Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Derivatives<br />
Sums<br />F’(f(x)+ g(x))=?<br />f’(x)+g’(x)<br />
Example<br />f(x)=2x     f’(x)=2<br />g(x)=5x    g’(x)=5<br />
Power rule<br />f’(x)^n= n(f(x)^(n-1))<br />
Example<br />F(x)=x^3<br />Put the 3 in front<br />Subtract 1 from the power<br />
Product Rule<br />f(x)*g(x)=?<br />f(x)*g’(x)+g(x)*f’(x)<br />1st*d(2nd)+2nd*d(1st)<br />
Example<br />Find f’(x) and g’(x)<br />f’(x)=2<br />g’(x)=1<br />f(x)=2x<br />g(x)= (x+3)<br />
1st*d(2nd)+2nd*d(1st)<br />
Quotient Rule<br />Hi/ho=?<br />(ho*dhi)-(hi*dho) <br />        /(ho*ho)<br />
Example<br />(ho*dhi)-(hi*dho)/(ho*ho)<br />f’(x)=2<br />g’(x)=1<br />f(x)=2x<br />g(x)= (x+3)<br />
Upcoming SlideShare
Loading in …5
×

Derivatives power point

1,905 views

Published on

This was made to help students learn how to take derivatives of sums, products, and quotients.

Published in: Education, Business, Technology
  • Be the first to comment

Derivatives power point

  1. 1. Derivatives<br />
  2. 2. Sums<br />F’(f(x)+ g(x))=?<br />f’(x)+g’(x)<br />
  3. 3. Example<br />f(x)=2x f’(x)=2<br />g(x)=5x g’(x)=5<br />
  4. 4. Power rule<br />f’(x)^n= n(f(x)^(n-1))<br />
  5. 5. Example<br />F(x)=x^3<br />Put the 3 in front<br />Subtract 1 from the power<br />
  6. 6. Product Rule<br />f(x)*g(x)=?<br />f(x)*g’(x)+g(x)*f’(x)<br />1st*d(2nd)+2nd*d(1st)<br />
  7. 7. Example<br />Find f’(x) and g’(x)<br />f’(x)=2<br />g’(x)=1<br />f(x)=2x<br />g(x)= (x+3)<br />
  8. 8. 1st*d(2nd)+2nd*d(1st)<br />
  9. 9. Quotient Rule<br />Hi/ho=?<br />(ho*dhi)-(hi*dho) <br /> /(ho*ho)<br />
  10. 10. Example<br />(ho*dhi)-(hi*dho)/(ho*ho)<br />f’(x)=2<br />g’(x)=1<br />f(x)=2x<br />g(x)= (x+3)<br />

×