
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
What is the impact of a recommender system? In a typical threeway interaction between users, items and the platform, a recommender system can have differing impacts on the three stakeholders, and there can be multiple metrics based on utility, diversity, and fairness. One way to measure impact is through randomized A/B tests, but experiments are costly and can only be applied for shortterm outcomes. This talk describes a unifying framework based on causality that can be used to answer such questions. Using the example of a recommender system's effect on increasing sales for a platform, I will discuss the four steps that form the basis of a causal analysis: modeling the causal mechanism, identifying the correct estimand, estimation, and finally checking robustness of the obtained estimates. Utilizing independence assumptions common in click log data, this process led to a new method for estimating impact of recommendations, called the splitdoor causal criterion. In the later half of the talk, I will show how the four steps can be used to address otherw questions such as selection bias, missing data, and fairness questions about a recommender system.
Be the first to like this
Be the first to comment