SlideShare a Scribd company logo

ポアソン画像合成

A
Arumaziro

ポアソン画像合成(Poisson Blending)の基本知識とアルゴリズムについての技術紹介スライドです.

1 of 11
Download to read offline
あるまじろ
ポアソン画像合成
ポアソン画像合成
•サイズ調整
•コントラスト調整
•露光調整
•ぼかし調整
ポアソン画像合成
合成画像
(重ねて置いただけ)
合成画像
(ポアソン画像合成)
Ad

Recommended

深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向SSII
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイcvpaper. challenge
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用Yoshitaka Ushiku
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太Preferred Networks
 

More Related Content

What's hot

自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)cvpaper. challenge
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fieldscvpaper. challenge
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural NetworksMasahiro Suzuki
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないことNorishige Fukushima
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII
 
ORB-SLAMの手法解説
ORB-SLAMの手法解説ORB-SLAMの手法解説
ORB-SLAMの手法解説Masaya Kaneko
 
敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)cvpaper. challenge
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)Toru Tamaki
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報Deep Learning JP
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
 
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Masaya Kaneko
 
20090924 姿勢推定と回転行列
20090924 姿勢推定と回転行列20090924 姿勢推定と回転行列
20090924 姿勢推定と回転行列Toru Tamaki
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII
 
Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由tancoro
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision TransformerYusuke Uchida
 
Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Hiroto Honda
 

What's hot (20)

自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
 
Depth Estimation論文紹介
Depth Estimation論文紹介Depth Estimation論文紹介
Depth Estimation論文紹介
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
 
AdaFace(CVPR2022)
AdaFace(CVPR2022)AdaFace(CVPR2022)
AdaFace(CVPR2022)
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
 
ORB-SLAMの手法解説
ORB-SLAMの手法解説ORB-SLAMの手法解説
ORB-SLAMの手法解説
 
敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)
 
Point net
Point netPoint net
Point net
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
 
20090924 姿勢推定と回転行列
20090924 姿勢推定と回転行列20090924 姿勢推定と回転行列
20090924 姿勢推定と回転行列
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
 
Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 
Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩
 

Viewers also liked

研究フレームワーク
研究フレームワーク研究フレームワーク
研究フレームワークArumaziro
 
go-thumber-imagick
go-thumber-imagickgo-thumber-imagick
go-thumber-imagickYo Ya
 
40 activités parrot educators v1
40 activités parrot educators v140 activités parrot educators v1
40 activités parrot educators v1François Jourdain
 
Fukuoka University Public NTP Service Deployment Use case
Fukuoka University Public NTP Service Deployment Use caseFukuoka University Public NTP Service Deployment Use case
Fukuoka University Public NTP Service Deployment Use caseAPNIC
 
Agency of the future keynote
Agency of the future   keynoteAgency of the future   keynote
Agency of the future keynoteKrossing
 
Swan the good grammar book with answers
Swan the good grammar book with answersSwan the good grammar book with answers
Swan the good grammar book with answersDaniel Milano
 
โครงงานประเภททฤษฏี
โครงงานประเภททฤษฏีโครงงานประเภททฤษฏี
โครงงานประเภททฤษฏีNuchy Geez
 
Kaizen in Action for Regional Scrum Gathering Tokyo 2017
Kaizen in Action for Regional Scrum Gathering Tokyo 2017Kaizen in Action for Regional Scrum Gathering Tokyo 2017
Kaizen in Action for Regional Scrum Gathering Tokyo 2017Kiro Harada
 
CERN Data Centre Evolution
CERN Data Centre EvolutionCERN Data Centre Evolution
CERN Data Centre EvolutionGavin McCance
 
Clojureでガラケーサイトを作る際の細かい話
Clojureでガラケーサイトを作る際の細かい話Clojureでガラケーサイトを作る際の細かい話
Clojureでガラケーサイトを作る際の細かい話Ikuru Kanuma
 
#SMX Munich - Think BIG act BIG
#SMX Munich - Think BIG act BIG#SMX Munich - Think BIG act BIG
#SMX Munich - Think BIG act BIGLisa Myers
 
そのマネジメントの課題、TAにも解決できますよ。
そのマネジメントの課題、TAにも解決できますよ。そのマネジメントの課題、TAにも解決できますよ。
そのマネジメントの課題、TAにも解決できますよ。Manabu Murakami
 
7 Steps To Becoming A Great Art Director or Designer
7 Steps To Becoming A Great Art Director or Designer7 Steps To Becoming A Great Art Director or Designer
7 Steps To Becoming A Great Art Director or DesignerDavid Bell
 
How to share manufacturer product data in 2017
How to share manufacturer product data in 2017How to share manufacturer product data in 2017
How to share manufacturer product data in 2017Mariela Daskalova
 
Be Like Bamboo (TEDxTokyo 2011 slides)
Be Like Bamboo (TEDxTokyo 2011 slides)Be Like Bamboo (TEDxTokyo 2011 slides)
Be Like Bamboo (TEDxTokyo 2011 slides)garr
 
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚ
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚPERIODIFICACIÓN DE LA HISTORIA DEL PERÚ
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚRafael Moreno Yupanqui
 
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」Youichiro Miyake
 

Viewers also liked (20)

研究フレームワーク
研究フレームワーク研究フレームワーク
研究フレームワーク
 
go-thumber-imagick
go-thumber-imagickgo-thumber-imagick
go-thumber-imagick
 
40 activités parrot educators v1
40 activités parrot educators v140 activités parrot educators v1
40 activités parrot educators v1
 
Fukuoka University Public NTP Service Deployment Use case
Fukuoka University Public NTP Service Deployment Use caseFukuoka University Public NTP Service Deployment Use case
Fukuoka University Public NTP Service Deployment Use case
 
古着10t キャンペーン!ねば子の世界一周 断捨離の旅
古着10t キャンペーン!ねば子の世界一周 断捨離の旅古着10t キャンペーン!ねば子の世界一周 断捨離の旅
古着10t キャンペーン!ねば子の世界一周 断捨離の旅
 
Agency of the future keynote
Agency of the future   keynoteAgency of the future   keynote
Agency of the future keynote
 
Swan the good grammar book with answers
Swan the good grammar book with answersSwan the good grammar book with answers
Swan the good grammar book with answers
 
Arco metalico
Arco metalicoArco metalico
Arco metalico
 
โครงงานประเภททฤษฏี
โครงงานประเภททฤษฏีโครงงานประเภททฤษฏี
โครงงานประเภททฤษฏี
 
Kaizen in Action for Regional Scrum Gathering Tokyo 2017
Kaizen in Action for Regional Scrum Gathering Tokyo 2017Kaizen in Action for Regional Scrum Gathering Tokyo 2017
Kaizen in Action for Regional Scrum Gathering Tokyo 2017
 
CERN Data Centre Evolution
CERN Data Centre EvolutionCERN Data Centre Evolution
CERN Data Centre Evolution
 
Clojureでガラケーサイトを作る際の細かい話
Clojureでガラケーサイトを作る際の細かい話Clojureでガラケーサイトを作る際の細かい話
Clojureでガラケーサイトを作る際の細かい話
 
#SMX Munich - Think BIG act BIG
#SMX Munich - Think BIG act BIG#SMX Munich - Think BIG act BIG
#SMX Munich - Think BIG act BIG
 
そのマネジメントの課題、TAにも解決できますよ。
そのマネジメントの課題、TAにも解決できますよ。そのマネジメントの課題、TAにも解決できますよ。
そのマネジメントの課題、TAにも解決できますよ。
 
7 Steps To Becoming A Great Art Director or Designer
7 Steps To Becoming A Great Art Director or Designer7 Steps To Becoming A Great Art Director or Designer
7 Steps To Becoming A Great Art Director or Designer
 
How to share manufacturer product data in 2017
How to share manufacturer product data in 2017How to share manufacturer product data in 2017
How to share manufacturer product data in 2017
 
Be Like Bamboo (TEDxTokyo 2011 slides)
Be Like Bamboo (TEDxTokyo 2011 slides)Be Like Bamboo (TEDxTokyo 2011 slides)
Be Like Bamboo (TEDxTokyo 2011 slides)
 
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚ
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚPERIODIFICACIÓN DE LA HISTORIA DEL PERÚ
PERIODIFICACIÓN DE LA HISTORIA DEL PERÚ
 
MSB kureha Cots and Apron
MSB  kureha Cots and ApronMSB  kureha Cots and Apron
MSB kureha Cots and Apron
 
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」
人工知能のための哲学塾 東洋哲学篇 第一夜 「荘子と人工知能の解体」
 

Recently uploaded

HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。iPride Co., Ltd.
 

Recently uploaded (6)

HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。