Community Briefing Powerpoint Presentation

1,030 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,030
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
27
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Not new
  • Community Briefing Powerpoint Presentation

    1. 2. Opening Remarks Howard Cohen Chancellor Purdue University Calumet Norman Peterson Assistant to the Director Argonne National Laboratory
    2. 3. 2 Multiple Efforts Contributing to BP Water Technology Decisions Internal Review BP and consultants with global refinery and other industry experience are evaluating and designing source control and water treatment options. Expert Analysis Expert consultants are conducting detailed analysis of ideas presented by others to determine if they may be applicable at Whiting . PWI / Argonne Project Scientific experts are studying emerging technologies and approaches to minimize discharges into Lake Michigan. Petroleum Environmental Research Forum (PERF) Industry group is researching and developing environmental technologies for the petroleum industry. BP Whiting Refinery
    3. 4. Opening Remarks Howard Cohen Chancellor Purdue University Calumet Norman Peterson Assistant to the Director Argonne National Laboratory DRAFT 6-3-08
    4. 5. Research Presenters M. Cristina Negri, Doctoral (Italy) Soil Scientist/Environmental Engineer Argonne National Laboratory George Nnanna, Ph.D. Associate Professor, Mechanical Engineering, Purdue University Calumet Interim Director, Purdue University Calumet Water Institute Eric McLamore, MSc. Ph.D. Candidate, August 2008, Civil Engineering, Purdue University John Veil, MSc. Manager, Water Policy Program Argonne National Laboratory, Washington, D.C. DRAFT 6-3-08
    5. 6. Emerging Technologies… and Approaches to Minimize Discharges into Lake Michigan Project Update Community Briefing Purdue Calumet Water Institute/Argonne National Laboratory Task Force June 5, 2008 DRAFT 6-3-08
    6. 7. Outline <ul><li>Project Team </li></ul><ul><li>Study Objectives </li></ul><ul><li>Overview </li></ul><ul><li>Results: </li></ul><ul><ul><li>Technology search </li></ul></ul><ul><ul><li>Comparative Discharges Study </li></ul></ul><ul><li>Next Steps </li></ul>DRAFT 6-3-08
    7. 8. Project Team DRAFT 6-3-08
    8. 9. Objectives of the Study <ul><ul><li>Screen emerging technologies that could address wastewater treatment challenges: </li></ul></ul><ul><ul><ul><li>Ammonia </li></ul></ul></ul><ul><ul><ul><li>Total suspended solids (TSS) </li></ul></ul></ul><ul><ul><ul><li>Metals (e.g. mercury) </li></ul></ul></ul><ul><ul><li>Conduct a comparative analysis of related discharge issues that may help better understand and address environmental concerns. </li></ul></ul>DRAFT 6-3-08
    9. 10. Overview <ul><li>Collaboration of Purdue Calumet Water Institute and Argonne National Laboratory </li></ul><ul><ul><li>Phase I: November 2007-June 2008 </li></ul></ul><ul><ul><ul><li>Identify emerging technologies (ammonia, TSS) </li></ul></ul></ul><ul><ul><ul><li>Conduct a comparative analysis of overall discharges into Lake Michigan (southern portion of lake) </li></ul></ul></ul><ul><li>Phase II: Through November 2009 </li></ul><ul><ul><ul><li>Identify emerging technologies (metals, e.g. Mercury) </li></ul></ul></ul><ul><ul><ul><li>Complete comparative analysis of overall discharges into Lake Michigan (entire lake) </li></ul></ul></ul><ul><ul><ul><li>Test promising technologies </li></ul></ul></ul>DRAFT 6-3-08
    10. 11. Technology Screening Approach Established (1) Serve as Baseline No further study, refer to BP Emerging (2) Determine future development needs <ul><li>Established (1) : </li></ul><ul><ul><li>technologies widely used </li></ul></ul><ul><li>Emerging (2): </li></ul><ul><ul><ul><li>Embryonic : early development stages </li></ul></ul></ul><ul><ul><ul><li>Innovative : more advanced development stage, but often not tested for/at refineries </li></ul></ul></ul>DRAFT 6-3-08
    11. 12. External Review Final Report <ul><li>Panel convened May 23, 2008, </li></ul><ul><li>in Hammond </li></ul><ul><li>Reviewed list of technologies, provided insight and feedback </li></ul><ul><li>Four external panelists: </li></ul><ul><ul><ul><li>From academia, </li></ul></ul></ul><ul><ul><ul><li>industry </li></ul></ul></ul><ul><ul><ul><li>Technical experts in specific technologies </li></ul></ul></ul><ul><ul><ul><li>Technical experts in wastewater technologies field </li></ul></ul></ul>DRAFT 6-3-08
    12. 13. Findings <ul><li>Technologies identified: </li></ul><ul><ul><li>Technologies identified by point of application : </li></ul></ul><ul><li>Technologies that treat segregated waste upstream (desalter, sour water stripper) </li></ul><ul><li>Technologies applicable downstream at the wastewater treatment plant </li></ul><ul><li>Technologies identified by time to implementability </li></ul><ul><li>Technologies applicable in a relatively short term </li></ul><ul><ul><ul><li>Technologies that meet larger-scope, longer term wastewater treatment needs </li></ul></ul></ul>DRAFT 6-3-08
    13. 14. Findings <ul><li>Other opportunities/needs identified: </li></ul><ul><ul><li>Extensive modeling/engineering to determine exact impact of Canadian crudes, treatment needs versus capacity </li></ul></ul><ul><ul><li>Equalization of influent streams to minimize concentration swings and prevent upsets </li></ul></ul><ul><ul><li>Automated controls to provide system-wide monitoring of wastewater quality and treatment processes, allow prompt diversion of anomalous waste and minimize impacts to downstream processes </li></ul></ul>DRAFT 6-3-08
    14. 15. TSS Outline <ul><li>Major source of TSS </li></ul><ul><li>Existing treatment technologies </li></ul><ul><li>Current TSS loading </li></ul><ul><li>Canadian crude impact on current TSS loading </li></ul><ul><li>Treatment options </li></ul><ul><li>Results – Technologies identified </li></ul><ul><li>Summary </li></ul>DRAFT 6-3-08
    15. 16. Total Suspended Solids <ul><li>TSS in wastewater </li></ul><ul><ul><li>consists of clays, biological debris, biofloc (aggregation of bacteria and other suspended solids), etc. </li></ul></ul><ul><li>Mean particle size ranging from 0.005 - 100µm (1µm ~ 1/25000 th of an inch) </li></ul><ul><li>Source of TSS – refinery units </li></ul><ul><ul><li>Oil storage </li></ul></ul><ul><ul><li>Desalting - is the largest contributor to TSS </li></ul></ul><ul><ul><li>Catalytic cracking </li></ul></ul><ul><ul><li>Sweetening </li></ul></ul>DRAFT 6-3-08
    16. 17. Canadian Crude Impacts on Wastewater <ul><li>Desalting Heavy crude could </li></ul><ul><ul><li>decrease performance of American Petroleum Institute (API) and Dissolved Air Flotation (DAF) </li></ul></ul><ul><ul><ul><li>API remove separable oil and suspended solids by gravity </li></ul></ul></ul><ul><ul><ul><li>DAF remove dispersed solids, oil and grease (remaining after primary separation) </li></ul></ul></ul><ul><ul><li>lead to oily solids carryover into the activated sludge units that could then lead to higher solids in the effluent </li></ul></ul>DRAFT 6-3-08
    17. 18. Canadian Crude Impacts on Wastewater <ul><ul><li>Higher difficulty in solids removal </li></ul></ul><ul><li>Desalter mudwashing results in upsets throughout the wastewater treatment plant </li></ul><ul><li>Range of TSS concentration 150-5,000 ppm (1 ppm = 1g/1,000,000 g) </li></ul><ul><li>Desalter brine expected to be a major source of TSS, 40% of the total </li></ul>DRAFT 6-3-08
    18. 19. Sludge Treatment Surge API Equalization DAF Activated Sludge Filters Oily Biological Treated Effluent Upstream treatment Surface Water Potential treatment options for refineries Desalter Fugitive solids Downstream treatment
    19. 20. Potential treatment options for refineries <ul><li>Source - Upstream treatment </li></ul><ul><ul><li>allows for the more effective treatment of smaller waste streams </li></ul></ul><ul><ul><li>reduces both total loadings and troubling upswings in the wastewater influent to the wastewater treatment plant </li></ul></ul><ul><li>In-process and downstream treatment </li></ul><ul><ul><li>fugitive solids and oil require additional treatment by the API, DAF and downstream filtration processes to maintain performance within regulations </li></ul></ul>DRAFT 6-3-08
    20. 21. Technologies found DRAFT 6-3-08 Technologies in bold are viable for further consideration. Technologies identified for TSS Technologies identified for ammonia Specialized membrane system for Desalter brine Membrane filtration Membrane Bioreactors Flotation (DAF, electroflotation) Magnetohydrostatic/ Magnetohydrodynamic separation Sonication Activated carbon Upstream ammonia removal/recovery Biological treatment Membrane (ED, contactors, Liquicell®) Membrane Bioreactors Ammonia oxidation (chemical , catalytic, biocatalytic, photocatalytic) Electrochemical methods Physical methods (sonication) Ion exchange
    21. 22. Example - TSS leaving the desalter is separated using the ultrafiltration membrane Source treatment Example of source treatment– membrane, air flotation, etc. Heater Lower electrode Upper electrode Wastewater treatment plant De-Emulsifier Mixing valve Wash water Emulsifier Source treatment Crude Desalter Unit
    22. 23. Downstream treatment – Membrane Filtration <ul><li>Microfiltration (MF) or Ultrafiltration (UF) membrane </li></ul><ul><ul><li>Refinery Applications </li></ul></ul><ul><ul><ul><ul><li>Wastewater reuse within the plant (ref: MEMCOR membrane), No full-scale case studies found </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Wastewater reuse may require nanofiltration and reverse osmosis </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Membrane separation for the treatment of refinery wastewater to discharge in surface water bodies is not common </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Typically considered only when water is at premium , or because of tight regulatory drivers </li></ul></ul></ul></ul>DRAFT 6-3-08
    23. 24. <ul><ul><li>Fouling of the membrane surface and/or clogging of the membrane pores </li></ul></ul><ul><ul><li>Permeate flux decline by fouling or rejected species (scaling by inorganic deposits of carbonates, etc.) </li></ul></ul><ul><ul><li>Pretreatment needs </li></ul></ul><ul><ul><li>Maintenance issues, frequent backwashing of a pressure-driven membrane separation </li></ul></ul><ul><ul><li>Amount of reject waste which would need disposal </li></ul></ul><ul><ul><li>Membrane filtration uses varying amounts of energy </li></ul></ul><ul><ul><li>Impact on shock loading </li></ul></ul>Membrane Challenges DRAFT 6-3-08
    24. 25. Summary of TSS treatment options <ul><li>Treatment options would require a detailed engineering analysis </li></ul><ul><li>Source treatment seems more viable than downstream treatment options </li></ul><ul><li>Separate treatment of desalter brine to minimize TSS downstream may be considered </li></ul>DRAFT 6-3-08
    25. 26. Summary of TSS treatment options <ul><li>Desalter controls are needed to monitor swings </li></ul><ul><li>Equalization of influent streams to minimize concentration swings and prevent upsets </li></ul><ul><li>Additional treatment capacity via retrofits or new installations </li></ul>DRAFT 6-3-08
    26. 27. Ammonia Outline <ul><li>Upstream processes </li></ul><ul><ul><li>Stripping and recovery </li></ul></ul><ul><li>Downstream processes </li></ul><ul><ul><li>Biological treatment </li></ul></ul><ul><ul><li>Biological technologies </li></ul></ul><ul><li>Results </li></ul><ul><li>Summary </li></ul>
    27. 28. Upstream Ammonia Treatment <ul><li>Steam stripping </li></ul><ul><ul><li>Current technology in most refineries </li></ul></ul><ul><li>Ammonia recovery </li></ul><ul><ul><li>Potential resource recovery opportunity </li></ul></ul><ul><ul><ul><li>Several processes found to recover ammonia as fertilizer </li></ul></ul></ul><ul><ul><ul><li>Further analysis needed </li></ul></ul></ul><ul><ul><ul><ul><li>energy balance </li></ul></ul></ul></ul><ul><ul><ul><ul><li>fertilizer quality and market </li></ul></ul></ul></ul>
    28. 29. Downstream Ammonia Treatment <ul><li>Biological treatment systems are capable of removing both ammonia and biodegradable TSS </li></ul><ul><li>Expected ammonia concentrations are within range for microbial uptake (assimilation) during normal operation </li></ul><ul><ul><li>Existing biological system </li></ul></ul>
    29. 30. Biological Treatment <ul><li>Group of microorganisms responsible for oxidizing ammonia are sensitive to system upsets </li></ul><ul><ul><li>changes in chemical composition, environmental conditions </li></ul></ul><ul><li>This specialty group of microorganisms (nitrifying organisms) requires a relatively long period of time to adapt to changes in influent composition </li></ul>DRAFT 6-1-08
    30. 31. Biological Technologies Partial list of applicable biological technologies DRAFT 6-1-08 Suspended Growth Biotechnologies Attached Growth Biotechnologies Combined Growth Biotechnologies Activated Sludge Biotrickling Filter Constructed Wetlands Sequencing Batch Reactors Biological Aerated Filter Aerated Lagoons Enhanced Oxygen Dissolution Rotating Biological Contactor Biotrickling Filter/ Activated Sludge Membrane Bioreactor Submerged Biological Contactor Moving Bed Bioreactor
    31. 32. Biological Technologies <ul><li>Short-term developments </li></ul><ul><ul><li>Attached or combined growth biosystems </li></ul></ul><ul><ul><ul><li>High resistance to spike loads </li></ul></ul></ul><ul><ul><ul><li>Effects of oil and grease on attached growth are problematic </li></ul></ul></ul><ul><li>Long-term developments </li></ul><ul><ul><li>Membrane bioreactor </li></ul></ul><ul><ul><ul><li>High resistance to spike loads (due to membrane filtration) </li></ul></ul></ul>DRAFT 6-3-08
    32. 33. Summary of Ammonia Treatment Options <ul><li>Attached and combined growth systems have been tested at pilot scale </li></ul><ul><ul><li>Unknown effects of oil and grease </li></ul></ul><ul><li>A nitrification system designed to address spike loads requires careful loading analysis </li></ul><ul><ul><li>Upstream ammonia control </li></ul></ul><ul><li>Stripping </li></ul><ul><ul><li>Current technology at most refineries </li></ul></ul><ul><li>Recovery </li></ul><ul><ul><li>Needs further study </li></ul></ul><ul><li>All systems need to be further tested for effects of heavy metals (e.g., mercury) </li></ul>DRAFT 6-3-08
    33. 34. Comparative Discharges Analysis DRAFT 6-3-08
    34. 35. Study Scope and Design <ul><li>Develop an inventory of the significant sources of target pollutants entering Lake Michigan </li></ul><ul><ul><li>Create database </li></ul></ul><ul><ul><li>Estimate loadings (lb/day) </li></ul></ul><ul><li>Point sources (discharges from pipes, ditches, etc.) </li></ul><ul><ul><li>Industries </li></ul></ul><ul><ul><li>Municipal wastewater treatment plants </li></ul></ul><ul><ul><li>Other </li></ul></ul><ul><li>Nonpoint sources </li></ul><ul><ul><li>Stormwater runoff from cities, farms, etc. </li></ul></ul><ul><ul><li>Air deposition </li></ul></ul><ul><ul><li>Sediments </li></ul></ul><ul><li>Target Pollutants </li></ul><ul><li>TSS </li></ul><ul><li>ammonia </li></ul><ul><li>total nitrogen </li></ul><ul><li>total chromium </li></ul><ul><li>chromium +6 </li></ul><ul><li>mercury </li></ul><ul><li>selenium </li></ul><ul><li>vanadium </li></ul>
    35. 36. Scope and Design - continued <ul><li>Study is conducted in two phases </li></ul><ul><ul><li>Phase I study area extends southward from the Wisconsin/Illinois border on the west and South Haven, Michigan on the east. </li></ul></ul><ul><ul><li>Phase II study includes all of Lake Michigan </li></ul></ul><ul><li>Includes: </li></ul><ul><ul><li>Discharges entering the lake directly </li></ul></ul><ul><ul><li>Discharges on tributary streams and rivers flowing into Lake Michigan in the target study area </li></ul></ul>Phase I study area
    36. 37. Point Source Data Collection <ul><li>Look primarily to National Pollutant Discharge Elimination System (NPDES) program for point source data </li></ul><ul><li>Applications offer a one time sample but often contain analyses on a wide range of pollutants </li></ul><ul><li>Permits contain numerical limits that must be monitored on a regular frequency by the permitted facility </li></ul><ul><li>Discharge monitoring reports (DMRs) must be submitted to the agencies each month </li></ul><ul><li>Also try to corroborate using data from EPA’s Toxics Release Inventory (TRI) </li></ul><ul><li>Data were collected from online sources to the extent possible </li></ul><ul><ul><li>Argonne also visited the offices of each of the state NPDES programs to review the actual files </li></ul></ul>
    37. 38. Point Source Results <ul><li>Illinois, Indiana, and Michigan agencies provided lists of all facilities discharging to Lake Michigan drainage in Phase I region (433 facilities) </li></ul><ul><li>Many of these facilities did not discharge the target pollutants or had very small discharge volumes </li></ul><ul><li>Different filtering methods were used to remove those facilities from the final database </li></ul><ul><li>The final database contained 80 facilities (29 industrial and 51 municipal) </li></ul><ul><ul><li>Facilities were not named but were given IDs (e.g., MUN-04 or IND-11) </li></ul></ul>
    38. 39. Point Source Loads from DMR Data Set Pollutant No. of Facilities with Available DMR Data Average Phase I Area Combined Load (lb/day) Maximum Phase I Area Combined Load (lb/day) TSS 79 57,376 683,953 TSS (excluding highest value) 79 43,688 235,348 Ammonia 64 2,245 10,406 Total chromium 17 11.8 51.3 Chromium +6 3 1.8 2.5 Mercury 30 0.024 0.0686 Vanadium 1 No data available 0.117 Selenium 3 2.8 5.2
    39. 40. Other Point Source Data <ul><li>Therefore, DMR data set was used to characterize point sources </li></ul>Parameter NPDES DMRs NPDES Applications NPDES Permits Toxics Release Inventory TSS 79 56 55 0 Ammonia 64 41 45 6 Total Chromium 17 11 3 7 Chromium +6 3 0 2 n/a Mercury 30 15 21 4 Selenium 1 11 2 1 Vanadium 3 0 1 2
    40. 41. Nonpoint Source Data <ul><li>Nonpoint source data were collected from literature studies </li></ul><ul><li>Nonpoint source data are typically generated through targeted one-time or infrequent research programs rather than ongoing regular monitoring programs </li></ul><ul><li>Nonpoint source data are collected from a few sampling points. The results are extrapolated within the studies to make estimates for larger geographic areas </li></ul><ul><li>Modest amounts of nonpoint source data have been collected for TSS, ammonia, total nitrogen, and mercury, but almost no data exist for the other pollutants </li></ul>
    41. 42. Comparison of Point and Nonpoint Source Data <ul><li>The TSS and mercury loads from nonpoint sources are at least one order of magnitude higher than the point source loads </li></ul><ul><li>The ammonia loads are higher from point sources, but if the nonpoint total nitrogen load is considered, too, the combined nitrogen input (ammonia plus total nitrogen) from nonpoint sources is much higher. </li></ul>Pollutant Average Point Source Estimate (lb/day) Average Nonpoint Source Estimate (lb/day) TSS 57,376 8,200,000 TSS (excluding high value) 43,688 8,200,000 Ammonia 2,245 619 Total chromium 11.8 No data Hexavalent chromium 1.8 No data Mercury 0.024 0.67 Vanadium 26.6 No data Selenium 2.8 No data Total nitrogen No data 28,000
    42. 43. Conclusions <ul><li>Data for metals are scarce </li></ul><ul><ul><li>Hopefully more data will become available in Phase II </li></ul></ul><ul><li>Many other sources of pollutants that remain unquantified or poorly quantified (e.g., urban runoff, combined sewer overflows, groundwater exfiltration into surface water bodies, sediment re-release of metals into the overlying water column, excrement from birds and fish) can make substantial contributions of the target pollutants </li></ul><ul><li>The discharges from BP’s Whiting refinery are substantial, but are not the highest or the only point source contributor to the Phase I study area. Other large industries and municipal wastewater treatment facilities discharge comparable or higher loads of the target pollutants </li></ul>
    43. 44. Next Steps <ul><li>Complete final reports from Phase I </li></ul><ul><ul><li>To be presented to BP by end of June </li></ul></ul><ul><li>Post final Phase I reports to Purdue University Calumet Water Institute Web site </li></ul><ul><ul><li>www.calumet.purdue.edu/pwi </li></ul></ul><ul><li>Welcome your feedback </li></ul><ul><li>Move to Phase II </li></ul>DRAFT 6-3-08
    44. 45. DRAFT 6-3-08

    ×