in the needed fleet. 
  58. 58. New materials on institutional  structures for BRTstructures for BRT Transportation  Authority (transit and  traffic) Transit  Authority (rail  also) BRT and  Other Buses  and  Minibuses Special  Purpose BRT  Agency Public Bus  operator Transport  Department BRT Management Authority Options TransMilenio, Bogota X (Phase IV) X (Phases I ‐ III) GBRT, Guangzhou X BRT, Curitiba X Guadalajara, Mexico X Dar es Salaam X Lima BRT  X Dar es Salaam (pending) X*a es Sa aa (pe d g) Perreira, Colombia X Mio, Cali, Colombia X Jan Marg, Ahmedabad X Rea Vaya, Johannesburg X Metrobus, Mexico City X HealthLine, Cleveland X Lanzhou BRT XLanzhou, BRT  X TransJakarta, Jakarta X Sao Paulo, Brazil X LAMTA (Orange Line) X Cape Town BRT   X Pittsburgh ACTA X London (No BRT in London) X ( )San Francisco (no BRT yet) X Dakar (CETUD) X BRT basic, Lagos X Gold Standard BRT Silver Standard BRT Bronze Standard BRT Basic BRT or Below
  59. 59. MunicipalityMunicipality (Mayor) Metro Company Transportation  BRT Authority Traffic Police Public Works Metro Company Department Transit licenses BRT Authority  BRT Operations Traffic Police Station security (BRT Infrastructure)  Traffic  management Bus operating Traffic signals Station Architects, Road Engineering Fare collection Construction Advantages and  disadvantages of  Operational  Control alternative structures  explained
  60. 60. Advantaes and disadvantages of  l dcontracting out options explained Curitiba Bogota Santiago Jakarta Johannes Cape Ahmed Guang Mexico ITDPCuritiba Bogota Santiago Jakarta Johannes -burg Cape Town Ahmed abad Guang- zhou Mexico City ITDP Recommended Urbs Trans- Milenio Trans- Santiago Trans- Jakarta Rea Vaya MiCity Jan Marg GBRT Metro- bus (Africa) Milenio Santiago Jakarta Marg bus Bus Procurement Private Private Private Public Private Public Private Private Private Private Bus Operations Private Private Private Private Private Private Private Private Private Private F C ll ti P bli P i t P i t P i t P i t P i t P bli P bli P i t P i tFare Collection Public Private Private Private Private Private Public Public Private Private Trust Fund Public Private Private Public Public Public Public Public Private Private Control Center Public Public Private Public Public Public Public Public Public Private O ti l Pl i P bli P bli P i t P bli P bli P bli P bli P bli P bli P i tOperational Planning Public Public Private Public Public Public Public Public Public Private
  61. 61. Examples of BRT Systems with  Multiple Private BRT BusMultiple Private BRT Bus  Operators BRT System Phase I Operators Phase II operators Number of Operating Companies Bogota 6 8 Guangzhou 3 3 Curitiba 2 4Curitiba 2 4 Mexico City  2 3 Rea Vaya 1 2 Ah d b d 1 1Ahmedabad 1 1 MiCity 1 3 TransJakarta 1 2 BRT Standard Rank Not BRT Gold Silver Bronze
  62. 62. Corporatization is key to Gold BRT Former  Mi ib Mixed  F Former  Private Bus  C i C ll i BRT Operator Ownership Type Minibus  Operators  Formed into  Companies Former  Minibus and  Private  Investors Companies  under new  contract  form Outside  Private  Investor Collective  without  Integrated fleet  Management Public bus  operator TransMilenio Bogota X XTransMilenio, Bogota X X GBRT, Guangzhou X BRT, Curitiba X Guadalajara, Mexico X X Lima BRT  X X Perreira, Colombia X X Mio, Cali, Colombia X X Jan Marg, Ahmedabad X Rea Vaya, Johannesburg X M b M i Ci X XMetrobus, Mexico City X X TransJakarta, Jakarta X X HealthLine, Cleveland X Lanzhou, BRT  X LAMTA (Orange Line) XLAMTA (Orange Line) X MiCity, Cape Town X X LiteBRT, Lagos X Porto Alegre Basic BRT X
  63. 63. provide feeder services in any BRT  system. Some feeder services usesystem.  Some feeder services use  minibuses.  Important not to confuse  th hi l t f th t t tF d B O tithe vehicle type from the contract type.Former minibus  operators  formed into Same  companies No Feeder, No Feeder, Feeder Bus Operations formed into  formal  companies companies  as Trunk  Operator No Feeder,  Direct  Services No Feeder,  Trunk Services  Only Informal  minibus feeders TransMilenio, Bogota X GBRT Guangzhou XGBRT, Guangzhou X BRT, Curitiba X Jan Marg, Ahmedabad X Mio, Cali, Colombia X R V J h b XRea Vaya, Johannesburg X Metrobus, Mexico City X TransJakarta, Jakarta X HealthLine, Cleveland X Lanzhou, BRT  X LAMTA (Orange Line) X MiCity, Cape Town X Porto Alegre Basic BRT X

×