Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Lessons & Use-Cases at Scale - Dr. Pete Stanski

677 views

Published on

In this session you will hear how Amazon Web Services (AWS) operates at scale and services over 1 Million customers, which maps to even more API calls every single second. Come and hear about how they deal with APIs, operate at scale and help to create lego block services that helps them to be customer obsessed.

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Lessons & Use-Cases at Scale - Dr. Pete Stanski

  1. 1. ©  2016,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Peter  ‘Dr Pete’  Stanski Senior  Solution  Architect  Manager Lessons  &  Use-­Cases  at  Scale
  2. 2. Observations
  3. 3. C L O U D   C O M P U T I N G   H A S   B E C O M E   T H E   N E W   N O R M A L DEPLOYING  NEW   APPLICATIONS  TO   THE  CLOUD   BY  DEFAULT MIGRATING  EXISTING   APPLICATIONS  AS   QUICKLY  AS   POSSIBLE E2C
  4. 4. DEVELOPMENT &  TEST ALL  TOGETHER  NEW   APPLICATIONS DIGITAL ANALYTICS MOBILE DC  MIGRATION MISSION CRITICAL  APPS ALL  IN THE  JOURNEY  TO  AWS IS  A  WELL  TRODDEN  PATH WHAT  WE  ARE  USED  TO  SEEING…
  5. 5. DEVELOPMENT &  TEST ALL  TOGETHER  NEW   APPLICATIONS DIGITAL ANALYTICS MOBILE DC  MIGRATION MISSION CRITICAL  APPS ALL  IN THE  JOURNEY  TO  AWS IS  A  WELL  TRODDEN  PATH WHAT  WE  ARE  SEEING  TODAY
  6. 6. At  Scale
  7. 7. O V E R   1   M I L L I O N   A C T I V E   C U S T O M E R S A N D   G R O W I N G *  “Active  customer”  is  defined  as  a  non-­Amazon  customer  with  AWS  account  usage  activity  in  the  past  month,  including  the  free  tier
  8. 8. daily
  9. 9. *  As  of  1  January  2017 2010 61 516 1,017 159 2012 2014 2016 AWS  Pace  of  Innovation
  10. 10. *  As  of  1  January  2017 2010 61 516 1,017 159 2012 2014 2016 AWS  Pace  of  Innovation
  11. 11. 2,913 AWS  Direct   Connect AWS  Elastic  Beanstalk GovCloud Amazon  CloudTrail CloudHSM WorkSpaces Amazon  Kinesis Amazon   AppStream Amazon  SNS Identity  &  Access   Management Amazon  Route  53 AWS  Import/Export Amazon  SWF Redshift Dynamo  DB CloudSearch AWS  Data   Pipeline AWS  Certificate  Manager AWS  KMS Amazon  Config Amazon  RDS   for  Aurora WorkDocs Directory   Service CodeCommit AWS  CodePipeline AWS  Service   Catalog CloudWatch  Logs Amazon  EFS Amazon  API   Gateway Amazon  Machine   Learning AWS  Device  Farm AWS  WAF Elasticsearch  Service QuickSight Import/Export  Snowball RDS  for  MariaDB Amazon  Inspector AWS  IoT EC2  Container Registry Amazon   ElastiCache AWS   CloudFormation Mobile   Analytics   AWS  Mobile  Hub AWS  Storage  Gateway AWS  OpsWorks Elastic Transcoder Amazon  SES EC2 Container  Service Amazon  Cognito AWS  CodeDeploy Glacier Amazon  WorkMail Lambda *As  of  1  January  2017
  12. 12. 16 18   42
  13. 13. 70 Global  CloudFront (CDN)  PoPs
  14. 14. • Newest  Project
  15. 15. SYDNEY  REGION All  regions  have  2  or  more  Availability  Zones  (3  in  Sydney) Availability  Zones  (AZs)  are  isolated   Low  millisecond  latency  between  AZ’s     Supporting  highly  available  architectures  “HA” Customer  data  is  onshore  in  Australia Data  on  our  infrastructure  is  durable! Sydney Region Availability Zone A Availability Zone C Availability Zone B
  16. 16. FULLY  SCALED  AZ
  17. 17. ACTUAL  AWS  REGION
  18. 18. TRANSIT  CENTERS
  19. 19. METRO  FIBER
  20. 20. METRO  FIBER
  21. 21. METRO  FIBER
  22. 22. https://aws.amazon.com/about-­aws/sustainability/
  23. 23. Services  At  Scale
  24. 24. B R O A D E S T   A N D   D E E P E S T   F U N C T I O N A L I T Y HYBRID ARCHITECTURE Data$Backups Integrated$App$ Deployments Direct Connect Identity Federation Integrated$Resource$ Management Integrated$ Networking VMware$ Integration$ MARKETPLACE Business$ Apps Databases DevOps$ Tools NetworkingSecurity Storage Business$ Intelligence INFRASTRUCTURE Availability$ Zones Points$of$ Presence Regions CORE SERVICES Compute VMs,$AutoGscaling,$Load$ Balancing,$Containers,$Cloud$ functions Storage Object,$Blocks,$File,$ Archivals,$ Import/Export Databases Relational,$NoSQL, Caching,$Migration CDN Networking VPC,$DX,$ DNS Access$Control Identity$ Management Key$Management$ &$Storage Monitoring$ &$Logs SECURITY & COMPLIANCE Resource$&$ Usage$Auditing Configuration$ Compliance Web$application$ firewall Assessment$and$ reporting$ TECHNICAL & BUSINESS SUPPORT Support Professional$ Services Account$ Management Partner$ Ecosystem Solutions$ Architects Training$&$ Certification Security$&$ Billing$Reports Optimization$ Guidance ENTERPRISE APPS Backup Corporate$ Email Sharing$&$ Collaboration Virtual$ Desktops IoT Rules$ Engine Registry Device$ Shadows Device$ Gateway Device$ SDKs DEVELOPMENT & OPERATIONSMOBILE SERVICESAPP SERVICESANALYTICS Data Warehousing Hadoop/ Spark Streaming$Data$ Collection Machine$ Learning Elastic$ Search Push Notifications Identity Sync Resource$ Templates OneGclick$App$ Deployment Triggers Containers DevOps$Resource$ Management Application$Lifecycle$ Management API$ Gateway Transcoding Queuing$&$ Notifications Email Workflow Search Streaming$Data$ Analysis Business$ Intelligence Mobile Analytics Single$Integrated$ Console Mobile$App$ Testing Data$ Pipelines PetabyteGScale$ Data$Migration Database$ Migration Schema$ Conversion Application$ Migration MIGRATION
  25. 25. Artificial  Intelligence  on  AWS P2 Instance Amazon   Machine  Learning Deep  Learning AMI  and  template Investment  in MXNet
  26. 26. + Connected  World  Services (3  New  Amazon  AI  Services  for  Developers)
  27. 27. Amazon  Rekognition Image  Recognition  And  Analysis   Powered  By  Deep  Learning 1
  28. 28. Amazon  Rekognition:  Images  In,   Categories  and  Facial  Analysis  Out Amazon   Rekognition Car Outside Daytime Driving Objects   &  Scenes Female   Smiling Sunglasses Age  Estimate Faces
  29. 29. Amazon  Rekognition:  Recognize,   Search  &  Understand  Images Easy  to  use Batch   analysis Real  time   analysis Low  costContinually improving
  30. 30. Amazon  Polly Text  To  Speech  Powered  By  Deep  Learning 2
  31. 31. Amazon  Polly: Text  In,  Life-­like  Speech  Out Amazon  Polly API “The  temperature   in  Sydney  is  25  degrees” “The  temperature   in  Sydney  is  25  degrees”
  32. 32. Amazon  Polly: Text  In,  Life-­like  Speech  Out Returns  an  MP3 audio  stream Unlimited replay Fully  ManagedLightning  fast responses
  33. 33. AmazonALEXA (It’s  what’s  inside  Alexa) 3 Natural  Language  Understanding  (NLU)  &   Automatic  Speech  Recognition  (ASR)  Powered  By  Deep  Learning
  34. 34. Amazon  Lex: Speech   Recognition  &  Natural   Language  Understanding   Amazon  Lex Automatic  Speech  Recognition Natural  Language  Understanding “What’s  the  weather   forecast in   Sydney?” Weather Forecast
  35. 35. Amazon  Lex: Speech   Recognition  &  Natural   Language  Understanding   Amazon  Polly Plays  Back  Redcording “What’s  the  weather   forecast  in   Sydney?” “It  will  be  sunny   and  25°C” Weather Forecast
  36. 36. Amazon  Lex: Build  Natural,  Conversational   Interactions  In  Voice  &  Text Integrated   development in  the   AWS  console Fully   managed Trigger   Lambda functions Continually improving   ASR  &  NLU  models Enterprise   connectors Multi-­step conversations
  37. 37. Key  Take  Aways See,  Hear  and  Speak  in  the  real  world…
  38. 38. www.awstechchat.com
  39. 39. Thank  You

×