Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Matematica unidade 08_seja

481 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Matematica unidade 08_seja

  1. 1. Matemática e suas Tecnologias  •  Matemática 1 Módulo 1  •  Unidade 8 Potenciação e radiciação Para início de conversa... Discutimos anteriormente as quatro operações aritméticas: adição, subtração, multiplicação e divisão. Agora trabalharemos com mais duas: a potenciação e a radiciação. Ambas são úteis em diversas situações, seja para realizarmos representações numéricas, seja para efetuarmos cálculos de forma mais rápida. Compreender essas operações e saber utilizá-las para resolver problemas é importante para o entendimento de diversas aplicações matemáticas. O problema abaixo retrata bem essa situação. Com cerca de 51% de brasileiros, o Orkut, comunidade base- ada em Redes Sociais criada pelo Google, é um campo fértil para a boataria, ou para o Hoax, como são chamadas as men- sagens de cunho duvidoso que circulam pela Internet. Na disseminação desses boatos, duas características são im- portantes: a densidade da rede do internauta e os graus de separação. A densidade da rede do internauta significa, de for- ma simples, quantos contatos esse internauta tem. Já o grau de separação é a distância que separa você de outra pessoa na rede social. Por exemplo, o grau de separação entre você e seu amigo é um e entre você e o amigo de seu amigo é dois. Por um usuário de Orkut, com muitos amigos, irá trafe- gar a maioria das mensagens que circulam entre os bra- sileiros. Em outras palavras, quem tem mais amigos no Orkut também recebe mais boatos por e-mail.
  2. 2. Módulo 1  •  Unidade 82 Isso porque o Orkut possibilita o envio de mensagens a seus amigos e aos ami- gos dos seus amigos (grau um e grau dois, respectivamente). Sendo assim, se você tem 10 amigos e cada amigo seu tem mais dez amigos, um boato que circula no Orkut tem o potencial de atingir 100 pessoas. Felizmente, o Orkut permite apenas a comunicação em até dois graus de separação. Se fosse possível enviar mensagens para toda a minha rede em até cinco graus de separa- ção, um boato como o de um sequestro, enviado por mim a meus 54 amigos do Orkut, poderia atingir mais de um milhão de pessoas. Um pesadelo. O texto foi adaptado. A versão completa pode ser encontrada em: http://informatica.terra.com.br/interna/0,,OI359546-EI1684,00.html Como você pensa que, ao final do texto, se chegou ao valor de um milhão de pessoas? Objetivos de aprendizagem ƒƒ Definir os conceitos de potenciação e radiciação. ƒƒ Operar com potenciação e radiciação. ƒƒ Verificar que as duas operações são inversas entre si.
  3. 3. Matemática e suas Tecnologias  •  Matemática 3 Seção 1 Potenciação Situação problema Pensemos numa situação em que uma pessoa fica sabendo de um boato, não neces- sariamente verdadeiro, e gasta 10 minutos para contar para os seus três melhores amigos. Creio que é assim que as fofocas espalham-se. Imagine que cada um dos três amigos resolve fazer a mesma coisa e 10 minutos depois contam a novidade para três colegas que ainda não a conheciam. Assim, cada um que recebia a notícia sempre a transmitia para três colegas de- sinformados, gastando, para isso, 10 minutos. Veja como a fofoca espalha-se e complete a tabela:
  4. 4. Módulo 1  •  Unidade 84 Tempo (minutos) Novos alunos que ouvem a fofoca Representação em forma de potência 10 3 31 20 3 x 3 32 30 3 x 3 x 3 40 50 60 70 a) Quantos alunos ficaram sabendo do boato no período entre 20 e 30 minutos? b) Quantos alunos ficaram sabendo do boato na primeira meia hora? c) Se, na escola onde estudam, há 364 alunos, em quantos minutos todos os alunos ficaram sabendo do boato? Lembre-se que a quantidade de pessoas que ficam sabendo do boato acumula-se. Por exemplo, a partir do momen- to que a primeira pessoa conta para outras três, já são quatro sabendo do boato. No segundo momento, já são 1 + 3 +9 e assim sucessivamente. Atividade O caso da disseminação da fofoca mostra uma situação em que a potenciação pode ser útil. Ela nos auxilia na representação de números grandes e, de certa forma, faci- lita cálculos com esses números. Além disso, apresenta a evolução da ordem de grandeza desses números. A notação an , onde a é um número real e n é um número natural diferente de zero, é a repre- sentação de uma potência. a é chamado de base e n é o expoente, com n significando a quan- tidade de vezes que a base aparece como fator de uma multiplicação.
  5. 5. Matemática e suas Tecnologias  •  Matemática 5 Assim: 24 = 2 x 2 x 2 x 2 36 = 3 x 3 x 3 x 3 x 3 x 3 510 = 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 Perceba que esta notação facilita a escrita, simplificando a comunicação e a representação numérica. Por definição, consideram-se verdadeiras as seguintes afirmações: a1 = a a0 = 1, para qualquer número a ≠ 0 a-n = 1 n a , para qualquer número a ≠ 0 e para qualquer número inteiro n. Fractal é uma forma geométrica irregular que normalmente está dividida em partes e cada parte é uma cópia reduzida da forma toda. A palavra fractal vem do latim fractus, que significa quebrado, partido ou, ainda irregular. Vários fractais são verdadeiras obras de arte. Algumas pessoas chegam a duvidar que, por trás de tanta beleza, haja fórmulas matemáticas avançadas. Veja alguns exemplos de fractais feitos em computador, a partir de fórmulas matemáticas. São ou não são muito belas?
  6. 6. Módulo 1  •  Unidade 86 Além desses fractais, construídos com a utilização da Informática, outros mais simples podem ser encontrados. Um deles é oTriângulo de Sierpinsky (descoberto pelo matemático Waclav Sierpinsky 1882-1969), construído a partir de um triângulo inicial e uma regra: dividir o triângulo em 4 partes iguais e retirar a parte central. A cada triângulo restante é aplicada a mesma regra, infinitas vezes. Veja o desenho abaixo: Observe que, com base nesse desenho, podemos realizar algumas operações matemáticas com a utilização da potenciação. Fase Número de Triângulos 1 1 30 2 3 31 3 9 32 4 5 6 7 8 9 10
  7. 7. Matemática e suas Tecnologias  •  Matemática 7 a) Escreva em forma de potência quantos triângulos haveria na fase 50? _______________. b) Que fração do triângulo da fase 1 permanece pintada na fase 5? ________________ c) E na fase 10? ________________. A Água em Números Estoque total de água do planeta: 1,5 bilhão de Km3 Volume mundial disponível para consumo: 9 mil de Km3 Superfície da Terra coberta pela água: 372 milhões de Km3 1,4 bilhão de pessoas carecem de acesso à água potável, o que corresponde aproximadamente a um sexto da população mundial; 2.400 milhões dos habitantes do planeta não têm acesso a serviços de sanea- mento adequados, ou seja, o equivalente a 40% dos habitantes do planeta; Fonte: Departamento de Informação Pública da ONU, DPI/2283/Rev.1, Dezembro de 2002
  8. 8. Módulo 1  •  Unidade 88 a) Observe que aparecem diversos valores grandes. Veja alguns desses núme- ros escritos de outras formas: ƒƒ 1,5 bilhão de Km3 = 1.500.000.000 de km3 = 1,5 x 109 de km3 ƒƒ 9 mil de km3 = 9.000 de km3 = 9 x 103 de km3 ƒƒ 372 milhões de km3 = 372.000.000 de km3 = 3,72 x 108 de km3 b) No texto, aparecem ainda outros números. Escreva esses números, usando outras representações: a) 1,4 bilhão de pessoas = b) 1100 milhões de pessoas = c) 2400 milhões dos habitantes = É normal o uso da notação científica, isto é a escrita de um número com auxílio de potências de base 10. Geralmente, usa-se o seguinte formato: A x 10n Nessafórmula,Aéumnúmeromaiorque1emenorque10,enéoexpoentede10. Para escrever um número muito grande em notação científica, procede-se a divisão sucessiva por 10 até que encontremos um resultado entre 1 e 10, lembrando que ao dividirmos um número por 10 há um deslocamento da vír- gula para a esquerda. A quantidade de divisões efetuadas, ou seja, a quantidade de deslocamentos da vírgula é o expoente do 10. Observe o exemplo: Hoje vivem na terra cerca de 6 bilhões de habitantes. 6 bilhões = 6.000.000.000 = 6 x 109
  9. 9. Matemática e suas Tecnologias  •  Matemática 9 Você sabia que a massa da Terra é aproximadamente 6,02 x 1024 kg? Isto repre- senta 6.020.000.000.000.000.000.000.000 kg. Como vê, a notação inicial é muito mais con- veniente. Veja outros valores escritos em notação científica e escreva-os em sua repre- sentação decimal: a) Raio da Terra: 6,40 x 106 m = b) Massa da Lua: 7,44 x 1022 kg = c) Distância Terra-Lua (centro a centro): 3,84 x 108 m = Observe que até agora a notação científica foi utilizada para representar valores muito gran- des. Acontece que ela também pode ser utilizada para representar valores muito pequenos. Em Biologia, Química e tecnologias computacionais, costuma-se fazer muito uso desse tipo de notação. Para escrever um número muito pequeno em notação científica, procede-se a multiplicação sucessiva por 10 até que encontremos um resultado entre 1 e 10, lembrando que ao multi- plicarmos um número por 10 há um deslocamento da vírgula para a direita. A quantidade de multiplicações efetuadas, ou seja, a quantidade de deslocamentos da vírgula é representada por um número. Esse número com o sinal negativo é o expoente do 10. O exemplo a seguir mostra porque o sinal do expoente é negativo. Para representar o número 0,000000000000000000000006 em notação científica, poderíamos pensar da seguinte forma: − = = = × 24 24 6 6 0,000000000000000000000006 6 10 1000000000000000000000000 10
  10. 10. Módulo 1  •  Unidade 810 Represente os valores seguintes em notação científica: a) 34000000000000000 b) 1230000000000 c) 0,000000000123 d) 0,000000173 Represente os valores abaixo em notação decimal: a) 1,23x108 b) 3,4x105 c) 5,3x10-6 d) 1,2x10-8 Seção 2 Radiciação Situação problema 2: Ainda com base no que você estudou na seção anterior, tente colocar nos quadrados os valores que torne as igualdades verdadeiras: 2 3 4 a) = 9 a) = 27 a) = 16 2 3 4 b) = 64 b) = 1000 b) = 81 2 3 4 c) = 100 c) = 64 c) = 10000
  11. 11. Matemática e suas Tecnologias  •  Matemática 11 Perceba que nessa atividade você conhecia o resultado da potenciação e queria des- cobrir a base. Veja o exemplo: 2 = 9 Veja que aqui estávamos procurando um número que elevado ao quadrado (2) tem 9 como resultado. Nesse caso, dizemos que estamos realizando a operação inversa da poten- ciação. É o que denominamos radiciação e dizemos que a raiz quadrada de 9 é o número que poderia substituir o quadradinho, no caso 3. Outro exemplo: 3 = 27 Aqui procuramos um número que elevado ao cubo (3) tem 27 como resultado. A raiz cúbica de 27 é o número que poderia substituir o quadradinho, 3. =3 27 3 porque =3 3 27 Generalizando: se um número A for elevado a um expoente n ( n A ) resultando em um valor B ( =n A B ), então a raiz enésima de B ( n B ) será A ( =n B A ), logo: =n B A porque =n A B A, B e n devem ser números reais e n deve ser maior que zero. Os elementos da radiciação possuem nomes específicos, na operação =n A B , n é o índice; A é o radicando; é o radical; B é a raiz. 16 se escreve sem o índice, pois quando o índice é 2 ele não é representado.
  12. 12. Módulo 1  •  Unidade 812 Calcule os resultados das seguintes raízes: 16 = =3 27 =4 256 =5 32 =6 1000000 Você sabe o que são números irracionais? Nem sempre conseguimos encontrar um valor inteiro como resultado de uma raiz de um nú- mero natural. Por exemplo 5 , onde precisaríamos encontrar um número que elevado ao qua- drado (2) tem 5 como resultado. Em casos como esse, podemos utilizar a calculadora ou atribuir uma aproximação para o resultado pretendido. Números como esse pertencem ao conjunto dos números irracionais, isto é, números que não podem ser escritos em forma de fração. Coloque nos  os símbolos = ou ≠. a) 25 + 16  41 b) +100 36  10 + 6 c) ⋅100 36  10 · 6 d) +2 2 10 6  10 + 6 e) +2 2 10 6  10 + 6 f) +2 2 10 6  136 7
  13. 13. Matemática e suas Tecnologias  •  Matemática 13 Momento de reflexão Potenciação, radiciação, notação científica. Pois é, muito cálculo e muita coisa para se pensar. Esses assuntos foram tratados nessa unidade e cada um tem sua importância, seja para resolver problemas, efetuar cálculos ou para representação numérica de forma diferen- ciada. Muito disso já pode ter sido visto por você em outros momentos, porém pode ser que isso já faça algum tempo. Mas, se tudo isso é novidade para você, não ser preocupe, o que importar é saber reconhecer o que foi aprendido e o que ainda precisa ser reforçado, e escre- ver sobre isso poder orientar você na busca de ampliação de seu conhecimento. É isso que propomos aqui, pense e escreva sobre as seguintes questões: ƒƒ O que foi mais difícil na discussão dos conteúdos tratados? ƒƒ O que mais chamou a atenção? ƒƒ Já deparou com esses conteúdos ao estudar outras disciplinas? O que especificamente? Momento de reflexão
  14. 14. Voltando à conversa inicial... As operações de Potenciação e Radiciação foram tratadas nessa unidade. Vimos que a representação de números por meio das potências torna mais simples a representação de quantidades muito grandes ou muito pequenas. Dizer 5x1012 é bem mais simples e econômi- co do que escrever 5.000.000.000.000, da mesma forma que 3x10-7 é mais interessante de se escrever do que 0,0000003. A radiciação, como inversa da potenciação, foi trabalhada ao mesmo tempo em que vimos a impossibilidade de se calcular diretamente algumas raízes cujo resultado são núme- ros irracionais. Essas podem ser calculadas por aproximação, com o auxílio da calculadora. Voltando ao problema apresentado inicialmente, sobre o Orkut, primeiramente é im- portante dizer que quando o autor fala de dois graus de separação ele se refere aos seus amigos e aos amigos de seus amigos. Considerando cinco graus de separação teremos: Grau de separação Quantidade de novas pessoas atingidas Total de pessoas atingidas pelo boato 1 54 54 2 54 x 20 = 1.080 1.080 + 54 = 1.134 3 1.080 x 20 = 21.600 21.600 + 1.134 = 22.734 4 21.600 x 20 = 432.000 432.000 + 22.734 = 454.734 5 432.000 x 20 = 8.640.000 8.640.000 + 454.734 = 9.094.734 São nove milhões, noventa e quatro mil, setecentos e trinta e quatro pessoas: muita gente! Você já pensou em um número que está em todo lugar. Que tal assistir a um filme e pensar sobre isto? O filme é Número 23 dirigido por Joel Schumacher. Ao assistir a esse filme, fique atento como a presença dos números influencia as diver- sas ações da personagem principal.
  15. 15. Matemática e suas Tecnologias  •  Matemática 15 Referências Imagens   •  http://www.sxc.hu/photo/789420   •  http://www.sxc.hu/photo/1260787   •  http://www.flickr.com/photos/rosepetal236/2511852611/   •  http://www.flickr.com/photos/craft_uas/1693597432/   •  http://www.flickr.com/photos/49403380@N00/2437476071/   •  http://www.flickr.com/photos/doodle_m/4678606798/   •  http://www.sxc.hu/photo/1191367   •  http://www.sxc.hu/photo/1093768   •  http://www.sxc.hu/photo/1370768   •  http://www.sxc.hu/photo/923013   •  http://www.sxc.hu/browse.phtml?f=download&id=1220957  •  Ivan Prole.   •  http://www.sxc.hu/985516_96035528. Bibliografia consultada PAIVA, M. A. V.; FREITAS, R. C. O. Matemática. In: SALGADO, Maria Umbelina Caiafa; AMARAL, Ana Lúcia.. (Org.). ProJovem Urbano. Ed. Brasilia DF: Governo Federal/Programa Na- cional de Inclusão de Jovens, 2008, v. 1,2,3,4,5,6. POZO, Juan Ignacio et al. (Org.); tradução de Beatriz Affonso Neves. A Solução de Pro- blemas: Aprender a resolver, resolver para aprender. Porto Alegre: Artmed, 1998.
  16. 16. Módulo 1  •  Unidade 816
  17. 17. Matemática e suas Tecnologias  •  Matemática 17 Anexo  •  Módulo 1  •  Unidade 8 O que perguntam por aí? Atividade 1 (ENEM 2010) Um dos grandes problemas da poluição dos mananciais (rios, córregos e outros) ocor- re pelo hábito de jogar óleo utilizado em frituras nos encanamentos que estão interligados com o sistema de esgoto. Se isso ocorrer, cada 10 litros de óleo poderão contaminar 10 mi- lhões (107 ) de litros de água potável. Manual de etiqueta. Parte integrante das revistas Veja (ed. 2055), Cláudia (ed. 555), National Geographic (ed. 93) e Nova Escola (ed. 208) (adaptado). Suponha que todas as famílias de uma cidade descartem os óleos de frituras através dos encanamentos e consomem 1 000 litros de óleo em frituras por semana. Qual seria, em litros, a quantidade de água potável contaminada por semana nessa cidade? a) 10-2 b) 103 c) 104 d) 106 e) 109
  18. 18. Anexo  •  Módulo 1  •  Unidade 818 Atividade 2 (ENEM 2011)
  19. 19. Matemática e suas Tecnologias  •  Matemática 19 Anexo  •  Módulo 1  •  Unidade 8 Caia na Rede! Na onda dos fractais Na atividade 1 desta unidade, falamos um pouco sobre os fractais, essas imagens sur- preendentes realizadas a partir de padrões matemáticos. Se você ficou interessando em co- nhecer mais sobre os fractais, tenho duas dicas para te dar. A primeira dica é o site: www.fractarte.com.br. Lá você poderá encontrar mais formas parecidas com as vistas na atividade. Clique no link galeria e visite as imagens que estão expostas. Caso queria aprender um pouco mais sobre fractais e como eles são elabo- rados, clique no link artigos, nele você vai encontrar muita informação interessante. Caso você queira ter um fractal só seu, a se- gunda dica é baixar um arquivo de Excel, disponível no site: info.abril.com.br/downloads/mandelbrot- -macro. Com este arquivo você poderá gerar fractais para salvar em seu computador.
  20. 20. Anexo  •  Módulo 1  •  Unidade 820 Seção 1 – Potenciação Situação problema 9 alunos 3 + 9 + 27 = 39 alunos Em 50 minutos todos os alunos da escola ficam sabendo do boato. Observe: Tempo (minutos) 10 20 30 40 50 Novos alunos que ouvem a fofoca 3 9 27 81 243 3 + 9 + 27 + 81 + 243 = 363 363 +1(o que cria a fofoca) = 364 (número de alunos) Atividade 1 Fase Número de triângulos 1 1 30 2 3 31 3 9 32 4 27 33 5 81 34 6 243 35 7 729 36 8 2187 37 9 6561 38 10 19683 39 a) 349 triângulos b)       4 3 4 c)       9 3 4
  21. 21. Matemática e suas Tecnologias  •  Matemática 21 Fase Fração pintada 1 1 2 3 4 3   =     2 9 3 16 4 4   =     3 27 3 64 4 5       4 3 4 6       5 3 4 ... ... 10       9 3 4 Atividade 2 a) 1,4 bilhão de pessoas = 1,4 x 109 de pessoas = 1.400.000.000 de pessoas b) 1100 milhões de pessoas = 1,1 x 109 de pessoas = 1.100.000.000 de pessoas c) 2400 milhões dos habitantes = 2,4 x 109 dos habitantes = 2.400.000.000 dos habitantes Atividade 3 a) 6.400.000 m b) 74.400.000.000.000.000.000.000 Kg c) 384.000.000 m Atividade 4 a) 34000000000000000 = 3,4 x 1016 b) 1230000000000 = 1,23 x 1012 c) 0,000000000123 = 1,23 x 10-10 d) 0,000000173 = 1,73 x 10-7
  22. 22. Anexo  •  Módulo 1  •  Unidade 822 Atividade 5 a) 1,23x108 =123000000 b) 3,4x105 = 340000 c) 5,3x10-6 =0,0000053 d) 1,2x10-8 = 0,000000012 Situação problema 2 2 3 4 a) 3 = 9 a) 3 = 27 a) 2 = 16 2 3 4 b) 8 = 64 b) 10 = 1000 b) 3 = 81 2 3 4 c) 10 = 100 c) 4 = 64 c) 10 = 10000 Seção 2 – Radiciação Atividade 6 16 = 4 =3 27 3 =4 256 4 =5 32 2 =6 1000000 10 Atividade 7 a) 25 + 16 ≠ 41 b) +100 36 ≠ 10 + 6 c) ⋅100 36 = 10 · 6 d) +2 2 10 6 = 10 + 6
  23. 23. Matemática e suas Tecnologias  •  Matemática 23 e) +2 2 10 6 ≠ 10 + 6 f) +2 2 10 6 = 136 O que perguntam por aí? Atividade 1 Resposta: Letra E Atividade 2 Resposta: Letra A

×