Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Set Language and Notation
By Keartisak Monchit Mathematics Department Benchamaratrangsarit School
! " #
$ ! P
%& P '
{ 10}...
Page 2
. '% { 1, 1, 2, 2, 2, 3 } { 1, 2, 3 }
/ { 1, 2, 3, 4, 5 } { 4, 1, 5, 2, 3 }
,* { / 1 18 }A x x is an even number be...
Page 3
{ , , , , }A p a r l e
{ , , , , }B a p r e l
A B * A B
$ { x/x is a digit from the phone number 92883388 }C
{ x/x ...
Page 4
' ,* { 1 , 2 , 3 , ... , 10 }U
{ x / x less than 5 }A
{ x / x is odd number }B
( { 1 , 2 , 3 , 4 }A
{ 1 , 3 , 5 , 7...
Page 5
$ % % 2 * A
/ 2* A A
9 A B B A A B
: A B B C A C
; A B x x A x B
" &
{ 1 , 2 }A
A ' , {1} , {2} , {1,2}
. A : 2
2
....
Page 6
#
,* A @ A ( )P A
A ( ) { / }P A x x A
{ 1 , 2 }A
A ' , {1} , {2} , {1,2}
( ) { , {1} , {2} , {1,2} }P A
{ 1 , 3 , ...
Page 7
(
( A B A B
A B A B
{ / }A B x x A or x B
$ {1,2,3,4,5}A {2,4,6,8,10}B {4,5,6,7,8}C
( {1,2,3,4,5,6,8,10}A B
{1,2,3,...
Page 8
? A B A B B
> A B A B
= A B A B
0 A B A C B C
%& A A B A B C
( A B A B
A B
{ / }A B x x A and x B
$ {1,2,3,4,5}A {2...
Page 9
# 1. A
2. A A A
3. A U A
4. A B B A *$
5. ( ) ( )A B C A B C A B C * $
6. if and only ifA B A B A
7. if and only of...
Page 10
$ { / }U x x I * { / }A x x I { / }B x x I {0}C
( { / 0} {0}A x x I or x I
{ / 0} {0}B x x I or x I
( ) {0}A B
( )...
Page 11
$ {1,2,3,4,5,6,7}A * {5,6,7,8,9,10}B {11,12,13}C
( {1,2,3,4}A B
{8,9,10}B A
{1,2,3,4,5,6,7}A C A
{5,6,7,8,9,10}B C...
Page 12
C A B
C A B
C A
C A B
Exercise
% 8 B 8
% ( ) ( ) ( )A B C A B A C
/ ( ) ( ) ( )A B C A B A C
A A A
C C C
B B B
A A...
Page 13
9 ( )A B A B
: ( )A B A B
; ( ) ( ) ( )A B C A B A C
? ( ) ( ) ( )A B C A B A C
/ ,* B 8 D
%
/
9
:
;
?
>
=
A A A
C...
Page 14
!
,*
% A B ( ) ( ) ( )n A B n A n B
/ A B B C A C ( ) ( ) ( ) ( )n A B C n A n B n C
9 A B ( ) ( ) ( ) ( )n A B n ...
Page 15
,* , , ( ) 100 , ( ) 60 , ( ) 75 ( ) 45A U B U n U n A n B and n A B
-
% ( )n A B / ( )n A B 9 ( )n A B
: ( )n A B...
Page 16
Exercise
% ,* + *
( ) 150 , ( ) 62 , ( ) 55 ( ) 11n U n A n B and n A B -
% % ( )n A B % / ( )n A B
% 9 ( )n A B %...
Page 17
9 ,* + *
( ) 80 , ( ) 35 , ( ) 28 , ( ) 21 , ( ) 12 , ( ) 10n U n A n B n C n A B n B C
( ) 14 ( ) 4n A C and n A ...
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Exercise 1 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 24
Exercise 2 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 25
Exercise 3 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 26
Exercise 4 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 27
Exercise 5 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 28
Exercise 6 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 29
Exercise 7 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 30
Exercise 8 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 31
Exercise 9 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ……...
Page 32
Exercise 10 : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. …...
Page 33
Post Test : Sets and notation
Mathematics Department / Benchamaratrangsarit School
Name ………………………..……..……. No. ………...
Page 34
Upcoming SlideShare
Loading in …5
×

Set language and notation

399 views

Published on

Set language and notation

Published in: Education
  • Be the first to comment

  • Be the first to like this

Set language and notation

  1. 1. Set Language and Notation By Keartisak Monchit Mathematics Department Benchamaratrangsarit School ! " # $ ! P %& P ' { 10}P prime numbers lessthan {2,3,5,7}P { / , 10}P x x is prime x ( ) * o { / a positive integer}N x x is + o { 1,2,3,4,...}N $ 1 , 3 , 0 , 5N N N N 1 belongs to N A ( )n A { 2,4,6,...,20 }A ( ) 10n A { 1,2,3,4,... }B ( ) (infinity)n B ,* { ' '}S letters of the word book $ S - S { , , }S b o k ( ) 3n S
  2. 2. Page 2 . '% { 1, 1, 2, 2, 2, 3 } { 1, 2, 3 } / { 1, 2, 3, 4, 5 } { 4, 1, 5, 2, 3 } ,* { / 1 18 }A x x is an even number between and $ A - A { 2, 4, 6, 8, 10, 12, 14, 16 }A ( ) 8n S ,* 2 2 2 2 2 { 1 , 2 , 3 , 4 , 5 }B 0 B 1 23 B 4 { 1 , 4 , 9 , 16 , 25 }B 56 9 B 2 { / ; 5 }B x x n n I and n ,* { 3 , 4 , 5 , 6 }T 1 3 T 1 23 T 4 ( A B 7 A B * 3 $ { letters from the word 'parallel' }A { letters from the word 'apparel' }B A B 1 A B '
  3. 3. Page 3 { , , , , }A p a r l e { , , , , }B a p r e l A B * A B $ { x/x is a digit from the phone number 92883388 }C { x/x is a digit from the phone number 92382238 }D C D 1 - 3 - { 2 , 4 , 6 , ... ,100 }A { 5 , 10 , 15 , ... ,1000 }B { x/x = 2n , n I 10 }C and x 2 { x/x I 100 }D and x { 1 , 3 , 5 , ... }A { 1 , 4 , 9 , 16 , 25 , ... }B { x/x = 2n 1 , n I }C 2 { x/x I 100 }D and x ! " # ( & ( ) 0n - 3 2 { / 2 5 }A x x I and x { / 2 10 }B x x I and x { / , 5 x<1 }C x x I x and " ( + * U *
  4. 4. Page 4 ' ,* { 1 , 2 , 3 , ... , 10 }U { x / x less than 5 }A { x / x is odd number }B ( { 1 , 2 , 3 , 4 }A { 1 , 3 , 5 , 7 , 9 }B * A B A B A B A B A B A B A B A # B A B { 3 , 5 , 7 } and { 1 , 3 , 5 , 7 , 9 }A B A B A B ( and ( )A B A B A B { 1 , 3 , 5 , 7 , ... } and { x / x I }C D C D C D ( and ( )C D C D C D { x / x is an even number } and { x / x is an integer }E F E F E F ( and ( )E F E F E F { x / x is a root of (x 1)(x 3) = 0 } , { 1 , 2 , 3 , 4 }P Q { 4 , 3 , 2 , 1 } and S { 1 , 3 , 5 }R 8 P Q R ' { 1 , 3 }P ( and ( )P Q P Q P Q and ( )Q R R Q Q R and ( )P S P S P S
  5. 5. Page 5 $ % % 2 * A / 2* A A 9 A B B A A B : A B B C A C ; A B x x A x B " & { 1 , 2 }A A ' , {1} , {2} , {1,2} . A : 2 2 . A 9 2 2 < % { 1 , 3 , 5 }B B ' , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5} . B = 3 2 . B > 3 2 < % { 1 , {1} }C C ' , {1} , {{1}} , {1,{1}} . A : 2 2 . A 9 2 2 < % { a , b , c , d }D D ' , {a} , {b} , ... ,{ a , b , c , d } . D %? 4 2 . A %; 4 2 < % ! % . A 2n ( )n A n / . A 2n <% ( )n A n
  6. 6. Page 6 # ,* A @ A ( )P A A ( ) { / }P A x x A { 1 , 2 }A A ' , {1} , {2} , {1,2} ( ) { , {1} , {2} , {1,2} }P A { 1 , 3 , 5 }B B ' , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5} ( ) { , {1} , {3} , {5} , {1,3} , {1,5} , {3,5} , {1,3,5}}P B { 1 , {1} }C C ' , {1} , {{1}} , {1,{1}} ( ) { , {1} , {{1}} , {1,{1}}}P C { }D D ' , { } ( ) { , { }}P D { 0 , 1 , {2}}E E ' , {0}, {1}, {{2}}, {0,1}, {0,{2}}, {1,{2}}, {0,1,{2}} ( ) { , {0}, {1}, {{2}}, {0,1}, {0,{2}}, {1,{2}}, {0,1,{2}}}P E ! ' { , }A a b ( ( ) { ,{ },{ },{ , }}P A a b a b ( ) { ,{ },{ }, }P A a b A % ( )P A { } ( )P A / ( )A P A { } ( )A P A 9 ( )x P A x A : ( ) ( )P A PP A ( ) ( )PP A PPP A ; A B ( ) ( )P A P B
  7. 7. Page 7 ( ( A B A B A B A B { / }A B x x A or x B $ {1,2,3,4,5}A {2,4,6,8,10}B {4,5,6,7,8}C ( {1,2,3,4,5,6,8,10}A B {1,2,3,4,5,6,7,8}A C {2,4,5,6,7,8,10}B C $ {1,3,5,7,9}A {2,4,6,8,10}B {1,2,3,4,...,10}C ( {1,2,3,4,5,6,7,8,9,10}A B C {1,2,3,4,5,6,7,8,9,10}A C C {1,2,3,4,5,6,7,8,9,10}B C C $ { / }A x x I { / }B x x I {0}C ( { / 0}A B x x I and x { / 0}A C x x I and x { / 0}B C x x I and x # % A A / A A A 9 A U U : A B B A *$ ; ( ) ( )A B C A B C A B C * $
  8. 8. Page 8 ? A B A B B > A B A B = A B A B 0 A B A C B C %& A A B A B C ( A B A B A B { / }A B x x A and x B $ {1,2,3,4,5}A {2,4,6,8,10}B {4,5,6,7,8}C ( {2,4}A B {4,5}A C {4,6,8}B C $ {1,3,5,7,9}A {2,4,6,8,10}B {1,2,3,4,...,10}C ( A B {1,3,5,7,9}A C A {2,4,6,8,10}B C B $ { / }A x x I { / }B x x I {0}C ( A B A C B C
  9. 9. Page 9 # 1. A 2. A A A 3. A U A 4. A B B A *$ 5. ( ) ( )A B C A B C A B C * $ 6. if and only ifA B A B A 7. if and only of and are disjoint setsA B A B 8. If thenA B A C B C 9. andA B A A B C A B 10. if and only ifA B A B A B 11. ( ) ( ) ( )A B C A B A C 8 *$ 12. ( ) ( ) ( )A B C A B A C 8 *$ ) ( A A A * U { / }A x x U and x A $ {1,2,3,4,5,6,7,8}U {4,6,8}A {1,3,5,7}B ( {1,2,3,5,7}A {2,4,6,8}B ( ) {2}A B ( )A B U U ( ) {4,6,8}A A ( ) {1,3,5,7}B B
  10. 10. Page 10 $ { / }U x x I * { / }A x x I { / }B x x I {0}C ( { / 0} {0}A x x I or x I { / 0} {0}B x x I or x I ( ) {0}A B ( )A B U { / 0}C x x I and x $ {1,2,3,4,5,6,7,8}U {4,6,8}A {1,3,5,7}B ( {1,2,3,5,7}A {2,4,6,8}B ( ) {2}A B ( )A B U {2}A B {1,2,3,4,5,6,7,8}A B U ! ( )A B A B ( )A B A B # % U / U 9 A A U : A A ; ( )A A (( ) )A A ? A B B A > ( )A B A B 8 A $ = ( )A B A B 8 A $ ( A B A B A B { / }A B x x A and x B { / }B A x x B and x A
  11. 11. Page 11 $ {1,2,3,4,5,6,7}A * {5,6,7,8,9,10}B {11,12,13}C ( {1,2,3,4}A B {8,9,10}B A {1,2,3,4,5,6,7}A C A {5,6,7,8,9,10}B C B $ {1,3,5,7,9}A {1,2,3,4,5,6,7,8,9,10}B ( A B {2,4,6,8,10}B A ! ' A B A B # % U A A / A A A 9 A B B A 3 A B : A B A B ; A B A B ? ( )A B A A B > A B B A = ( ) ( ) ( )A B C A B A C 0 ( ) ( ) ( )A B C A B A C %& ( ) ( ) ( )A B C A C B C %% ( ) ( ) ( )A B C A C B C + , B * * A B + * :
  12. 12. Page 12 C A B C A B C A C A B Exercise % 8 B 8 % ( ) ( ) ( )A B C A B A C / ( ) ( ) ( )A B C A B A C A A A C C C B B B A A A C C C B B B
  13. 13. Page 13 9 ( )A B A B : ( )A B A B ; ( ) ( ) ( )A B C A B A C ? ( ) ( ) ( )A B C A B A C / ,* B 8 D % / 9 : ; ? > = A A A C C C B B B A A A C C C B B B A A A C C C B B B A A A C C C B B B A B C U 1 2 34 5 6 7 8
  14. 14. Page 14 ! ,* % A B ( ) ( ) ( )n A B n A n B / A B B C A C ( ) ( ) ( ) ( )n A B C n A n B n C 9 A B ( ) ( ) ( ) ( )n A B n A n B n A B : A B B C A C ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n A B C n A n B n C n A B n B C n A C n A B C ; ( ) ( ) ( )n A n U n A ? ( ) ( ) ( )n A B n A n A B A B A B C A B A B C A A A B
  15. 15. Page 15 ,* , , ( ) 100 , ( ) 60 , ( ) 75 ( ) 45A U B U n U n A n B and n A B - % ( )n A B / ( )n A B 9 ( )n A B : ( )n A B ; ( )n B A ? ( )n A > ( )n B = ( )n A B 0 ( )n B A ,* , , , ( ) 100 , ( ) 29 , ( ) 23 , ( ) 18A U B U C U n U n A n B n C ( ) 15 , ( ) 10 , ( ) 9 ( ) 6n A B n A C n B C and n A B C - % ( )n A B / ( )n B C 9 ( )n A C : ( )n A B ; ( )n A B C ? ( )n A B C > ( )n A B C = ( )n A B C A B U A B C
  16. 16. Page 16 Exercise % ,* + * ( ) 150 , ( ) 62 , ( ) 55 ( ) 11n U n A n B and n A B - % % ( )n A B % / ( )n A B % 9 ( )n A B % : ( )n A B % ; ( )n B A % ? ( )n A % > ( )n B % = ( )n A B % 0 ( )n B A % %& ( )n A B / ,* + * ( ) 50 , ( ) 6 , ( ) 38 ( ) ( )n U n A B n A B and n A n B - / % ( )n A / / ( )n A / 9 ( )n A B / : ( )n B A / ; ( )n A B / ? ( )n A B / > ( )n A B / = ( )n B A / 0 ( )n A B / %& ( )n B A A B U A B U
  17. 17. Page 17 9 ,* + * ( ) 80 , ( ) 35 , ( ) 28 , ( ) 21 , ( ) 12 , ( ) 10n U n A n B n C n A B n B C ( ) 14 ( ) 4n A C and n A B C - 9 % ( )n A B 9 / ( )n B C 9 9 ( )n A C 9 : ( )n A B C 9 ; ( )n A B 9 ? ( )n B C 9 > ( )n A C 9 = ( )n A B C 9 0 ( )n A B 9 %& ( )n B C 9 %% ( )n A C 9 %/ ( )n A B C 9 %9 ( )n A B 9 %: ( )n B C 9 %; ( )n C A 9 %? ( )n A B C 9 %> ( )n A C B 9 %= ( )n B C A 9 %0 ( )n A B C 9 /& ( )n B A C A B C U
  18. 18. Page 18
  19. 19. Page 19
  20. 20. Page 20
  21. 21. Page 21
  22. 22. Page 22
  23. 23. Page 23 Exercise 1 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… -& & % ( * * %& EEEEEEEEEEEEEEEEEEEEEEEEEE EE / ( ! EEEEEEEEEEEEEEEEEEEEEEEEEE EE 9 ( * EEEEEEEEEEEEEEEEEEEEEEEEEE EE : ( * < %& EEEEEEEEEEEEEEEEEEEEEEEEEE EE ; ( < ; ; EEEEEEEEEEEEEEEEEEEEEEEEEE EE .& & % 2 { / 25 }x x I and x EEEEEEEEEEEEEE / { / 2 }x x n and n I EEEEEEEEEEEEEE 9 { / 5}x x I and x EEEEEEEEEEEEEE : 3 { / , 5}x x n n I and n EEEEEEEEEEEEEE ; 2 { / 25 }x x I and x EEEEEEEEEEEEEE /& & % { 1 , 2 , 3 , 4 ,...} EEEEEEEEEEEEEE / { 1 , 1 } EEEEEEEEEEEEEE 9 { 1 , 2 , 3 , 4 , 5 } EEEEEEEEEEEEEE : { sun , mon , tue , wed , thu , fri , sat } EEEEEEEEEEEEEE ; { 3, 6, 9, 12,...} EEEEEEEEEEEEEE ? { 1, 3, 5, 7, 9,...} EEEEEEEEEEEEEE > { 1, 8, 27, 64,...} EEEEEEEEEEEEEE = { 5, 10, 15, 20,..., 100 } EEEEEEEEEEEEEE
  24. 24. Page 24 Exercise 2 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… -& & % " / : = %? E %&/: # EEEEEEEEEEEEEE / " % 9 ; > E# EEEEEEEEEEEEEE 9 " / : ? " = %&%/ E# %&/: # EEEEEEEEEEEEEE : " " # "" ## """ ### E# EEEEEEEEEEEEEE ; " 3 < F 3 G% # EEEEEEEEEEEEEE ? " 3 F 3 H%&# EEEEEEEEEEEEEE > " 3 F 3/ H%&&# = " &% / " % / # " 9 : ; E# # 0 " 3 F 3 I/ H%&# %& " 3 F 3 I4 ; . H;&# %% " 3 .F 3 H&# EEEEEEEEEEEEEE %/ " 3 F 3/ H%&# %9 " 3 F 3 H% 3 G; # %: " 3 F 3 I9 .# %; " 3 .F 93 4 % I&# %? " 3 @F 3 # %> " 3 F 3/ 4 /3 J % I&# %= " 3 .F 3 G%& 3 H; # %0 " "%# "% /# "% / 9# E# /& " 3 @F 93 4 %; I&# .& 0 1 & { / 2 5 }x x I and x
  25. 25. Page 25 Exercise 3 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - & % " 3 F % H3 %&# " / 9 : E %&# EEEEEEE / " 3 F 3/ 4 3 I&# " 3 .F 3 4 % I&# EEEEEEE 9 " 3 F 3 I/ 4 % .# " % 9 ; > E# EEEEEEE : " 3 F 3 I/ # " / : ? = E# EEEEEEE ; " 3 F 3 I 9 .# " % = /> ?: E# EEEEEEE ? " 3 .F 3/ I% # " % 4 % # EEEEEEE > " 3 F 3/ H%&# " &% / 9 # EEEEEEE = " 3 F 3 H% 3 G; # " # EEEEEEE 0 " 3 F 3 I/ J % .# " % 9 ; E# EEEEEEE %& " # " # EEEEEEE # . & 2" 34- * . * /* 5* 1* 6* 7* 8* 9* -:; % I" 3 F 3 J / H= # ( IEEEEEEEE / I" 3 F 3 J / G> # ( IEEEEEEEE 9 I" 3 F 3/ J % I%&# ( IEEEEEEEE : 8I" 3 F 3/ J / H/&# ( 8IEEEEEEEE ; 2I" 3 F 3 J / I3 4 / # ( 2IEEEEEEEE 2" 34 < " " ; ? -I" 3 F /3 H9&# ( -IEEEEEEEE > ,I" 3 F 3 # ( ,IEEEEEEEE = 6I" 3 F 3/ J % H/&# ( 6IEEEEEEEE 0 I" 3 F 3 J / I/ J 3 # ( IEEEEEEEE %& KI" 3 F 3 7 %&# ( KIEEEEEEEE
  26. 26. Page 26 Exercise 4 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - & % " % 9 ; # " % / 9 : E %&# / " &/ : # " 3 F 3 .# 9 " ; %&%; /&# " % / 9 E %&&# : " # " & " ## ; " % / 9 # # . * & % I" % 9 # ( @ IEEEEEEEEEEEEEE / I" &/ # ( @ IEEEEEEEEEEEEEE 9 I" # ( @ IEEEEEEEEEEEEEE : 8I" % # ( @8 IEEEEEEEEEEEEEE ; 2I ( @2 IEEEEEEEEEEEEEE ? I" "%# # ( @ IEEEEEEEEEEEEEE > I" % "%## ( @ IEEEEEEEEEEEEEE = I" % # ( @ IEEEEEEEEEEEEEE 0 8I" % 9 ; # ( @8 IEEEEEEEEEEEEEE %& 2I" " ## ( @2 IEEEEEEEEEEEEEE
  27. 27. Page 27 Exercise 5 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - = 0* 2" = 0 & . % " % / 9 # " % 9 ; > # / " ; ? > # " % / 9 E %&# 9 " 3 F 3 G;# " 3 F 3 G%&# : " % / 9 # " 9 / % # ; " 3 F 3 .# " 3 F 3 # # . = 0* 2" = 0 & . % " % / 9 : # " / : ? = %&# / " 9 ; > # " % / 9 E %&# 9 " 3 F 3 G9 # " 3 F 3 G= # : " % / 9 # " 9 / % # ; " 3 F 3 .# " 3 F 3 # # / # >= 0* = 0?
  28. 28. Page 28 Exercise 6 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - A * 2" A U & A U A % " % / 9 # " % / 9 E %&# / " / : ? = # " % / 9 E %&# 9 " 3 F 3 G; # " 3 F 3 .# : " < % < / < 9 E# " 3 F 3 # ; " 3 F 3 .# " 3 F 3 # ? " 3 F 3 J # " 3 F 3 # > "&# " 3 F 3 # = " 3 F 3 < &# " 3 F 3 # # . =, 0 * 2" = 0 & 4 % " % / 9 : # " : ; ? # / " ; ? > = # " / : ? # 9 " % / 9 E %&# " > = 0 # : " : ; ? # " > = 0 %&%% # ; " 3 F 3 .# " 3 F 3 # # /# ) >A A B ?
  29. 29. Page 29 Exercise 7 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… # - + & % / 4 9 4 : ; L # . @ & % / 9 EEEEEEEEE EEEEEEEEE EEEEEEEEE : ; EEEEEEEEE EEEEEEEEE # / & % / < 9 < < B A B A B A B A B A A B B AA B AB AA B A
  30. 30. Page 30 Exercise 8 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ % MNOPQRSMTUVWTMXYWZR;&[MV]PQRSM[^_`abc`Qd9&[M V]PQRSMebfbVNWOgf/&[M MNOPQRSMhRYiZjV]PQRSMhNkWcVWl_b; [M mnioUljb MNOPQRSMhRYV]PQRSMhNkWcVWl_bZR [M A 2 MNOPQRSMhRYV][^_`abc`QdVSjbWPoRSlZR [M MNOPQRSMhRYV]ebfbVNWOgfVSjbWPoRSlZR [M / MNOPQRSMZ : TUVWTMXYWZR:; [MV]PpjMqr`]Vp/; [M V]PpjM]bcPO`]Vp/&[M V]PpjMhNkWqr`]Vpspn]bcPO`]Vp%&[M mnioUljb MNOPQRSMhRYV]PpjMqr`]VpVSjbWPoRSlZR [M - MNOPQRSMhRYiZjV]PpjMhNkWcVWVSjbWZR [M 9 OtbTMomtbMlMcZb_OuVW spn PhjbON]9& /; spn= `bZptboN] mnioUljb mtbMlMcZb_OuVW PhjbON] mtbMlMcZb_OuVW 4 PhjbON] vTU shMmtbMlMcZb_OuVWPw` : mbOQxyhRYOtbTMovTU + I%/& I;& I:; I:& I%& I= I> spn I; mnioUljb IEEEEEEE z4 {IEEEEEEE ; mbOuUVhRY: L IEEEEEEE + z 4 {IEEEEEE
  31. 31. Page 31 Exercise 9 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ DJULMN- % OtbTMo + I=& I9; I:& I%& mnioUljb % % IEEE % / L IEEE / OtbTMo + I%&& I9= I:/ I>9 mnioUljb % % IEEE % / 4 IEEE % 9 4 L IEEEE DJULMN. % OtbTMomtbMlMcZb_OuVWPw` spn Py|M %/ %? spn/= `bZptboN] mnioUljbmtbMlMcZb_OuVW 4 PhjbON] mtbMlMcZb_OuVW 4 PhjbON] / mbOObQcV]}bZMNOPQRSMmtbMlM=&[MhRYV]PQRSM[^_`abc`QdTQ~V[VZ•_lP`VQd •]ljbZRMNOPQRSMhRYV]PQRSM[^_`abc`Qd:; [M spnZRMNOPQRSMhRYV]PQRSM [VZ•_lP`VQd;/ [M mnioUljbMNOPQRSMhRYV]PQRSMhNkW[^_`abc`Qdspn[VZ•_lP`VQdZR [M MNOPQRSMhRYV]PQRSM[^_`abc`QdP•RSWVSjbWPoRSlZR [M MNOPQRSMhRYV]PQRSM[VZ•_lP`VQdP•RSWVSjbWPoRSlZR [M
  32. 32. Page 32 Exercise 10 : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCDEFGHIDJKLMNOPQDRJBSBTUVWJBXWIBDWJYZUM[ DJULMN- % OtbTMo + I%&& I:& I;& I/& mnioUljb % % IEEE % / L IEEE / OtbTMo I%%& I?& I:; I:& I/& I%; I%& mnioUljb / % I / / z < {I / 9 z < {I DJULMN. vMObQcV]uVWMNOPQRSMNkMZN€SZaXOfb`VMypbSTUVWTMXYW•]ljb 9> [McV]•jbMl_b[^_`abc`Qd := [McV]•jbMl_bcNW[ZaXOfb A :; [McV]•jbMl_bebfbihS %; [McV]•jbMl_b[^_`abc`QdspncNW[ZaXOfb ( %9 [McV]•jbMl_bcNW[ZaXOfbspnebfbihS > [McV]•jbMl_b[^_`abc`QdspnebfbihS ; [McV]•jbMhNkW 9 l_b mnioUljb % MNOPQRSMPuUbcV]hNkWTZo [M : cV]•jbM[^_`abc`QdVSjbWPoRSl [M / cV]•jbMP•RSW / l_bZR [M ; cV]•jbM[^_`abc`QdspnebfbihS 9 cV]•jbMP•RSWl_bPoRSlZR [M P•RSW / l_bZR [M
  33. 33. Page 33 Post Test : Sets and notation Mathematics Department / Benchamaratrangsarit School Name ………………………..……..……. No. ………. Class ….…… ABCSJQGHIDJKLMNOPQDRJBLMN]^_C`MaBbRJC_MaX % vTU I" < / < % &% / # PZ~YVPuRSMPw` s]]]VOPW~YVMiu mn`QWON]uUVvo O " 3 F 3 spn< 9 H3 H9 # u " 3 F 3 spn3 H9 # [ " 3 F 3 .spn3 < / # W " 3 F 3 .spn3/ H; # / •_mbQ^buUV[lbZ`jViyMRk % " % / 9 # I" 3 F 3 spn3/ H%&# / " / : ? E# I" 3 F 3 I/ J # uUVvo`jViyMRk}xO`UVW O Py|MmQ_WhNkWcVWuUV u Py|MPh‚mhNkWcVWuUV [ Py|MmQ_WPƒ•bnuUV% PhjbMNkM W Py|MmQ_WPƒ•bnuUV/ PhjbMNkM 9 uUV[lbZ`jViyMRkuUVvo}xO`UVW O " 3 CF 3 G; spn3 H% # Py|MPw` ljbWspnPw`mtbONo u "% / " 9 : E## Py|MPw`VMNM`d [ " 3 CF %H3 H; # Py|MPw`mtbONo W " % / 9 # " % / 9 : E# : vTU I" &% / "9 :# ";# "? > E## uUVvo`jViyMRkiZj}xO`UVW O " % / # u " &% / # [ " 9 : # W ""? > E## ; vTU I" % / 9 : # I" / : ? = # spn I" : ; ? # uUVvoiZj}xO`UVW O I" % / 9 : ? = # u I" / : # [ 4 I" % / 9 = # W 4 I" % / 9 ; ? # ? uUV[lbZvo`jViyMRkiZj}xO`UVW O 4 4 I 4 4 u spn O‚`jVPZ~YV I [ }Ub spUl I W }Ub spUl I > }Ub I spUl 4 PhjbON]uUVvo O u [ W 4 = OtbTMo I"% /# spUl@ `QWON]uUVvo O " "%# "/# # u ""%# "/# "% /## [ " "%# "/# "% /## W " "% /## 0 mtbMlMcZb_OuVW PhjbON] /&9&spn; `bZptboN]mtbMlMcZb_OuVW Py|MPhjbvo O %; u :; [ ;& W ;; %&mbOuUV0 mtbMlMcZb_O 4 Py|MPhjbvo O /; u /& [ %; W 9&
  34. 34. Page 34

×