Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

of

Refraction  (bulkeley’s glass) Slide 1 Refraction  (bulkeley’s glass) Slide 2 Refraction  (bulkeley’s glass) Slide 3 Refraction  (bulkeley’s glass) Slide 4 Refraction  (bulkeley’s glass) Slide 5 Refraction  (bulkeley’s glass) Slide 6 Refraction  (bulkeley’s glass) Slide 7 Refraction  (bulkeley’s glass) Slide 8 Refraction  (bulkeley’s glass) Slide 9 Refraction  (bulkeley’s glass) Slide 10 Refraction  (bulkeley’s glass) Slide 11 Refraction  (bulkeley’s glass) Slide 12 Refraction  (bulkeley’s glass) Slide 13 Refraction  (bulkeley’s glass) Slide 14 Refraction  (bulkeley’s glass) Slide 15 Refraction  (bulkeley’s glass) Slide 16 Refraction  (bulkeley’s glass) Slide 17 Refraction  (bulkeley’s glass) Slide 18 Refraction  (bulkeley’s glass) Slide 19 Refraction  (bulkeley’s glass) Slide 20 Refraction  (bulkeley’s glass) Slide 21 Refraction  (bulkeley’s glass) Slide 22 Refraction  (bulkeley’s glass) Slide 23 Refraction  (bulkeley’s glass) Slide 24 Refraction  (bulkeley’s glass) Slide 25 Refraction  (bulkeley’s glass) Slide 26 Refraction  (bulkeley’s glass) Slide 27
Upcoming SlideShare
What to Upload to SlideShare
Next

0 Likes

Share

Refraction (bulkeley’s glass)

Slides from presentation by Robert Goulding, Ph.D. (University of Notre Dame) for the benefit of the Thomas Harriot Summer Series.

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to like this

Refraction (bulkeley’s glass)

  1. 1. Refraction (Bulkeley’s Glass) June 23, 2021
  2. 2. Measuring Refraction (1597)
  3. 3. Witelo’s tables (13th century; printed 1572) 3
  4. 4. Ptolemy’s table for refraction, air to water Bodleian Library, MS Savile 24 (c. 1580) 10° 8° 20° 15.5° 30° 22.5° 40° 29° 50° 35° 60° 40.5° 70° 45.5° 80° 50° 4
  5. 5. Ptolemy’s table for refraction, air to glass Bodleian Library, MS Savile 24 (c. 1580) 10° 7° 20° 13.5° 30° 19.5° 40° 25° 50° 30° 60° 34.5° 70° 38.5° 80° 42° 5
  6. 6. Bodleian Library, MS Savile 24 (c. 1580) Ptolemy’s table for refraction, water to glass 10° 9.5° 20° 18.5° 30° 27° 40° 35° 50° 42.5° 60° 49.5° 70° 56° 80° 62° 6
  7. 7. Comparing Ptolemy and modern refraction values Air to water measurements, according to Ptolemy and sine law of refraction Incidence Ptolemy Sine law Error 10° 8° 7° 29′ +30′ 20° 15.5° 14° 51′ +39′ 30° 22.5° 22° 1′ +29′ 40° 29° 28° 49′ +11′ 50° 35° 35° 4′ −4′ 60° 40.5° 40° 30′ 0′ 70° 45.5° 44° 48′ +42′ 80° 50° 47° 37′ +143′ 7
  8. 8. First and second differences in air-water table The hidden structure of Ptolemy’s refraction tables Incidence Refraction 10° 8° 20° 15.5° 30° 22.5° 40° 29° 50° 35° 60° 40.5° 70° 45.5° 80° 50° First differences Second differences 7.5° .5° 7° .5° 6.5° .5° 6° .5° 5.5° .5° 5° .5° 4.5° Kepler, Optics (1605): … the fault lies in Witelo’s refractions. You will find this all the more plausible if you pay attention to the increments of the increments in Witelo. For, they grow by 30′. So it is certain that Witelo adjusted the refractions that he had obtained by experiment, so as to put them in order through the equality of the second differences. 8
  9. 9. Ptolemy and Witelo Air-water tables Incident Refracted (P) (Refractio) Refracted (W) Refractio (W) 10° 8° 2° 7° 45′ 2° 5′ 20° 15° 30′ 4° 30′ 15° 30′ 4° 30′ 30° 22° 30′ 7° 30′ 22° 30′ 7° 30′ 40° 29° 11° 29° 11° 50° 35° 15° 35° 15° 60° 40° 30′ 19° 30′ 40° 30′ 19° 30′ 70° 45° 30′ 24° 30′ 45° 30′ 24° 30′ 80° 50° 30° 50° 30° 9
  10. 10. Cover sheet to Harriot’s 1597 refraction investigations MS 6789, fol. 409 10
  11. 11. The cross-staff (or Jacob’s staff) 11 From Gemma Frisius, De radio astronomico (1557)
  12. 12. Accuracy of Harriot’s (and Witelo’s/Ptolemy’s) results θ Witelo Harriot sine-law Witelo’s error Harriot’s error 10° 7° 45′ 7° 21 1/2′ 7° 28′ 17′ 23.5′ 20° 15° 30′ 14° 46′ 14° 50′ 40′ 4′ 30° 22° 30′ 21° 42′ 22° 30′ 18′ 40° 29° 28° 44′ 28° 46′ 14′ 16′ 50° 35° 34° 57′ 35° 1′ 1′ 4′ 60° 40° 30′ 40° 28′ 40° 26′ 4′ 2′ 70° 45° 30′ 44° 41 1/2′ 44° 44′ 46′ 2.5′ 12
  13. 13. On the cover: a clue in cipher “Balles of wacs bāsn & riŋ” (wax, basin, and ring) 13
  14. 14. A suggested reconstruction 14
  15. 15. Trying it out My angle-sighting instrument (in place of an astrolabe) and “cross staff” 15
  16. 16. Trying it out “Balles of wax, basin, and ring” 16
  17. 17. Trying it out Taking a sighting 17
  18. 18. Trying it out Lining up “dimple” and dropping the ring 18
  19. 19. Accuracy of my results θ bc ρ real ρ (SL) error 30° 3″ 22° 40′ 22° 5′ 35′ 45° 4 ½″ 32° 3′ 32° 7′ 4′ 50° 5″ 34° 49′ 35° 10′ 21′ (Depth of water in tank: 7 3/16″) 19
  20. 20. Finding the sine “law” (1601)
  21. 21. Calculating ray lengths MS 6789, fol. 266 21
  22. 22. The table, completed cbd/bdg chd/hdg/fda ida/hdb cd bc ch hd hd 10° 13° 15′ 3° 15′ 173648 984808 4246848 4362994 757626 10° (alt) 13° 18′ 3° 18′ 173648 984808 4230298 4346886 754829 20° 26° 56′ 6° 56′ 342020 939693 1968269 2207732 755089 30° 41° 48′ 11° 48′ 500000 866025 1118439 1500302 750151 40° 58° 20′ 18° 20′ 642788 766044 616809 1174927 755229 50° 86° 40′ 36° 40′ 766044 642788 58243 1001695 767343 sinus totus: (bd) (bd) (cd) (cd) (bd) φ (incident) ρ (refracted) δ (refractio) sin φ cos φ cot φ csc ρ csc ρ.sin φ 22
  23. 23. MS Add. 6789, fol. 89 The Refraction Tables 23
  24. 24. Detail of air-water table sin 31°/sin 22° 41′ = 1.335 sin 34°/sin 24° 45′ = 1.335 sin 37°/sin 26° 47′ = 1.335 (et cetera!) 24
  25. 25. Bulkeley’s Glass (1601?)
  26. 26. The Elizabethan “Telescope” From Thomas Digges’ 1571 edition of his father Leonard’s Pantometria (NB: First patent for a telescope (of the “Galilean” design) received by Hans Lipperhey in Middelburg, Netherlands, October 1608) 26
  27. 27. Harriot’s method for finding the point of burning 27 Harriot is looking for ZB (longitudo lineae concursus) He uses a measure of refraction, and a complex series of calculations, to find YB (linea egressionis) and the final angle of refraction from the lens (= ∠YZB). Then: tan ∠YZB = YB / ZB

Slides from presentation by Robert Goulding, Ph.D. (University of Notre Dame) for the benefit of the Thomas Harriot Summer Series.

Views

Total views

139

On Slideshare

0

From embeds

0

Number of embeds

100

Actions

Downloads

1

Shares

0

Comments

0

Likes

0

×