Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
Check these out next
フリーソフトではじめるNGS融合遺伝子解析入門
Amelieff
CBI学会2013チュートリアル NGSデータ解析入門 (解析編)配布資料
Genaris Omics, Inc.
CBI学会2013チュートリアル NGSデータ解析入門(実験条件編) 配布資料
Genaris Omics, Inc.
フリーソフトで始めるNGS解析_第41・42回勉強会資料
Amelieff
フリーソフトではじめるがん体細胞変異解析入門 第33回勉強会資料
Amelieff
NGS現場の会第4回研究会 モーニング教育セッション 配布用資料 「Windows/Mac環境で始めるNGSデータ解析入門」
Genaris Omics, Inc.
ゲノム育種を実装・利用するためのNGSデータ解析
Hiromi Kajiya-Kanegae
SNPデータ解析入門
Amelieff
1
of
14
Top clipped slide
NGS現場の会第2回_アメリエフ株式会社_Qcleaner
May. 28, 2012
•
0 likes
1 likes
×
Be the first to like this
Show More
•
5,252 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Report
Health & Medicine
Amelieff
Follow
Amelieff
Advertisement
Advertisement
Advertisement
Recommended
NGS現場の会第2回_アメリエフ株式会社_がんExome解析
Amelieff
8.4K views
•
14 slides
フリーソフトではじめるメチル化データ解析入門 SeqCap Epiデータ対応_第40回勉強会資料
Amelieff
5.2K views
•
20 slides
次世代シーケンス解析サーバーReseq解析マニュアル
Amelieff
3.4K views
•
18 slides
フリーソフトではじめるChIP-seq解析_第40回勉強会資料
Amelieff
20.1K views
•
36 slides
Exome解析入門
Amelieff
27K views
•
25 slides
miRNAデータ解析入門_第23回勉強会資料
Amelieff
9.2K views
•
23 slides
More Related Content
Slideshows for you
(20)
フリーソフトではじめるNGS融合遺伝子解析入門
Amelieff
•
10.3K views
CBI学会2013チュートリアル NGSデータ解析入門 (解析編)配布資料
Genaris Omics, Inc.
•
22.9K views
CBI学会2013チュートリアル NGSデータ解析入門(実験条件編) 配布資料
Genaris Omics, Inc.
•
7K views
フリーソフトで始めるNGS解析_第41・42回勉強会資料
Amelieff
•
13K views
フリーソフトではじめるがん体細胞変異解析入門 第33回勉強会資料
Amelieff
•
23.5K views
NGS現場の会第4回研究会 モーニング教育セッション 配布用資料 「Windows/Mac環境で始めるNGSデータ解析入門」
Genaris Omics, Inc.
•
11.8K views
ゲノム育種を実装・利用するためのNGSデータ解析
Hiromi Kajiya-Kanegae
•
6.3K views
SNPデータ解析入門
Amelieff
•
86K views
遺伝統計学・夏の学校@大阪大学2017講義資料 GenomeData解析入門3
Yukinori Okada
•
3K views
Ptt391
Takefumi MIYOSHI
•
3K views
コスモバイオニュース No.176(2021年8月)
COSMO BIO
•
556 views
Java 9で進化する診断ツール
Yasumasa Suenaga
•
4.8K views
第4回Linux-HA勉強会資料 Pacemakerの紹介
ksk_ha
•
9.7K views
jcmd をさわってみよう
Tsunenaga Hanyuda
•
8.3K views
Reconf 201506
Takefumi MIYOSHI
•
3.2K views
Elasticsearch as a Distributed System
Satoyuki Tsukano
•
6.4K views
痛い目にあってわかる HAクラスタのありがたさ
Takatoshi Matsuo
•
12.7K views
PG-REXで学ぶPacemaker運用の実例
kazuhcurry
•
14.5K views
試して覚えるPacemaker入門 『リソース設定編』
健太 松浦
•
8.9K views
ゆるふわLinux-HA 〜PostgreSQL編〜
Taro Matsuzawa
•
6.8K views
Similar to NGS現場の会第2回_アメリエフ株式会社_Qcleaner
(20)
200625material naruse
RCCSRENKEI
•
248 views
プロファイラGuiを用いたコード分析 20160610
HIDEOMI SUZUKI
•
1.5K views
OpenStack Kilo with 6Wind VA High-Performance Networking Using DPDK - OpenSta...
VirtualTech Japan Inc.
•
5.9K views
Java でつくる低レイテンシ実装の技巧
Ryosuke Yamazaki
•
10.5K views
MPSoCのPLの性能について
marsee101
•
2.9K views
OCP Serverを用いたOpenStack Containerの検証
Takashi Sogabe
•
4.7K views
CAメインフレーム システムリソース削減に貢献する製品について
Kaneko Izumi
•
1K views
Versatil Javaチューニング
Kenji Kazumura
•
1K views
卒研発表 バースカ(確認済み)
Baasanchuluun Batnasan
•
193 views
KubeCon Recap for Istio and K8s network performance @Kubernetes Meetup #11
Masaya Aoyama
•
391 views
機械学習 / Deep Learning 大全 (4) GPU編
Daiyu Hatakeyama
•
2.5K views
[bladeRF + MATLAB/Simulink] SDRデバイス利用の手引き
RapidRadioJP
•
4.3K views
NVIDIA TESLA V100・CUDA 9 のご紹介
NVIDIA Japan
•
11.6K views
Javaトラブルに備えよう #jjug_ccc #ccc_h2
Norito Agetsuma
•
44.5K views
1072: アプリケーション開発を加速するCUDAライブラリ
NVIDIA Japan
•
7.5K views
[GTCJ2018] Optimizing Deep Learning with Chainer PFN得居誠也
Preferred Networks
•
8.2K views
iptables BPF module 効果測定
@ otsuka752
•
2.4K views
SDN Japan: ovs-hw
ykuga
•
1.4K views
NVIDIA cuQuantum SDK による量子回路シミュレーターの高速化
NVIDIA Japan
•
67 views
SAP Applicationのソース・エンドポイントとしての利用
QlikPresalesJapan
•
1.1K views
Advertisement
Recently uploaded
(20)
cannabinoids for neuropathic pain
Viya18
•
7 views
#学位证靠谱办萨尔大学文凭证书全套
qghfsvkwiqiubridge
•
2 views
#专业办证《约克大学毕业证学位证原版精仿》
mibiri4418mevor
•
2 views
#国外留学文凭购买Leeds假毕业证书
fc2c0f2b1mymailol
•
2 views
★可查可存档〖制作汉博学院文凭证书毕业证〗
tujjj
•
2 views
办Nipissing电子毕业证书,办尼皮辛大学毕业证高仿成绩单QQ/微信:819 4343,办Nipissing假硕士毕业证,办Nipissing本科假文...
BonnieLaymon
•
5 views
4Fbica
Viya18
•
2 views
★可查可存档〖制作洛林大学文凭证书毕业证〗
tujjj
•
2 views
★可查可存档〖制作艾格伍学院文凭证书毕业证〗
vgfg1
•
2 views
ADBB
Viya18
•
3 views
types of cannabinoids
Viya18
•
8 views
#专业办证《Biola毕业证学位证原版精仿》
sarotex825pgobom
•
2 views
★可查可存档〖制作川特大学文凭证书毕业证〗
mmmm282537
•
2 views
4FMDMBBINACA
Viya18
•
2 views
★可查可存档〖制作伯明翰城市大学文凭证书毕业证〗
vgfg1
•
2 views
#国外留学文凭购买Dayton假毕业证书
14zw8z53qmm
•
3 views
5cladba nedir
Viya18
•
4 views
ETIZOLAM
Viya18
•
20 views
ポートフォリオ用 書籍化(筋トレ) 台本
ReRe Design
•
10 views
202306.pdf
KitSystem
•
8 views
NGS現場の会第2回_アメリエフ株式会社_Qcleaner
FA S TQ
フ ァ イ ル を 対 象 と し た QCツールの開発と性能比較 2012年5月24日 アメリエフ株式会社
FASTQフォーマットについて NGSから得られるテキストベースのリード配列ファイルの形式の一つ
@SEQ_ID GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT + !''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 http://en.wikipedia.org/wiki/FASTQ_format 1行目: ID 2行目: リードの塩基配列 3行目: オプション 4行目: 2行目の塩基に対応した Phred クオリティ値 (ASCIIコードで表記) 2
リードデータのQC NGSから得られる raw-data は以下の問題を含むことがある
データそのものが破損(e.g. クオリティ行が抜けている) Illumina CASAVA filter の結果への対処 リード全体、及び末端のクオリティが低い 未知の塩基(N)の数が多い タグ配列の存在 マッピング前に、raw-dataのクオリティコントロール(QC)が必須 データ量が膨大(数十GB)なため処理が大変 3
従来のQC方法
処理の流れ 使用ツール 長所 データクオリティチェック FastQC ・ 全てフリーソフト Illumina CASAVA filter [Y] を除去 grep ・ 広く使われている クオリティ20未満が80%以上の FastX 短所 リードを除去 ・ 複数のソフトを使用(手間がかかる) クオリティ20未満の末端をトリム ・ cmpfastq: メモリを大量消費 未知の塩基(N)が多いリード除去 ・ FASTQ形式にマッチしないリードの PRINSEQ 検出ができない 配列長が短いリード除去 片側のみのリードを除外 cmpfastq データクオリティチェック FastQC *タグ配列に関する処理は現時点では除く 4
Qcleanerを用いる方法
処理の流れ 使用ツール FASTQ形式にマッチするかチェック Qcleaner: 弊社独自開発ツール データクオリティチェック FastQC Perlで作成 (ソースは弊社オリジナル) Illumina CASAVA filter [Y] を除去 複数ツールの機能を一つに統合 クオリティ20未満が80%以上の リードを除去 長所 Qcleaner ・ コマンド一つ打つだけで実行できる クオリティ20未満の末端をトリム ・ FASTQ形式のチェック機能も搭載 未知の塩基(N)が多いリード除去 ・ メモリ消費を抑えたので 大容量データにも対応 配列長が短いリード除去 ・ 片側のみのリードを除去する際の 片側のみのリードを除外 処理をcmpfastqに比べて 大幅に高速化 データクオリティチェック FastQC *タグ配列に関する処理は現時点では除く 5
Qcleanerの使用方法 使い方: qcleaner.pl --i1 <input
file 1> --i2 <input file 2> --o <output dir> --qp <qvalue,percent> -n <number> --trim <qvalue> --length <length num> --write --i1 <file> Input fastq_1 file --i2 <file> Input fastq_2 file (this script treats pair-end) --o <dir> Output directory name (default: output files are created directly below) --qp <int,int> Check a low quality read, <quality value, percent> --n <int> Allowable number of N content --trim <int> Both term bases are trimmed based on this qvalue. --length <int> Check a short read. --write Output excluded reads in each phase 使用例: $ ./qcleaner.pl --i1 ERR034601_1.fastq --i2 ERR034601_2.fastq –o out --qp 20,80 -n 6 --trim 20 --length 20 --write 6
QC性能比較 対象FASTQファイル
Accession: ERR034601, data size 19 GB × 2 Sample: Human, exome sequencing of the JPT Experiment: Illumina HiSeq 2000, 90 bp, paired-end QC条件 リード除去の条件: ・ Illumina CASAVA filterの結果がY ・ クオリティ値が20未満の塩基が80%以上存在 ・ 未知の塩基(N)の数が6個以上存在 ・ リード長が20塩基未満 ・ QC処理の結果発生したシングルリードの除外 リードトリミングの条件: ・ 両末端のクオリティ値が20未満の塩基をトリム 7
結果: 処理時間の比較
従来のQC法 Qcleaner データクオリティチェック(FastQC) 20分 20分 Illumina CASAVA filter [Y] を除去 4分 12分 クオリティ20未満が80%以上の リードを除去 41分 クオリティ20未満の末端をトリム 3時間31分 5時間12分 未知の塩基(N)が多いリード除去 35分 配列長が短いリード除去 34分 片側のみのリードを除外 3時間22分 27分 データクオリティチェック(FastQC) 19分 17分 Total time 9時間26分 6時間28分 同じQC内容での処理時間はQcleanerの方が従来のQCより短い Qcleanerの[FASTQ形式のチェック機能: ON] → プラス 4時間程度かかる 8
結果: メモリ使用量の比較
25 従来のQC Qcleaner 20 Memory usage (GB) 15 10 5 0 0 50 100 150 200 250 300 350 400 450 500 550 600 Execution time (min) *Qcleanerは[FASTQ形式のチェック機能: ON] で計測 メモリ使用量も、Qcleanerの方が従来のQCより大幅に少ない 9
結果:リード・塩基数の変化
ERR034601_1.fastq ERR034601_2.fastq 従来のQC Qcleaner 従来のQC Qcleaner リード数(処理前からの割合) 57,019,726(96.24%) 57,019,726(96.24%) 57,019,726(96.24%) 57,019,726(96.24%) 塩基数(処理前からの割合) 4,941,135,848(92.66%) 4,941,135,848(92.66%) 4,871,975,403(91.37%) 4,871,975,403(91.37%) リード最大長さ 90 90 90 90 リード平均長さ 86.66 86.66 85.44 85.44 リード長さ中央値 90 90 90 90 リード最少長さ 20 20 20 20 最頻値 90 90 90 90 最頻値の数 47,125,726 47,125,726 44,127,821 44,127,821 範囲 71 71 71 71 標準偏差 10.39 10.39 12.13 12.13 従来のQCとQcleanerの結果は、完全に一致する。 10
結果: Base quality
処理前 従来のQC Qcleaner Base quality score ERR034601_1.fastq ERR034601_2.fastq Position in read (bp) 赤線:中央値 , 黄箱:四分位数間領域 ( 25 - 75 % ), ひげ:上10 %・下90%, 青線:平均値 11
結果:N含有量の変化
0.05 ERR034601_1.fastq 0.04 処理前 従来のQC Qcleaner 0.03 0.02 Per base N content 0.01 0 0.125 ERR034601_2.fastq 0.1 0.075 0.05 0.025 0 Position in read 12
Length distribution (×107)
0 1 2 3 4 5 0 1 2 3 4 5 40 50 40 50 20-21 20-21 22-23 22-23 24-25 24-25 26-27 26-27 28-29 28-29 30-31 30-31 32-33 32-33 従来のQC 34-35 34-35 36-37 36-37 ERR034601_2.fastq ERR034601_1.fastq 38-39 38-39 40-41 40-41 42-43 42-43 44-45 44-45 Qcleaner 46-47 46-47 48-49 48-49 50-51 50-51 52-53 52-53 54-55 54-55 56-57 56-57 58-59 58-59 60-61 60-61 Sequence Length 62-63 62-63 64-65 64-65 66-67 66-67 68-69 68-69 70-71 70-71 結果:リード長の分布 72-73 72-73 74-75 74-75 76-77 76-77 78-79 78-79 80-81 80-81 82-83 82-83 84-85 84-85 86-87 86-87 88-89 88-89 90-91 90-91 13
まとめ Qcleanerはコマンド一つで実行できる。 Qcleanerは従来のQCと完全に同じ精度でリードクオリティを
コントロールできる。 処理時間は従来のQCと比較して短い。(約30%の高速化) メモリ使用量は従来のQCと比較して大幅に削減。 追加機能として、QcleanerではFastq形式のチェックも可能。 14
Advertisement