SlideShare a Scribd company logo
1 of 51
NON-AQUEOUS TITRATIONS
INTRODUCTION
During the past four decades a several newer complex
organic medicinal compounds have been proved of
therapeutic value.
Evidently, these compounds posed two vital problems
during their analysis
(a) poor solubility
(b) weak reactivity in aqueous medium
Such substances which give poor end point due to
being weak acids or bases in aqueous solutions can be
analysed by non-aqueous titrations.
Additionally the substances which are insoluble in
water dissolve in organic solvents and can be titrated in
non-aqueous media.
Nonaqueous titration is the titration of substances
dissolved in no aqueous solvent.
It is suitable for the titration of very weak acids and weak
bases.
Weak bases which have Kb values less than
10–6 can not be assayed accurately in aqueous medium.
However such weak bases can be titrated
satisfactorily by non-aqueous titrations.
Consider assay of a weak base
In aqueous solution a very weak base may act as a weaker
proton acceptor compared to water and cannot be titrated
properly with distinct end point.
However this difficulty can be overcome using non-
aqueous solvents….
In non-aqueous solvents like glacial acetic acid, it can
accept proton readily when perchloric acid is used as
titrant.
HClO4 + CH3COOH CH3COOH2
+
CH3COOH2
+ + B BH+ + CH3COOH
Similarly, substances which are weakly acidic in nature like
phenol, barbiturates can be satisfactorily titrated in
dimethylformamide solvent and using alkali methoxide as
titrant.
Non–aqueous solvents are classified into four groups
A) Aprotic
B) Protophilic
C) Protogenic
D) Amphiprotic
A) Aprotic solvents
These are chemically neutral and unreactive
substances having low dielectric constant and don’t
cause ionization of solutes and do not undergo
reactions with acids and bases
e.g. toluene and carbon tetrachloride.
B) Protophilic solvents
These solvents possess high affinity for protons. In
presence of such strongly protophilic solvents acidic
strength of weak acids is enhanced and they become
comparable to strong acids
e.g. liquid ammonia, amines and ketones.
This is called as levelling effect.
C) Protogenic solvents
Thse solvents are acidic in nature and readily donate
protons.Due to their ability to donate portons they
enhance strength of weak bases
e.g. sulhuric acid, hydrogen fluoride.
D) Amphiprotic solvents
These solvents are slightly ionized. They possess
protogenic as well as protophilic properties. Thus they
donate as well as accept protons e.g. water, alcohol, weak
organic acids.
Ethanoic acid generally displays acidic properties and
dissociates to produce protons
CH3COOH CH3COO- + H+
In presence of perchoric acid (stronger acid) it accepts a
proton
CH3COOH + HClO4 CH3COOH2
+ + ClO4
3
3
LEVELLING SOLVENTS
strongly protophilic or strongly protogenic solvents act as
leveling solvents in non-aqueous titrations.
In presence of strongly protophilic solvents, all acids act
to be of similar strength.
The converse occurs with strongly protogenic solvents
which cause all the bases to act as if they were of
similar strength.
Solvents which act in this manner are levelling solvents.
Strong bases are levelling solvent for acids.
DIFFERENTIATING SOLVENTS
Strong protogenic/protophilic solvents exert a levelling
effect on weak bases/acids
A strong protogenic solvent cannot differentiate between
weak base and a very weak base as it forces both to accept
proton .
• A relatively weak protogenic solvent can differentiate
between a weak base and slightly weaker base by
causing the relatively more basic substance to act as a
base while not affecting the weaker one.
• Thus exerting a differentiating effect.
• Similarly weak protophilic solvents differentiate between
weak acid and slightly weaker acid.
SELECTION OF SOLVENT
Selection of a proper solvent is essential in non-aqueous
titrations.
Especially important factors are the basicity and the
dielectric properties of the solvent.
Increased basicity of the solvent enhances the acidic
properties of a dissolved acid (sample).
A low dielectric constant of the solvent depresses the
ionisation and thereby enhances the acid strength or base
strength of the sample to be assayed.
ASSAY BY NON-AQUEOUS TITRATIONS
(a) Acidimetry in Non-aqueous Titrations
It can be further sub-divided into two heads namely :
(1) Titration of primary, secondary and tertiary amines
(2) Titration of halogen acid salts of bases.
(b) Alkalimetry in Non-aqueous Titrations
Titration of acidic substances
Acidimetry in Non-aqueous Titrations (TITRATION OF WEAK
BASES)
TITRANT -
Perchloric Acid : It is a very strong acid and when it is
made to dissolve in acetic acid, acetic acid behaves as a
base and forms an ‘onium ion’ after combining with
protons donated by the perchloric acid.
As the CH3COOH2
+ ion can instantly donate its
proton to a base, therefore, a solution of perchloric
acid in glacial acetic acid, behaves as a strongly acidic
solution.
e.g. Pyridine, a weak base, when dissolved in acetic acid,
acetic acid exerts its levelling effect and subsequently
increases the basic characteristics of the pyridine.
Therefore, it is practically feasible to titrate a solution of a
weak base in acetic acid against a mixture of perchloric
acid in acetic acid.
Thus, a sharp end point is achieved which otherwise
cannot be obtained when the titration is performed in an
aqueous medium.
REACTIONS INVOLVED IN PYRIDINE ASSAY
For non-aqueous titrations of weak bases, the following
four steps are usually taken into consideration, namely :
(i) Preparation of 0.1 N Perchloric acid
(ii) Standardization of 0.1 N Perchloric Acid
(iii) Choice of Indicators
(iv) Effect of Temperature on Assays
PREPARATION OF 0.1 N PERCHLORIC ACID
Procedure : Gradually mix 8.5 ml of perchloric acid to 900
ml of glacial acetic acid with vigorous and continuous
stirring.
Now add 30 ml acetic anhydride and make up the volume
to 1 litre with glacial acetic acid and allow to stand for 24
hours before use.
The acetic anhydride reacts with the water (approx. 30%)
in perchloric acid and some traces in glacial acetic acid
thereby making the resulting mixture practically
anhydrous.
STANDARDIZATION OF 0.1 N PERCHLORIC ACID -
• Usually potassium hydrogen phthalate is used
as a standardizing agent for acetous perchloric
acid.
• To 500 mg of potassium acid phthalate add 25 ml
of glacial acetic acid and add few drops of 5% w/v
crystal violet in glacial acetic acid as indicator. This
solution is titrated with 0.1 HClO4. The colour
changes from blue to blue green.
• 1 ml of 0.1N HClO4 = 0.020414 gms of potassium
acid Phthalate.
PRECAUTIONS DURING PREPARATION OF PERCHLORIC
ACID
(a) Perchloric acid is usually available as a 70 to 72%
mixture with water.
It usually undergoes explosive decomposition and,
therefore, it is available always in the form of a
solution.
(b) Conversion of acetic anhydride to acetic acid
requires 40-45 minutes for its completion. It being
an exothermic reaction, the solution must be
allowed to cool to room temperature before adding
glacial acetic acid to volume
CHOICE OF INDICATORS
Indicators commonly used in non-aqueous titrations are
Thymol Blue, Thymolphthalein , Phenolphthalein Azo Violet
,O-nitroaniline.
Following indicators are also widely used ….
EFFECT OF TEMPERATURE ON ASSAYS
Generally, most non-aqueous solvents possess greater
coefficients of expansion as compared to water which is
why small differences in temperature may afford
significant and appreciable errors .
Hence, it is always advisable to carry out standardization
and titration preferably at the same temperature.
EXAMPLES OF ACIDIMETRY
1) Titration of primary, secondary and tertiary amines
Methyldopa
Methacholine Chloride
Adrenaline
Chlordiazepoxide
Quinine sulphate
Salbutamol sulphate
Sodium benzoate
2)Titration of Halogen Acid Salts of Bases-
In general, the halide ions, namely chloride, bromide and
iodide are very weakly basic in character so they cannot
react quantitatively with acetous perchloric acid.
To overcome this problem, mercuric acetate is usually
added to a halide salt thereby causing the replacement
of halide ion by an equivalent amount of acetate ion,
which serves as a strong base in acetic acid
e.g. Amitriptyline Hydrochloride
Ephedrine hydrochloride
Lignocaine hydrochloride
Assay of Ephedrine HCl
PRINCIPLE
• Non-aqueous acid base titration
• Very weakly basic
• Can not react quantitatively with acetous perchloric
acid
• Hence Mercuric acetate is added to replace halide
ion with an equivalent quantity of acetate ion, which
is a strong base in acetic acid
Assay of Ephedrine HCl
ASSAY PROCEDURE : Weigh accurately about 0.17 g of
Ephedrine Hydrochloride, dissolve in 10 ml of
mercuric acetate solution, warming gently, add 50 ml
of acetone and mix. Titrate with 0.1 M perchloric
acid, using 1 ml of a saturated solution of methyl
orange in acetone as indicator, until a red colour is
obtained. Carry out a blank titration. Subtract blank
from sample reading. Calculate percent purity of the
sample.
Ephedrine HCl assay reaction
Factor for assay of Ephedrine HCl
201.7 gms ≡ 1000 ml 1 M HClO4
0.02017 gms C10H15NO,HCl ≡ 1 ml 0.1 M
HClO4
Standardization of HClO4
To 500 mg of potassium acid phthalate add 25 ml of
glacial acetic acid and add few drops of 5% w/v
crystal violet in glacial acetic acid as indicator.
This solution is titrated with 0.1 HClO4. The color
changes from blue to blue green.
Assay of Ephedrine HCl
Assay of sodium benzoate
Preparation and standardization of titrant 0.1N
solution of HClO4
Dissolve 8.5 ml of 72% HClO4 in about 900 ml
glacial acetic acid with constant stirring, add about
30 ml acetic anhydride and make up the volume
(1000 ml) with glacial acetic acid and keep the
mixture for 24 hours. Acetic anhydride absorbs all
the water from HClO4 and glacial acetic acid and
renders the solution virtually anhydrous. HClO4
must be well diluted with glacial acetic acid before
adding acetic anhydride because reaction between
HClO4 and acetic anhydride is explosive.
Assay Procedure :
Weigh accurately about 0.25 g of Sodium Benzoate,
dissolve in 20 ml of anhydrous glacial acetic acid,
warming to 50º if necessary, cool. Titrate with 0.1 M
perchloric acid, using 0.05 ml of 1-naphtholbenzein
solution as indicator. Carry out a blank titration.
1 ml of 0.1 M perchloric acid is equivalent to
0.01441 g of C7H5NaO2.
ALKALIMETRY IN NON-AQUEOUS TITRATIONS
Weakly acidic pharmaceutical substances may be
titrated effectively by making use of a suitable non-
aqueous solvent with a sharp end-point.
such organic compounds include….
Anhydrides, Acids, Amino Acids, Acid Halides.
Titrants used-
0.1 N Potassium Methoxide in Toluene-Methanol
Sodium Methoxide
Lithium Methoxide
Tetrabutylammonium Hydroxide
Primary standard : Benzoic acid
Indicator: Thymol blue
Dimethylformamide (DMF) is used as solvent
Standardization of 0.1 N Methoxide Solution
• Procedure:. Transfer 10 ml of DMF in a
conical flask and add to it 3 to 4 drops of
thymol blue and first neutralize the acidic
impurities present in DMF by titrating with
0.1 N lithium methoxide in toluene-methanol.
Quickly introduce 0.06g of benzoic acid and
titrate immediately with methoxide in
toluene-methanol.
• Caution: Care must be taken to avoid
contamination of neutralized liquid with
atmospheric carbon dioxide.
• The clear solution of sodium methoxide must be
kept away from moisture and atmospheric CO2
as far as possible so as to avoid the following
two chemical reactions that might ultimately
result into the formation of turbidity.
H2O + CH3ONa → CH3OH + NaOH
H2CO3 + 2CH3ONa → 2CH3OH + Na2CO3
Assay of Ethosuximide
• Procedure: Weigh accurately about 0.2 g of the
sample, dissolve in 50 ml of dimethylformamide,
add 2 drops of azo-violet solution and titrate with
0.1 N sodium methoxide to a deep blue end
point, taking precautions to prevent absorption
of atmospheric carbon dioxide. Perform a blank
determination and make any necessary
correction.
• Each ml of 0.1 N sodium methoxide is equivalent
to 0.01412 g of C7H11NO2
.
Reaction involved in Ethosuximide Assay
Examples of drugs assayed by alkalimetry
 AcetazolamideEthosuximide
 Ethosuximide
 Allopurinol
 Nalidixic Acid
 Diloxanide Furoate
 Hydrochlorothiazide

More Related Content

What's hot

Surface active agents
Surface active agentsSurface active agents
Surface active agentschemnidhi
 
Unit i.Optical Isomerism as per PCI syllabus of POC-III
Unit i.Optical Isomerism as per PCI syllabus of POC-III Unit i.Optical Isomerism as per PCI syllabus of POC-III
Unit i.Optical Isomerism as per PCI syllabus of POC-III Ganesh Mote
 
Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Ashwani Dhingra
 
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...Dr Venkatesh P
 
Diazotisation and coupling reaction
Diazotisation and coupling reactionDiazotisation and coupling reaction
Diazotisation and coupling reactionAyan saha
 
Asymmetric Synthesis - Christeena Shaji
Asymmetric Synthesis - Christeena ShajiAsymmetric Synthesis - Christeena Shaji
Asymmetric Synthesis - Christeena ShajiBebeto G
 
Resolution of racemic mixture
Resolution of  racemic mixtureResolution of  racemic mixture
Resolution of racemic mixtureIqrar Ansari
 
Chemistry of Aromatic acid
Chemistry of Aromatic acidChemistry of Aromatic acid
Chemistry of Aromatic acidGanesh Mote
 
Practical Experiment 4: Benzyl from benzoin
Practical Experiment 4: Benzyl from benzoinPractical Experiment 4: Benzyl from benzoin
Practical Experiment 4: Benzyl from benzoinSONALI PAWAR
 
Spin spin coupling and coupling constant
Spin spin coupling and coupling constantSpin spin coupling and coupling constant
Spin spin coupling and coupling constantHimal Barakoti
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titrationmeraj khan
 
Stereoselective and stereospecific reactions
Stereoselective and  stereospecific reactionsStereoselective and  stereospecific reactions
Stereoselective and stereospecific reactionsyesimin
 
Practical Experiment 5: Phenytoin
Practical Experiment 5: Phenytoin Practical Experiment 5: Phenytoin
Practical Experiment 5: Phenytoin SONALI PAWAR
 

What's hot (20)

Surface active agents
Surface active agentsSurface active agents
Surface active agents
 
Unit i.Optical Isomerism as per PCI syllabus of POC-III
Unit i.Optical Isomerism as per PCI syllabus of POC-III Unit i.Optical Isomerism as per PCI syllabus of POC-III
Unit i.Optical Isomerism as per PCI syllabus of POC-III
 
Polynuclear hydrocarbons
Polynuclear hydrocarbonsPolynuclear hydrocarbons
Polynuclear hydrocarbons
 
Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)
 
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...
Thiazole - Synthesis of Thiazole - Reactions of Thiazole - Medicinal uses of ...
 
AROMATIC ACID PPT.pptx
AROMATIC ACID PPT.pptxAROMATIC ACID PPT.pptx
AROMATIC ACID PPT.pptx
 
Aromatic amines
Aromatic aminesAromatic amines
Aromatic amines
 
Diazotisation and coupling reaction
Diazotisation and coupling reactionDiazotisation and coupling reaction
Diazotisation and coupling reaction
 
Asymmetric Synthesis - Christeena Shaji
Asymmetric Synthesis - Christeena ShajiAsymmetric Synthesis - Christeena Shaji
Asymmetric Synthesis - Christeena Shaji
 
Unit 3 Pyrrole
Unit 3 PyrroleUnit 3 Pyrrole
Unit 3 Pyrrole
 
Resolution of racemic mixture
Resolution of  racemic mixtureResolution of  racemic mixture
Resolution of racemic mixture
 
Chemistry of Aromatic acid
Chemistry of Aromatic acidChemistry of Aromatic acid
Chemistry of Aromatic acid
 
Practical Experiment 4: Benzyl from benzoin
Practical Experiment 4: Benzyl from benzoinPractical Experiment 4: Benzyl from benzoin
Practical Experiment 4: Benzyl from benzoin
 
Spin spin coupling and coupling constant
Spin spin coupling and coupling constantSpin spin coupling and coupling constant
Spin spin coupling and coupling constant
 
Coarse dispersion
Coarse dispersionCoarse dispersion
Coarse dispersion
 
Pharmaceutics - emulsions
Pharmaceutics - emulsionsPharmaceutics - emulsions
Pharmaceutics - emulsions
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 
Stereoselective and stereospecific reactions
Stereoselective and  stereospecific reactionsStereoselective and  stereospecific reactions
Stereoselective and stereospecific reactions
 
Conformation of ethane and n butane
Conformation of ethane and n butaneConformation of ethane and n butane
Conformation of ethane and n butane
 
Practical Experiment 5: Phenytoin
Practical Experiment 5: Phenytoin Practical Experiment 5: Phenytoin
Practical Experiment 5: Phenytoin
 

Similar to NON AQUEOUS FINAL - Copy.pptx

NON AQUEOUS TITRATION.pptx
NON AQUEOUS TITRATION.pptxNON AQUEOUS TITRATION.pptx
NON AQUEOUS TITRATION.pptxNeetuSoni21
 
5. non aqueous titrations
5. non aqueous titrations5. non aqueous titrations
5. non aqueous titrationsNikithaGopalpet
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titrationYasminMomin3
 
Non aq titrations unit 2
Non aq titrations unit 2Non aq titrations unit 2
Non aq titrations unit 2RoopeshGupta5
 
Non aq. acid base titration
Non aq. acid base titrationNon aq. acid base titration
Non aq. acid base titrationDhanashree Kad
 
non aqueous titrations of acid and base .pptx
non aqueous titrations of acid and base  .pptxnon aqueous titrations of acid and base  .pptx
non aqueous titrations of acid and base .pptxDeepali69
 
Non-aqueous acid base titrimetry
Non-aqueous acid base titrimetryNon-aqueous acid base titrimetry
Non-aqueous acid base titrimetryObydulla (Al Mamun)
 
Non aqueous acid-base titrations
Non aqueous acid-base titrationsNon aqueous acid-base titrations
Non aqueous acid-base titrationsSai Datri Arige
 
Acid base titrations & nat unit 2 pa
Acid base titrations & nat unit 2 paAcid base titrations & nat unit 2 pa
Acid base titrations & nat unit 2 paRoopeshGupta5
 
PA- I Non aqueous titration (HRB)
PA- I  Non aqueous titration (HRB)PA- I  Non aqueous titration (HRB)
PA- I Non aqueous titration (HRB)Harshadaa bafna
 
Non-aqueous titration.
Non-aqueous titration.Non-aqueous titration.
Non-aqueous titration.Nidhi Sharma
 
non-aqueous-titration FOR PHARM ANALYSIS.pptx
non-aqueous-titration FOR PHARM ANALYSIS.pptxnon-aqueous-titration FOR PHARM ANALYSIS.pptx
non-aqueous-titration FOR PHARM ANALYSIS.pptxSajidHussain495712
 
Non aqueous titration- Pharmaceutical Analysis
Non aqueous titration- Pharmaceutical AnalysisNon aqueous titration- Pharmaceutical Analysis
Non aqueous titration- Pharmaceutical AnalysisSanchit Dhankhar
 
Non aqueous titration.pptx
Non aqueous titration.pptxNon aqueous titration.pptx
Non aqueous titration.pptxDhanyaBSen
 

Similar to NON AQUEOUS FINAL - Copy.pptx (20)

NON AQUEOUS TITRATION.pptx
NON AQUEOUS TITRATION.pptxNON AQUEOUS TITRATION.pptx
NON AQUEOUS TITRATION.pptx
 
5. non aqueous titrations
5. non aqueous titrations5. non aqueous titrations
5. non aqueous titrations
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 
Non-aq. Titration.pdf
Non-aq. Titration.pdfNon-aq. Titration.pdf
Non-aq. Titration.pdf
 
Non aq titrations unit 2
Non aq titrations unit 2Non aq titrations unit 2
Non aq titrations unit 2
 
Non aq. acid base titration
Non aq. acid base titrationNon aq. acid base titration
Non aq. acid base titration
 
non aqueous titrations of acid and base .pptx
non aqueous titrations of acid and base  .pptxnon aqueous titrations of acid and base  .pptx
non aqueous titrations of acid and base .pptx
 
Non-aqueous acid base titrimetry
Non-aqueous acid base titrimetryNon-aqueous acid base titrimetry
Non-aqueous acid base titrimetry
 
NON-AQEUOUS TITRATION.pdf
NON-AQEUOUS TITRATION.pdfNON-AQEUOUS TITRATION.pdf
NON-AQEUOUS TITRATION.pdf
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 
Non aqueous acid-base titrations
Non aqueous acid-base titrationsNon aqueous acid-base titrations
Non aqueous acid-base titrations
 
6 non aqueous jntu pharmacy
6 non aqueous jntu pharmacy6 non aqueous jntu pharmacy
6 non aqueous jntu pharmacy
 
Acid base titrations & nat unit 2 pa
Acid base titrations & nat unit 2 paAcid base titrations & nat unit 2 pa
Acid base titrations & nat unit 2 pa
 
PA- I Non aqueous titration (HRB)
PA- I  Non aqueous titration (HRB)PA- I  Non aqueous titration (HRB)
PA- I Non aqueous titration (HRB)
 
Non-aqueous titration.
Non-aqueous titration.Non-aqueous titration.
Non-aqueous titration.
 
Non aq. titration
Non aq. titrationNon aq. titration
Non aq. titration
 
non-aqueous-titration FOR PHARM ANALYSIS.pptx
non-aqueous-titration FOR PHARM ANALYSIS.pptxnon-aqueous-titration FOR PHARM ANALYSIS.pptx
non-aqueous-titration FOR PHARM ANALYSIS.pptx
 
Non aqueous titration- Pharmaceutical Analysis
Non aqueous titration- Pharmaceutical AnalysisNon aqueous titration- Pharmaceutical Analysis
Non aqueous titration- Pharmaceutical Analysis
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 
Non aqueous titration.pptx
Non aqueous titration.pptxNon aqueous titration.pptx
Non aqueous titration.pptx
 

Recently uploaded

Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 

Recently uploaded (20)

Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 

NON AQUEOUS FINAL - Copy.pptx

  • 2. INTRODUCTION During the past four decades a several newer complex organic medicinal compounds have been proved of therapeutic value. Evidently, these compounds posed two vital problems during their analysis (a) poor solubility (b) weak reactivity in aqueous medium
  • 3. Such substances which give poor end point due to being weak acids or bases in aqueous solutions can be analysed by non-aqueous titrations. Additionally the substances which are insoluble in water dissolve in organic solvents and can be titrated in non-aqueous media.
  • 4. Nonaqueous titration is the titration of substances dissolved in no aqueous solvent. It is suitable for the titration of very weak acids and weak bases.
  • 5. Weak bases which have Kb values less than 10–6 can not be assayed accurately in aqueous medium. However such weak bases can be titrated satisfactorily by non-aqueous titrations.
  • 6. Consider assay of a weak base In aqueous solution a very weak base may act as a weaker proton acceptor compared to water and cannot be titrated properly with distinct end point. However this difficulty can be overcome using non- aqueous solvents….
  • 7. In non-aqueous solvents like glacial acetic acid, it can accept proton readily when perchloric acid is used as titrant. HClO4 + CH3COOH CH3COOH2 + CH3COOH2 + + B BH+ + CH3COOH Similarly, substances which are weakly acidic in nature like phenol, barbiturates can be satisfactorily titrated in dimethylformamide solvent and using alkali methoxide as titrant.
  • 8. Non–aqueous solvents are classified into four groups A) Aprotic B) Protophilic C) Protogenic D) Amphiprotic
  • 9. A) Aprotic solvents These are chemically neutral and unreactive substances having low dielectric constant and don’t cause ionization of solutes and do not undergo reactions with acids and bases e.g. toluene and carbon tetrachloride.
  • 10. B) Protophilic solvents These solvents possess high affinity for protons. In presence of such strongly protophilic solvents acidic strength of weak acids is enhanced and they become comparable to strong acids e.g. liquid ammonia, amines and ketones. This is called as levelling effect.
  • 11. C) Protogenic solvents Thse solvents are acidic in nature and readily donate protons.Due to their ability to donate portons they enhance strength of weak bases e.g. sulhuric acid, hydrogen fluoride.
  • 12. D) Amphiprotic solvents These solvents are slightly ionized. They possess protogenic as well as protophilic properties. Thus they donate as well as accept protons e.g. water, alcohol, weak organic acids. Ethanoic acid generally displays acidic properties and dissociates to produce protons CH3COOH CH3COO- + H+ In presence of perchoric acid (stronger acid) it accepts a proton CH3COOH + HClO4 CH3COOH2 + + ClO4 3 3
  • 13. LEVELLING SOLVENTS strongly protophilic or strongly protogenic solvents act as leveling solvents in non-aqueous titrations. In presence of strongly protophilic solvents, all acids act to be of similar strength.
  • 14. The converse occurs with strongly protogenic solvents which cause all the bases to act as if they were of similar strength. Solvents which act in this manner are levelling solvents. Strong bases are levelling solvent for acids.
  • 15. DIFFERENTIATING SOLVENTS Strong protogenic/protophilic solvents exert a levelling effect on weak bases/acids A strong protogenic solvent cannot differentiate between weak base and a very weak base as it forces both to accept proton .
  • 16. • A relatively weak protogenic solvent can differentiate between a weak base and slightly weaker base by causing the relatively more basic substance to act as a base while not affecting the weaker one. • Thus exerting a differentiating effect. • Similarly weak protophilic solvents differentiate between weak acid and slightly weaker acid.
  • 17. SELECTION OF SOLVENT Selection of a proper solvent is essential in non-aqueous titrations. Especially important factors are the basicity and the dielectric properties of the solvent. Increased basicity of the solvent enhances the acidic properties of a dissolved acid (sample). A low dielectric constant of the solvent depresses the ionisation and thereby enhances the acid strength or base strength of the sample to be assayed.
  • 18. ASSAY BY NON-AQUEOUS TITRATIONS (a) Acidimetry in Non-aqueous Titrations It can be further sub-divided into two heads namely : (1) Titration of primary, secondary and tertiary amines (2) Titration of halogen acid salts of bases.
  • 19. (b) Alkalimetry in Non-aqueous Titrations Titration of acidic substances
  • 20. Acidimetry in Non-aqueous Titrations (TITRATION OF WEAK BASES) TITRANT - Perchloric Acid : It is a very strong acid and when it is made to dissolve in acetic acid, acetic acid behaves as a base and forms an ‘onium ion’ after combining with protons donated by the perchloric acid.
  • 21. As the CH3COOH2 + ion can instantly donate its proton to a base, therefore, a solution of perchloric acid in glacial acetic acid, behaves as a strongly acidic solution.
  • 22. e.g. Pyridine, a weak base, when dissolved in acetic acid, acetic acid exerts its levelling effect and subsequently increases the basic characteristics of the pyridine. Therefore, it is practically feasible to titrate a solution of a weak base in acetic acid against a mixture of perchloric acid in acetic acid. Thus, a sharp end point is achieved which otherwise cannot be obtained when the titration is performed in an aqueous medium.
  • 23. REACTIONS INVOLVED IN PYRIDINE ASSAY
  • 24. For non-aqueous titrations of weak bases, the following four steps are usually taken into consideration, namely : (i) Preparation of 0.1 N Perchloric acid (ii) Standardization of 0.1 N Perchloric Acid (iii) Choice of Indicators (iv) Effect of Temperature on Assays
  • 25. PREPARATION OF 0.1 N PERCHLORIC ACID Procedure : Gradually mix 8.5 ml of perchloric acid to 900 ml of glacial acetic acid with vigorous and continuous stirring. Now add 30 ml acetic anhydride and make up the volume to 1 litre with glacial acetic acid and allow to stand for 24 hours before use.
  • 26. The acetic anhydride reacts with the water (approx. 30%) in perchloric acid and some traces in glacial acetic acid thereby making the resulting mixture practically anhydrous.
  • 27. STANDARDIZATION OF 0.1 N PERCHLORIC ACID - • Usually potassium hydrogen phthalate is used as a standardizing agent for acetous perchloric acid. • To 500 mg of potassium acid phthalate add 25 ml of glacial acetic acid and add few drops of 5% w/v crystal violet in glacial acetic acid as indicator. This solution is titrated with 0.1 HClO4. The colour changes from blue to blue green. • 1 ml of 0.1N HClO4 = 0.020414 gms of potassium acid Phthalate.
  • 28. PRECAUTIONS DURING PREPARATION OF PERCHLORIC ACID (a) Perchloric acid is usually available as a 70 to 72% mixture with water. It usually undergoes explosive decomposition and, therefore, it is available always in the form of a solution.
  • 29. (b) Conversion of acetic anhydride to acetic acid requires 40-45 minutes for its completion. It being an exothermic reaction, the solution must be allowed to cool to room temperature before adding glacial acetic acid to volume
  • 30. CHOICE OF INDICATORS Indicators commonly used in non-aqueous titrations are Thymol Blue, Thymolphthalein , Phenolphthalein Azo Violet ,O-nitroaniline. Following indicators are also widely used ….
  • 31. EFFECT OF TEMPERATURE ON ASSAYS Generally, most non-aqueous solvents possess greater coefficients of expansion as compared to water which is why small differences in temperature may afford significant and appreciable errors . Hence, it is always advisable to carry out standardization and titration preferably at the same temperature.
  • 32. EXAMPLES OF ACIDIMETRY 1) Titration of primary, secondary and tertiary amines Methyldopa Methacholine Chloride Adrenaline Chlordiazepoxide Quinine sulphate Salbutamol sulphate Sodium benzoate
  • 33. 2)Titration of Halogen Acid Salts of Bases- In general, the halide ions, namely chloride, bromide and iodide are very weakly basic in character so they cannot react quantitatively with acetous perchloric acid.
  • 34. To overcome this problem, mercuric acetate is usually added to a halide salt thereby causing the replacement of halide ion by an equivalent amount of acetate ion, which serves as a strong base in acetic acid e.g. Amitriptyline Hydrochloride Ephedrine hydrochloride Lignocaine hydrochloride
  • 36. PRINCIPLE • Non-aqueous acid base titration • Very weakly basic • Can not react quantitatively with acetous perchloric acid • Hence Mercuric acetate is added to replace halide ion with an equivalent quantity of acetate ion, which is a strong base in acetic acid Assay of Ephedrine HCl
  • 37. ASSAY PROCEDURE : Weigh accurately about 0.17 g of Ephedrine Hydrochloride, dissolve in 10 ml of mercuric acetate solution, warming gently, add 50 ml of acetone and mix. Titrate with 0.1 M perchloric acid, using 1 ml of a saturated solution of methyl orange in acetone as indicator, until a red colour is obtained. Carry out a blank titration. Subtract blank from sample reading. Calculate percent purity of the sample.
  • 39. Factor for assay of Ephedrine HCl 201.7 gms ≡ 1000 ml 1 M HClO4 0.02017 gms C10H15NO,HCl ≡ 1 ml 0.1 M HClO4
  • 40. Standardization of HClO4 To 500 mg of potassium acid phthalate add 25 ml of glacial acetic acid and add few drops of 5% w/v crystal violet in glacial acetic acid as indicator. This solution is titrated with 0.1 HClO4. The color changes from blue to blue green.
  • 42. Assay of sodium benzoate
  • 43. Preparation and standardization of titrant 0.1N solution of HClO4 Dissolve 8.5 ml of 72% HClO4 in about 900 ml glacial acetic acid with constant stirring, add about 30 ml acetic anhydride and make up the volume (1000 ml) with glacial acetic acid and keep the mixture for 24 hours. Acetic anhydride absorbs all the water from HClO4 and glacial acetic acid and renders the solution virtually anhydrous. HClO4 must be well diluted with glacial acetic acid before adding acetic anhydride because reaction between HClO4 and acetic anhydride is explosive.
  • 44. Assay Procedure : Weigh accurately about 0.25 g of Sodium Benzoate, dissolve in 20 ml of anhydrous glacial acetic acid, warming to 50º if necessary, cool. Titrate with 0.1 M perchloric acid, using 0.05 ml of 1-naphtholbenzein solution as indicator. Carry out a blank titration. 1 ml of 0.1 M perchloric acid is equivalent to 0.01441 g of C7H5NaO2.
  • 45. ALKALIMETRY IN NON-AQUEOUS TITRATIONS Weakly acidic pharmaceutical substances may be titrated effectively by making use of a suitable non- aqueous solvent with a sharp end-point. such organic compounds include…. Anhydrides, Acids, Amino Acids, Acid Halides.
  • 46. Titrants used- 0.1 N Potassium Methoxide in Toluene-Methanol Sodium Methoxide Lithium Methoxide Tetrabutylammonium Hydroxide Primary standard : Benzoic acid Indicator: Thymol blue Dimethylformamide (DMF) is used as solvent
  • 47. Standardization of 0.1 N Methoxide Solution • Procedure:. Transfer 10 ml of DMF in a conical flask and add to it 3 to 4 drops of thymol blue and first neutralize the acidic impurities present in DMF by titrating with 0.1 N lithium methoxide in toluene-methanol. Quickly introduce 0.06g of benzoic acid and titrate immediately with methoxide in toluene-methanol. • Caution: Care must be taken to avoid contamination of neutralized liquid with atmospheric carbon dioxide.
  • 48. • The clear solution of sodium methoxide must be kept away from moisture and atmospheric CO2 as far as possible so as to avoid the following two chemical reactions that might ultimately result into the formation of turbidity. H2O + CH3ONa → CH3OH + NaOH H2CO3 + 2CH3ONa → 2CH3OH + Na2CO3
  • 49. Assay of Ethosuximide • Procedure: Weigh accurately about 0.2 g of the sample, dissolve in 50 ml of dimethylformamide, add 2 drops of azo-violet solution and titrate with 0.1 N sodium methoxide to a deep blue end point, taking precautions to prevent absorption of atmospheric carbon dioxide. Perform a blank determination and make any necessary correction. • Each ml of 0.1 N sodium methoxide is equivalent to 0.01412 g of C7H11NO2 .
  • 50. Reaction involved in Ethosuximide Assay
  • 51. Examples of drugs assayed by alkalimetry  AcetazolamideEthosuximide  Ethosuximide  Allopurinol  Nalidixic Acid  Diloxanide Furoate  Hydrochlorothiazide