Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Intro to Apache Apex - Next Gen Platform for Ingest and Transform

754 views

Published on

Introduction to Apache Apex - The next generation native Hadoop platform. This talk will cover details about how Apache Apex can be used as a powerful and versatile platform for big data processing. Common usage of Apache Apex includes big data ingestion, streaming analytics, ETL, fast batch alerts, real-time actions, threat detection, etc.

Bio:
Pramod Immaneni is Apache Apex PMC member and senior architect at DataTorrent, where he works on Apache Apex and specializes in big data platform and applications. Prior to DataTorrent, he was a co-founder and CTO of Leaf Networks LLC, eventually acquired by Netgear Inc, where he built products in core networking space and was granted patents in peer-to-peer VPNs.

Published in: Software
  • Be the first to comment

Intro to Apache Apex - Next Gen Platform for Ingest and Transform

  1. 1. Intro to Apache Apex Next Gen Hadoop Platform for Ingest and Transform Pramod Immaneni Sep 10th 2016
  2. 2. Next Gen Stream Data Processing • Data from variety of sources (IoT, Kafka, files, social media etc.) • Unbounded, continuous data streams ᵒ Batch can be processed as stream (but a stream is not a batch) • (In-memory) Processing with temporal boundaries (windows) • Stateful operations: Aggregation, Rules, … -> Analytics • Results stored to variety of sinks or destinations ᵒ Streaming application can also serve data with very low latency 2 Browser Web Server Kafka Input (logs) Decompress, Parse, Filter Dimensions Aggregate Kafka Logs Kafka
  3. 3. Apache Apex 3 • In-memory, distributed stream processing • Application logic broken into components called operators that run in a distributed fashion across your cluster • Natural programming model • Unobtrusive Java API to express (custom) logic • Maintain state and metrics in your member variables • Scalable, high throughput, low latency • Operators can be scaled up or down at runtime according to the load and SLA • Dynamic scaling (elasticity), compute locality • Fault tolerance & correctness • Automatically recover from node outages without having to reprocess from beginning • State is preserved, checkpointing, incremental recovery • End-to-end exactly-once • Operability • System and application metrics, record/visualize data • Dynamic changes
  4. 4. Apex Platform Overview 4
  5. 5. Native Hadoop Integration 5 • YARN is the resource manager • HDFS for storing persistent state
  6. 6. Application Development Model 6  A Stream is a sequence of data tuples  A typical Operator takes one or more input streams, performs computations & emits one or more output streams • Each Operator is YOUR custom business logic in java, or built-in operator from our open source library • Operator has many instances that run in parallel and each instance is single-threaded  Directed Acyclic Graph (DAG) is made up of operators and streams Directed Acyclic Graph (DAG) Output Stream Tupl e Tupl e er Operator er Operator er Operator er Operator er Operator er Operator
  7. 7. Checkpointing 7  Application window  Sliding window and tumbling window  Checkpoint window  No artificial latency
  8. 8. Event time based computation 8 (All) : 5 t=4:00 : 2 t=5:00 : 3 k=A, t=4:00 : 2 k=A, t=5:00 : 1 k=B, t=5:00 : 2 (All) : 4 t=4:00 : 2 t=5:00 : 2 k=A, t=4:00 : 2 K=B, t=5:00 : 2 k=A t=5:00 (All) : 1 t=4:00 : 1 k=A, t=4:00 : 1 k=B t=5:59 k=B t=5:00 k=A T=4:30 k=A t=4:00
  9. 9. Scalability 9 NxM PartitionsUnifier 0 1 2 3 Logical DAG 0 1 2 1 1 Unifier 1 20 Logical Diagram Physical Diagram with operator 1 with 3 partitions 0 Unifier 1a 1b 1c 2a 2b Unifier 3 Physical DAG with (1a, 1b, 1c) and (2a, 2b): No bottleneck Unifier Unifier0 1a 1b 1c 2a 2b Unifier 3 Physical DAG with (1a, 1b, 1c) and (2a, 2b): Bottleneck on intermediate Unifier
  10. 10. Advanced Partitioning 10 0 1a 1b 2 3 4Unifier Physical DAG 0 4 3a2a1a 1b 2b 3b Unifier Physical DAG with Parallel Partition Parallel Partition Container uopr uopr1 uopr2 uopr3 uopr4 uopr1 uopr2 uopr3 uopr4 dopr dopr doprunifier unifier unifier unifier Container Container NICNIC NICNIC NIC Container NIC Logical Plan Execution Plan, for N = 4; M = 1 Execution Plan, for N = 4; M = 1, K = 2 with cascading unifiers Cascading Unifiers 0 1 2 3 4 Logical DAG
  11. 11. Dynamic Partitioning 11 • Partitioning change while application is running ᵒ Change number of partitions at runtime based on stats ᵒ Determine initial number of partitions dynamically • Kafka operators scale according to number of kafka partitions ᵒ Supports re-distribution of state when number of partitions change ᵒ API for custom scaler or partitioner 2b 2c 3 2a 2d 1b 1a1a 2a 1b 2b 3 1a 2b 1b 2c 3b 2a 2d 3a Unifiers not shown
  12. 12. Fault Tolerance 12 • Operator state is checkpointed to persistent store ᵒ Automatically performed by engine, no additional coding needed ᵒ Asynchronous and distributed ᵒ In case of failure operators are restarted from checkpoint state • Automatic detection and recovery of failed containers ᵒ Heartbeat mechanism ᵒ YARN process status notification • Buffering to enable replay of data from recovered point ᵒ Fast, incremental recovery, spike handling • Application master state checkpointed ᵒ Snapshot of physical (and logical) plan ᵒ Execution layer change log
  13. 13. • In-memory PubSub • Stores results emitted by operator until committed • Handles backpressure / spillover to local disk • Ordering, idempotency Operator 1 Container 1 Buffer Server Node 1 Operator 2 Container 2 Node 2 Buffer Server 13
  14. 14. End-to-End Exactly Once 14 • Important when writing to external systems • Data should not be duplicated or lost in the external system in case of application failures • Common external systems ᵒ Databases ᵒ Files ᵒ Message queues • Exactly-once = at-least-once + idempotency + consistent state • Data duplication must be avoided when data is replayed from checkpoint ᵒ Operators implement the logic dependent on the external system ᵒ Platform provides checkpointing and repeatable windowing
  15. 15. Exactly Once - Files 15 File Data Offset • Operator saves file offset during checkpoint • File contents are flushed before checkpoint to ensure there is no pending data in buffer • On recovery platform restores the file offset value from checkpoint • Operator truncates the file to the offset • Starts writing data again • Ensures no data is duplicated or lost Chk
  16. 16. Exactly Once - Databases 16 d11 d12 d13 d21 d22 d23 lwn1 lwn2 lwn3 op-id wn chk wn wn+1 Lwn+11 Lwn+12 Lwn+13 op-id wn+1 Data Table Meta Table • Data in a window is written out in a single transaction • Window id is also written to a meta table as part of the same transaction • Operator reads the window id from meta table on recovery • Ignores data for windows less than the recovered window id and writes new data • Partial window data before failure will not appear in data table as transaction was not committed • Assumes idempotency for replay
  17. 17. Ingestion Solution 17 • Application package with operators ready to use for ingestion • Input and output connectors • Kafka – Dynamically scalable with Kafka scale • HDFS Block and file • S3 • Databases with JDBC - Postgres, Mysql • Processing • Deduper • Parsing, Filtering & Transform • Comes with pre-built pipelines • Kafka to HDFS with Deduper • HDFS sync between two clusters or S3 to HDFS • Currently in beta • If interested please contact info@datatorrent.com
  18. 18. Application Designer 18
  19. 19. Application Specification (Java) 19 Java Stream API (declarative) DAG API (compositional)
  20. 20. Java Streams API + Windowing 20 Next Release (3.5): Support for Windowing à la Apache Beam (incubating): @ApplicationAnnotation(name = "WordCountStreamingApiDemo") public class ApplicationWithStreamAPI implements StreamingApplication { @Override public void populateDAG(DAG dag, Configuration configuration) { String localFolder = "./src/test/resources/data"; ApexStream<String> stream = StreamFactory .fromFolder(localFolder) .flatMap(new Split()) .window(new WindowOption.GlobalWindow(), new TriggerOption().withEarlyFiringsAtEvery(Duration.millis(1000)).accumulatingFiredPanes()) .countByKey(new ConvertToKeyVal()).print(); stream.populateDag(dag); } }
  21. 21. Writing an Operator 21
  22. 22. Operator Library 22 RDBMS • Vertica • MySQL • Oracle • JDBC NoSQL • Cassandra, Hbase • Aerospike, Accumulo • Couchbase/ CouchDB • Redis, MongoDB • Geode Messaging • Kafka • Solace • Flume, ActiveMQ • Kinesis, NiFi File Systems • HDFS/ Hive • NFS • S3 Parsers • XML • JSON • CSV • Avro • Parquet Transformations • Filters • Rules • Expression • Dedup • Enrich Analytics • Dimensional Aggregations (with state management for historical data + query) Protocols • HTTP • FTP • WebSocket • MQTT • SMTP Other • Elastic Search • Script (JavaScript, Python, R) • Solr • Twitter
  23. 23. Monitoring Console Logical View 23 Physical View
  24. 24. Real-Time Dashboards 24
  25. 25. Maximize Revenue w/ real-time insights 25 PubMatic is the leading marketing automation software company for publishers. Through real-time analytics, yield management, and workflow automation, PubMatic enables publishers to make smarter inventory decisions and improve revenue performance Business Need Apex based Solution Client Outcome • Ingest and analyze high volume clicks & views in real-time to help customers improve revenue - 200K events/second data flow • Report critical metrics for campaign monetization from auction and client logs - 22 TB/day data generated • Handle ever increasing traffic with efficient resource utilization • Always-on ad network • DataTorrent Enterprise platform, powered by Apache Apex • In-memory stream processing • Comprehensive library of pre-built operators including connectors • Built-in fault tolerance • Dynamically scalable • Management UI & Data Visualization console • Helps PubMatic deliver ad performance insights to publishers and advertisers in real-time instead of 5+ hours • Helps Publishers visualize campaign performance and adjust ad inventory in real-time to maximize their revenue • Enables PubMatic reduce OPEX with efficient compute resource utilization • Built-in fault tolerance ensures customers can always access ad network
  26. 26. Industrial IoT applications 26 GE is dedicated to providing advanced IoT analytics solutions to thousands of customers who are using their devices and sensors across different verticals. GE has built a sophisticated analytics platform, Predix, to help its customers develop and execute Industrial IoT applications and gain real-time insights as well as actions. Business Need Apex based Solution Client Outcome • Ingest and analyze high-volume, high speed data from thousands of devices, sensors per customer in real-time without data loss • Predictive analytics to reduce costly maintenance and improve customer service • Unified monitoring of all connected sensors and devices to minimize disruptions • Fast application development cycle • High scalability to meet changing business and application workloads • Ingestion application using DataTorrent Enterprise platform • Powered by Apache Apex • In-memory stream processing • Built-in fault tolerance • Dynamic scalability • Comprehensive library of pre-built operators • Management UI console • Helps GE improve performance and lower cost by enabling real-time Big Data analytics • Helps GE detect possible failures and minimize unplanned downtimes with centralized management & monitoring of devices • Enables faster innovation with short application development cycle • No data loss and 24x7 availability of applications • Helps GE adjust to scalability needs with auto-scaling
  27. 27. Smart energy applications 27 Silver Spring Networks helps global utilities and cities connect, optimize, and manage smart energy and smart city infrastructure. Silver Spring Networks receives data from over 22 million connected devices, conducts 2 million remote operations per year Business Need Apex based Solution Client Outcome • Ingest high-volume, high speed data from millions of devices & sensors in real-time without data loss • Make data accessible to applications without delay to improve customer service • Capture & analyze historical data to understand & improve grid operations • Reduce the cost, time, and pain of integrating with 3rd party apps • Centralized management of software & operations • DataTorrent Enterprise platform, powered by Apache Apex • In-memory stream processing • Pre-built operator • Built-in fault tolerance • Dynamically scalable • Management UI console • Helps Silver Spring Networks ingest & analyze data in real-time for effective load management & customer service • Helps Silver Spring Networks detect possible failures and reduce outages with centralized management & monitoring of devices • Enables fast application development for faster time to market • Helps Silver Spring Networks scale with easy to partition operators • Automatic recovery from failures
  28. 28. Resources for the use cases 28 • Pubmatic • https://www.youtube.com/watch?v=JSXpgfQFcU8 • GE • https://www.youtube.com/watch?v=hmaSkXhHNu0 • http://www.slideshare.net/ApacheApex/ge-iot-predix-time-series-data-ingestion-service-using- apache-apex-hadoop • SilverSpring Networks • https://www.youtube.com/watch?v=8VORISKeSjI • http://www.slideshare.net/ApacheApex/iot-big-data-ingestion-and-processing-in-hadoop-by- silver-spring-networks
  29. 29. Resources 29 • http://apex.apache.org/ • Learn more: http://apex.apache.org/docs.html • Subscribe - http://apex.apache.org/community.html • Download - http://apex.apache.org/downloads.html • Follow @ApacheApex - https://twitter.com/apacheapex • Meetups – http://www.meetup.com/pro/apacheapex/ • More examples: https://github.com/DataTorrent/examples • Slideshare: http://www.slideshare.net/ApacheApex/presentations • https://www.youtube.com/results?search_query=apache+apex • Free Enterprise License for Startups - https://www.datatorrent.com/product/startup-accelerator/
  30. 30. Q&A 30

×