Successfully reported this slideshow.
Upcoming SlideShare
×

# Set language and notation

399 views

Published on

Set language and notation

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### Set language and notation

1. 1. Set Language and Notation By Keartisak Monchit Mathematics Department Benchamaratrangsarit School ! " # \$ ! P %& P ' { 10}P prime numbers lessthan {2,3,5,7}P { / , 10}P x x is prime x ( ) * o { / a positive integer}N x x is + o { 1,2,3,4,...}N \$ 1 , 3 , 0 , 5N N N N 1 belongs to N A ( )n A { 2,4,6,...,20 }A ( ) 10n A { 1,2,3,4,... }B ( ) (infinity)n B ,* { ' '}S letters of the word book \$ S - S { , , }S b o k ( ) 3n S
2. 2. Page 2 . '% { 1, 1, 2, 2, 2, 3 } { 1, 2, 3 } / { 1, 2, 3, 4, 5 } { 4, 1, 5, 2, 3 } ,* { / 1 18 }A x x is an even number between and \$ A - A { 2, 4, 6, 8, 10, 12, 14, 16 }A ( ) 8n S ,* 2 2 2 2 2 { 1 , 2 , 3 , 4 , 5 }B 0 B 1 23 B 4 { 1 , 4 , 9 , 16 , 25 }B 56 9 B 2 { / ; 5 }B x x n n I and n ,* { 3 , 4 , 5 , 6 }T 1 3 T 1 23 T 4 ( A B 7 A B * 3 \$ { letters from the word 'parallel' }A { letters from the word 'apparel' }B A B 1 A B '
3. 3. Page 3 { , , , , }A p a r l e { , , , , }B a p r e l A B * A B \$ { x/x is a digit from the phone number 92883388 }C { x/x is a digit from the phone number 92382238 }D C D 1 - 3 - { 2 , 4 , 6 , ... ,100 }A { 5 , 10 , 15 , ... ,1000 }B { x/x = 2n , n I 10 }C and x 2 { x/x I 100 }D and x { 1 , 3 , 5 , ... }A { 1 , 4 , 9 , 16 , 25 , ... }B { x/x = 2n 1 , n I }C 2 { x/x I 100 }D and x ! " # ( & ( ) 0n - 3 2 { / 2 5 }A x x I and x { / 2 10 }B x x I and x { / , 5 x<1 }C x x I x and " ( + * U *
4. 4. Page 4 ' ,* { 1 , 2 , 3 , ... , 10 }U { x / x less than 5 }A { x / x is odd number }B ( { 1 , 2 , 3 , 4 }A { 1 , 3 , 5 , 7 , 9 }B * A B A B A B A B A B A B A B A # B A B { 3 , 5 , 7 } and { 1 , 3 , 5 , 7 , 9 }A B A B A B ( and ( )A B A B A B { 1 , 3 , 5 , 7 , ... } and { x / x I }C D C D C D ( and ( )C D C D C D { x / x is an even number } and { x / x is an integer }E F E F E F ( and ( )E F E F E F { x / x is a root of (x 1)(x 3) = 0 } , { 1 , 2 , 3 , 4 }P Q { 4 , 3 , 2 , 1 } and S { 1 , 3 , 5 }R 8 P Q R ' { 1 , 3 }P ( and ( )P Q P Q P Q and ( )Q R R Q Q R and ( )P S P S P S
5. 5. Page 5 \$ % % 2 * A / 2* A A 9 A B B A A B : A B B C A C ; A B x x A x B " & { 1 , 2 }A A ' , {1} , {2} , {1,2} . A : 2 2 . A 9 2 2 < % { 1 , 3 , 5 }B B ' , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5} . B = 3 2 . B > 3 2 < % { 1 , {1} }C C ' , {1} , {{1}} , {1,{1}} . A : 2 2 . A 9 2 2 < % { a , b , c , d }D D ' , {a} , {b} , ... ,{ a , b , c , d } . D %? 4 2 . A %; 4 2 < % ! % . A 2n ( )n A n / . A 2n <% ( )n A n
6. 6. Page 6 # ,* A @ A ( )P A A ( ) { / }P A x x A { 1 , 2 }A A ' , {1} , {2} , {1,2} ( ) { , {1} , {2} , {1,2} }P A { 1 , 3 , 5 }B B ' , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5} ( ) { , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5}}P B { 1 , {1} }C C ' , {1} , {{1}} , {1,{1}} ( ) { , {1} , {{1}} , {1,{1}}}P C { }D D ' , { } ( ) { , { }}P D { 0 , 1 , {2}}E E ' , {0}, {1}, {{2}}, {0,1}, {0,{2}}, {1,{2}}, {0,1,{2}} ( ) { , {0}, {1}, {{2}}, {0,1}, {0,{2}}, {1,{2}}, {0,1,{2}}}P E ! ' { , }A a b ( ( ) { ,{ },{ },{ , }}P A a b a b ( ) { ,{ },{ }, }P A a b A % ( )P A { } ( )P A / ( )A P A { } ( )A P A 9 ( )x P A x A : ( ) ( )P A PP A ( ) ( )PP A PPP A ; A B ( ) ( )P A P B
7. 7. Page 7 ( ( A B A B A B A B { / }A B x x A or x B \$ {1,2,3,4,5}A {2,4,6,8,10}B {4,5,6,7,8}C ( {1,2,3,4,5,6,8,10}A B {1,2,3,4,5,6,7,8}A C {2,4,5,6,7,8,10}B C \$ {1,3,5,7,9}A {2,4,6,8,10}B {1,2,3,4,...,10}C ( {1,2,3,4,5,6,7,8,9,10}A B C {1,2,3,4,5,6,7,8,9,10}A C C {1,2,3,4,5,6,7,8,9,10}B C C \$ { / }A x x I { / }B x x I {0}C ( { / 0}A B x x I and x { / 0}A C x x I and x { / 0}B C x x I and x # % A A / A A A 9 A U U : A B B A *\$ ; ( ) ( )A B C A B C A B C * \$
8. 8. Page 8 ? A B A B B > A B A B = A B A B 0 A B A C B C %& A A B A B C ( A B A B A B { / }A B x x A and x B \$ {1,2,3,4,5}A {2,4,6,8,10}B {4,5,6,7,8}C ( {2,4}A B {4,5}A C {4,6,8}B C \$ {1,3,5,7,9}A {2,4,6,8,10}B {1,2,3,4,...,10}C ( A B {1,3,5,7,9}A C A {2,4,6,8,10}B C B \$ { / }A x x I { / }B x x I {0}C ( A B A C B C
9. 9. Page 9 # 1. A 2. A A A 3. A U A 4. A B B A *\$ 5. ( ) ( )A B C A B C A B C * \$ 6. if and only ifA B A B A 7. if and only of and are disjoint setsA B A B 8. If thenA B A C B C 9. andA B A A B C A B 10. if and only ifA B A B A B 11. ( ) ( ) ( )A B C A B A C 8 *\$ 12. ( ) ( ) ( )A B C A B A C 8 *\$ ) ( A A A * U { / }A x x U and x A \$ {1,2,3,4,5,6,7,8}U {4,6,8}A {1,3,5,7}B ( {1,2,3,5,7}A {2,4,6,8}B ( ) {2}A B ( )A B U U ( ) {4,6,8}A A ( ) {1,3,5,7}B B
10. 10. Page 10 \$ { / }U x x I * { / }A x x I { / }B x x I {0}C ( { / 0} {0}A x x I or x I { / 0} {0}B x x I or x I ( ) {0}A B ( )A B U { / 0}C x x I and x \$ {1,2,3,4,5,6,7,8}U {4,6,8}A {1,3,5,7}B ( {1,2,3,5,7}A {2,4,6,8}B ( ) {2}A B ( )A B U {2}A B {1,2,3,4,5,6,7,8}A B U ! ( )A B A B ( )A B A B # % U / U 9 A A U : A A ; ( )A A (( ) )A A ? A B B A > ( )A B A B 8 A \$ = ( )A B A B 8 A \$ ( A B A B A B { / }A B x x A and x B { / }B A x x B and x A
11. 11. Page 11 \$ {1,2,3,4,5,6,7}A * {5,6,7,8,9,10}B {11,12,13}C ( {1,2,3,4}A B {8,9,10}B A {1,2,3,4,5,6,7}A C A {5,6,7,8,9,10}B C B \$ {1,3,5,7,9}A {1,2,3,4,5,6,7,8,9,10}B ( A B {2,4,6,8,10}B A ! ' A B A B # % U A A / A A A 9 A B B A 3 A B : A B A B ; A B A B ? ( )A B A A B > A B B A = ( ) ( ) ( )A B C A B A C 0 ( ) ( ) ( )A B C A B A C %& ( ) ( ) ( )A B C A C B C %% ( ) ( ) ( )A B C A C B C + , B * * A B + * :
12. 12. Page 12 C A B C A B C A C A B Exercise % 8 B 8 % ( ) ( ) ( )A B C A B A C / ( ) ( ) ( )A B C A B A C A A A C C C B B B A A A C C C B B B
13. 13. Page 13 9 ( )A B A B : ( )A B A B ; ( ) ( ) ( )A B C A B A C ? ( ) ( ) ( )A B C A B A C / ,* B 8 D % / 9 : ; ? > = A A A C C C B B B A A A C C C B B B A A A C C C B B B A A A C C C B B B A B C U 1 2 34 5 6 7 8
14. 14. Page 14 ! ,* % A B ( ) ( ) ( )n A B n A n B / A B B C A C ( ) ( ) ( ) ( )n A B C n A n B n C 9 A B ( ) ( ) ( ) ( )n A B n A n B n A B : A B B C A C ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n A B C n A n B n C n A B n B C n A C n A B C ; ( ) ( ) ( )n A n U n A ? ( ) ( ) ( )n A B n A n A B A B A B C A B A B C A A A B
15. 15. Page 15 ,* , , ( ) 100 , ( ) 60 , ( ) 75 ( ) 45A U B U n U n A n B and n A B - % ( )n A B / ( )n A B 9 ( )n A B : ( )n A B ; ( )n B A ? ( )n A > ( )n B = ( )n A B 0 ( )n B A ,* , , , ( ) 100 , ( ) 29 , ( ) 23 , ( ) 18A U B U C U n U n A n B n C ( ) 15 , ( ) 10 , ( ) 9 ( ) 6n A B n A C n B C and n A B C - % ( )n A B / ( )n B C 9 ( )n A C : ( )n A B ; ( )n A B C ? ( )n A B C > ( )n A B C = ( )n A B C A B U A B C
16. 16. Page 16 Exercise % ,* + * ( ) 150 , ( ) 62 , ( ) 55 ( ) 11n U n A n B and n A B - % % ( )n A B % / ( )n A B % 9 ( )n A B % : ( )n A B % ; ( )n B A % ? ( )n A % > ( )n B % = ( )n A B % 0 ( )n B A % %& ( )n A B / ,* + * ( ) 50 , ( ) 6 , ( ) 38 ( ) ( )n U n A B n A B and n A n B - / % ( )n A / / ( )n A / 9 ( )n A B / : ( )n B A / ; ( )n A B / ? ( )n A B / > ( )n A B / = ( )n B A / 0 ( )n A B / %& ( )n B A A B U A B U
17. 17. Page 17 9 ,* + * ( ) 80 , ( ) 35 , ( ) 28 , ( ) 21 , ( ) 12 , ( ) 10n U n A n B n C n A B n B C ( ) 14 ( ) 4n A C and n A B C - 9 % ( )n A B 9 / ( )n B C 9 9 ( )n A C 9 : ( )n A B C 9 ; ( )n A B 9 ? ( )n B C 9 > ( )n A C 9 = ( )n A B C 9 0 ( )n A B 9 %& ( )n B C 9 %% ( )n A C 9 %/ ( )n A B C 9 %9 ( )n A B 9 %: ( )n B C 9 %; ( )n C A 9 %? ( )n A B C 9 %> ( )n A C B 9 %= ( )n B C A 9 %0 ( )n A B C 9 /& ( )n B A C A B C U
18. 18. Page 18
19. 19. Page 19
20. 20. Page 20
21. 21. Page 21
22. 22. Page 22
23. 23. Page 23 Exercise 1 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… -& & % ( * * %& EEEEEEEEEEEEEEEEEEEEEEEEEE EE / ( ! EEEEEEEEEEEEEEEEEEEEEEEEEE EE 9 ( * EEEEEEEEEEEEEEEEEEEEEEEEEE EE : ( * < %& EEEEEEEEEEEEEEEEEEEEEEEEEE EE ; ( < ; ; EEEEEEEEEEEEEEEEEEEEEEEEEE EE .& & % 2 { / 25 }x x I and x EEEEEEEEEEEEEE / { / 2 }x x n and n I EEEEEEEEEEEEEE 9 { / 5}x x I and x EEEEEEEEEEEEEE : 3 { / , 5}x x n n I and n EEEEEEEEEEEEEE ; 2 { / 25 }x x I and x EEEEEEEEEEEEEE /& & % { 1 , 2 , 3 , 4 ,...} EEEEEEEEEEEEEE / { 1 , 1 } EEEEEEEEEEEEEE 9 { 1 , 2 , 3 , 4 , 5 } EEEEEEEEEEEEEE : { sun , mon , tue , wed , thu , fri , sat } EEEEEEEEEEEEEE ; { 3, 6, 9, 12,...} EEEEEEEEEEEEEE ? { 1, 3, 5, 7, 9,...} EEEEEEEEEEEEEE > { 1, 8, 27, 64,...} EEEEEEEEEEEEEE = { 5, 10, 15, 20,..., 100 } EEEEEEEEEEEEEE
24. 24. Page 24 Exercise 2 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… -& & % " / : = %? E %&/: # EEEEEEEEEEEEEE / " % 9 ; > E# EEEEEEEEEEEEEE 9 " / : ? " = %&%/ E# %&/: # EEEEEEEEEEEEEE : " " # "" ## """ ### E# EEEEEEEEEEEEEE ; " 3 < F 3 G% # EEEEEEEEEEEEEE ? " 3 F 3 H%&# EEEEEEEEEEEEEE > " 3 F 3/ H%&&# = " &% / " % / # " 9 : ; E# # 0 " 3 F 3 I/ H%&# %& " 3 F 3 I4 ; . H;&# %% " 3 .F 3 H&# EEEEEEEEEEEEEE %/ " 3 F 3/ H%&# %9 " 3 F 3 H% 3 G; # %: " 3 F 3 I9 .# %; " 3 .F 93 4 % I&# %? " 3 @F 3 # %> " 3 F 3/ 4 /3 J % I&# %= " 3 .F 3 G%& 3 H; # %0 " "%# "% /# "% / 9# E# /& " 3 @F 93 4 %; I&# .& 0 1 & { / 2 5 }x x I and x
25. 25. Page 25 Exercise 3 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - & % " 3 F % H3 %&# " / 9 : E %&# EEEEEEE / " 3 F 3/ 4 3 I&# " 3 .F 3 4 % I&# EEEEEEE 9 " 3 F 3 I/ 4 % .# " % 9 ; > E# EEEEEEE : " 3 F 3 I/ # " / : ? = E# EEEEEEE ; " 3 F 3 I 9 .# " % = /> ?: E# EEEEEEE ? " 3 .F 3/ I% # " % 4 % # EEEEEEE > " 3 F 3/ H%&# " &% / 9 # EEEEEEE = " 3 F 3 H% 3 G; # " # EEEEEEE 0 " 3 F 3 I/ J % .# " % 9 ; E# EEEEEEE %& " # " # EEEEEEE # . & 2" 34- * . * /* 5* 1* 6* 7* 8* 9* -:; % I" 3 F 3 J / H= # ( IEEEEEEEE / I" 3 F 3 J / G> # ( IEEEEEEEE 9 I" 3 F 3/ J % I%&# ( IEEEEEEEE : 8I" 3 F 3/ J / H/&# ( 8IEEEEEEEE ; 2I" 3 F 3 J / I3 4 / # ( 2IEEEEEEEE 2" 34 < " " ; ? -I" 3 F /3 H9&# ( -IEEEEEEEE > ,I" 3 F 3 # ( ,IEEEEEEEE = 6I" 3 F 3/ J % H/&# ( 6IEEEEEEEE 0 I" 3 F 3 J / I/ J 3 # ( IEEEEEEEE %& KI" 3 F 3 7 %&# ( KIEEEEEEEE
26. 26. Page 26 Exercise 4 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - & % " % 9 ; # " % / 9 : E %&# / " &/ : # " 3 F 3 .# 9 " ; %&%; /&# " % / 9 E %&&# : " # " & " ## ; " % / 9 # # . * & % I" % 9 # ( @ IEEEEEEEEEEEEEE / I" &/ # ( @ IEEEEEEEEEEEEEE 9 I" # ( @ IEEEEEEEEEEEEEE : 8I" % # ( @8 IEEEEEEEEEEEEEE ; 2I ( @2 IEEEEEEEEEEEEEE ? I" "%# # ( @ IEEEEEEEEEEEEEE > I" % "%## ( @ IEEEEEEEEEEEEEE = I" % # ( @ IEEEEEEEEEEEEEE 0 8I" % 9 ; # ( @8 IEEEEEEEEEEEEEE %& 2I" " ## ( @2 IEEEEEEEEEEEEEE
27. 27. Page 27 Exercise 5 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - = 0* 2" = 0 & . % " % / 9 # " % 9 ; > # / " ; ? > # " % / 9 E %&# 9 " 3 F 3 G;# " 3 F 3 G%&# : " % / 9 # " 9 / % # ; " 3 F 3 .# " 3 F 3 # # . = 0* 2" = 0 & . % " % / 9 : # " / : ? = %&# / " 9 ; > # " % / 9 E %&# 9 " 3 F 3 G9 # " 3 F 3 G= # : " % / 9 # " 9 / % # ; " 3 F 3 .# " 3 F 3 # # / # >= 0* = 0?
28. 28. Page 28 Exercise 6 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - A * 2" A U & A U A % " % / 9 # " % / 9 E %&# / " / : ? = # " % / 9 E %&# 9 " 3 F 3 G; # " 3 F 3 .# : " < % < / < 9 E# " 3 F 3 # ; " 3 F 3 .# " 3 F 3 # ? " 3 F 3 J # " 3 F 3 # > "&# " 3 F 3 # = " 3 F 3 < &# " 3 F 3 # # . =, 0 * 2" = 0 & 4 % " % / 9 : # " : ; ? # / " ; ? > = # " / : ? # 9 " % / 9 E %&# " > = 0 # : " : ; ? # " > = 0 %&%% # ; " 3 F 3 .# " 3 F 3 # # /# ) >A A B ?
29. 29. Page 29 Exercise 7 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - + & % / 4 9 4 : ; L # . @ & % / 9 EEEEEEEEE EEEEEEEEE EEEEEEEEE : ; EEEEEEEEE EEEEEEEEE # / & % / < 9 < < B A B A B A B A B A A B B AA B AB AA B A
30. 30. Page 30 Exercise 8 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ % MNOPQRSMTUVWTMXYWZR;&[MV]PQRSM[^_`abc`Qd9&[M V]PQRSMebfbVNWOgf/&[M MNOPQRSMhRYiZjV]PQRSMhNkWcVWl_b; [M mnioUljb MNOPQRSMhRYV]PQRSMhNkWcVWl_bZR [M A 2 MNOPQRSMhRYV][^_`abc`QdVSjbWPoRSlZR [M MNOPQRSMhRYV]ebfbVNWOgfVSjbWPoRSlZR [M / MNOPQRSMZ : TUVWTMXYWZR:; [MV]PpjMqr`]Vp/; [M V]PpjM]bcPO`]Vp/&[M V]PpjMhNkWqr`]Vpspn]bcPO`]Vp%&[M mnioUljb MNOPQRSMhRYV]PpjMqr`]VpVSjbWPoRSlZR [M - MNOPQRSMhRYiZjV]PpjMhNkWcVWVSjbWZR [M 9 OtbTMomtbMlMcZb_OuVW spn PhjbON]9& /; spn= `bZptboN] mnioUljb mtbMlMcZb_OuVW PhjbON] mtbMlMcZb_OuVW 4 PhjbON] vTU shMmtbMlMcZb_OuVWPw` : mbOQxyhRYOtbTMovTU + I%/& I;& I:; I:& I%& I= I> spn I; mnioUljb IEEEEEEE z4 {IEEEEEEE ; mbOuUVhRY: L IEEEEEEE + z 4 {IEEEEEE
31. 31. Page 31 Exercise 9 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ DJULMN- % OtbTMo + I=& I9; I:& I%& mnioUljb % % IEEE % / L IEEE / OtbTMo + I%&& I9= I:/ I>9 mnioUljb % % IEEE % / 4 IEEE % 9 4 L IEEEE DJULMN. % OtbTMomtbMlMcZb_OuVWPw` spn Py|M %/ %? spn/= `bZptboN] mnioUljbmtbMlMcZb_OuVW 4 PhjbON] mtbMlMcZb_OuVW 4 PhjbON] / mbOObQcV]}bZMNOPQRSMmtbMlM=&[MhRYV]PQRSM[^_`abc`QdTQ~V[VZ•_lP`VQd •]ljbZRMNOPQRSMhRYV]PQRSM[^_`abc`Qd:; [M spnZRMNOPQRSMhRYV]PQRSM [VZ•_lP`VQd;/ [M mnioUljbMNOPQRSMhRYV]PQRSMhNkW[^_`abc`Qdspn[VZ•_lP`VQdZR [M MNOPQRSMhRYV]PQRSM[^_`abc`QdP•RSWVSjbWPoRSlZR [M MNOPQRSMhRYV]PQRSM[VZ•_lP`VQdP•RSWVSjbWPoRSlZR [M
32. 32. Page 32 Exercise 10 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ DJULMN- % OtbTMo + I%&& I:& I;& I/& mnioUljb % % IEEE % / L IEEE / OtbTMo I%%& I?& I:; I:& I/& I%; I%& mnioUljb / % I / / z < {I / 9 z < {I DJULMN. vMObQcV]uVWMNOPQRSMNkMZN€SZaXOfb`VMypbSTUVWTMXYW•]ljb 9> [McV]•jbMl_b[^_`abc`Qd := [McV]•jbMl_bcNW[ZaXOfb A :; [McV]•jbMl_bebfbihS %; [McV]•jbMl_b[^_`abc`QdspncNW[ZaXOfb ( %9 [McV]•jbMl_bcNW[ZaXOfbspnebfbihS > [McV]•jbMl_b[^_`abc`QdspnebfbihS ; [McV]•jbMhNkW 9 l_b mnioUljb % MNOPQRSMPuUbcV]hNkWTZo [M : cV]•jbM[^_`abc`QdVSjbWPoRSl [M / cV]•jbMP•RSW / l_bZR [M ; cV]•jbM[^_`abc`QdspnebfbihS 9 cV]•jbMP•RSWl_bPoRSlZR [M P•RSW / l_bZR [M
33. 33. Page 33 Post Test : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCSJQGHIDJKLMNOPQDRJBLMN]^_C`MaBbRJC_MaX % vTU I" < / < % &% / # PZ~YVPuRSMPw` s]]]VOPW~YVMiu mn`QWON]uUVvo O " 3 F 3 spn< 9 H3 H9 # u " 3 F 3 spn3 H9 # [ " 3 F 3 .spn3 < / # W " 3 F 3 .spn3/ H; # / •_mbQ^buUV[lbZ`jViyMRk % " % / 9 # I" 3 F 3 spn3/ H%&# / " / : ? E# I" 3 F 3 I/ J # uUVvo`jViyMRk}xO`UVW O Py|MmQ_WhNkWcVWuUV u Py|MPh‚mhNkWcVWuUV [ Py|MmQ_WPƒ•bnuUV% PhjbMNkM W Py|MmQ_WPƒ•bnuUV/ PhjbMNkM 9 uUV[lbZ`jViyMRkuUVvo}xO`UVW O " 3 CF 3 G; spn3 H% # Py|MPw` ljbWspnPw`mtbONo u "% / " 9 : E## Py|MPw`VMNM`d [ " 3 CF %H3 H; # Py|MPw`mtbONo W " % / 9 # " % / 9 : E# : vTU I" &% / "9 :# ";# "? > E## uUVvo`jViyMRkiZj}xO`UVW O " % / # u " &% / # [ " 9 : # W ""? > E## ; vTU I" % / 9 : # I" / : ? = # spn I" : ; ? # uUVvoiZj}xO`UVW O I" % / 9 : ? = # u I" / : # [ 4 I" % / 9 = # W 4 I" % / 9 ; ? # ? uUV[lbZvo`jViyMRkiZj}xO`UVW O 4 4 I 4 4 u spn O‚`jVPZ~YV I [ }Ub spUl I W }Ub spUl I > }Ub I spUl 4 PhjbON]uUVvo O u [ W 4 = OtbTMo I"% /# spUl@ `QWON]uUVvo O " "%# "/# # u ""%# "/# "% /## [ " "%# "/# "% /## W " "% /## 0 mtbMlMcZb_OuVW PhjbON] /&9&spn; `bZptboN]mtbMlMcZb_OuVW Py|MPhjbvo O %; u :; [ ;& W ;; %&mbOuUV0 mtbMlMcZb_O 4 Py|MPhjbvo O /; u /& [ %; W 9&
34. 34. Page 34