SlideShare a Scribd company logo
1 of 61
Deep Dive on Amazon Redshift
Storage Subsystem and Query Life Cycle
Tony Gibbs, Data Warehousing Solutions Architect
October 2017
Are you a user ?
Deep Dive Overview
• Amazon Redshift History and Development
• Cluster Architecture
• Concepts and Terminology
• Storage Deep Dive
• Design Considerations
• Query Life Cycle
• Data Ingestion Best Practices
• Recently Released Features
• Open Q&A
Amazon Redshift History & Development
Columnar
MPP
OLAP
AWS IAMAmazon VPCAmazon SWF
Amazon S3 AWSKMS Amazon
Route 53
Amazon
CloudWatch
Amazon EC2
PostgreSQL Amazon Redshift
February 2013
October 2017
> 100 Significant Patches
> 150 Significant Features
Amazon Redshift Cluster Architecture
Redshift Cluster Architecture
• Massively parallel, shared nothing
• Leader node
– SQL endpoint
– Stores metadata
– Coordinates parallel SQL processing
• Compute nodes
– Local, columnar storage
– Executes queries in parallel
– Load, backup, restore
10 GigE
Ingestion
Backup
Restore
SQL Clients/BI Tools
128GB RAM
16TB disk
16 cores
S3 / EMR / DynamoDB / SSH
JDBC/ODBC
128GB RAM
16TB disk
16 coresCompute
Node
128GB RAM
16TB disk
16 coresCompute
Node
128GB RAM
16TB disk
16 coresCompute
Node
Leader
Node
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
• Parser & Rewriter
• Planner & Optimizer
• Code Generator
• Input: Optimized plan
• Output: >=1 C++ functions
• Compiler
• Task Scheduler
• WLM
• Admission
• Scheduling
• PostgreSQL Catalog Tables
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
• Query execution processes
• Backup & restore processes
• Replication processes
• Local Storage
• Disks
• Slices
• Tables
• Columns
• Blocks
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
• Query execution processes
• Backup & restore processes
• Replication processes
• Local Storage
• Disks
• Slices
• Tables
• Columns
• Blocks
Concepts and Terminology
Designed for I/O Reduction
• Columnar storage
• Data compression
• Zone maps
aid loc dt
1 SFO 2016-09-01
2 JFK 2016-09-14
3 SFO 2017-04-01
4 JFK 2017-05-14
• Accessing dt with row storage:
– Need to read everything
– Unnecessary I/O
aid loc dt
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
);
Designed for I/O Reduction
• Columnar storage
• Data compression
• Zone maps
aid loc dt
1 SFO 2016-09-01
2 JFK 2016-09-14
3 SFO 2017-04-01
4 JFK 2017-05-14
• Accessing dt with columnar storage:
– Only scan blocks for relevant
column
aid loc dt
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
);
Designed for I/O Reduction
• Columnar storage
• Data compression
• Zone maps
aid loc dt
1 SFO 2016-09-01
2 JFK 2016-09-14
3 SFO 2017-04-01
4 JFK 2017-05-14
• Columns grow and shrink independently
• Effective compression ratios due to like data
• Reduces storage requirements
• Reduces I/O
aid loc dt
CREATE TABLE deep_dive (
aid INT ENCODE LZO
,loc CHAR(3) ENCODE BYTEDICT
,dt DATE ENCODE RUNLENGTH
);
Designed for I/O Reduction
• Columnar storage
• Data compression
• Zone maps
aid loc dt
1 SFO 2016-09-01
2 JFK 2016-09-14
3 SFO 2017-04-01
4 JFK 2017-05-14
aid loc dt
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
);
• In-memory block metadata
• Contains per-block MIN and MAX value
• Effectively prunes blocks which cannot
contain data for a given query
• Eliminates unnecessary I/O
SELECT COUNT(*) FROM deep_dive WHERE DATE = '09-JUNE-2013'
MIN: 01-JUNE-2013
MAX: 20-JUNE-2013
MIN: 08-JUNE-2013
MAX: 30-JUNE-2013
MIN: 12-JUNE-2013
MAX: 20-JUNE-2013
MIN: 02-JUNE-2013
MAX: 25-JUNE-2013
Unsorted Table
MIN: 01-JUNE-2013
MAX: 06-JUNE-2013
MIN: 07-JUNE-2013
MAX: 12-JUNE-2013
MIN: 13-JUNE-2013
MAX: 18-JUNE-2013
MIN: 19-JUNE-2013
MAX: 24-JUNE-2013
Sorted By Date
Zone Maps
Terminology and Concepts: Data Sorting
• Goal:
• Make queries run faster by optimizing the effectiveness of zone maps
• Typically on the columns that are filtered on (where clause predicates)
• Impact:
• Enables range restricted scans to prune blocks by leveraging zone maps
• Overall reduction in block I/O
• Achieved with the table property SORTKEY defined on one or more columns
• Optimal SORTKEY is dependent on:
• Query patterns
• Data profile
• Business requirements
Terminology and Concepts: Slices
• A slice can be thought of like a “virtual compute node”
– Unit of data partitioning
– Parallel query processing
• Facts about slices:
– Each compute node has either 2, 16, or 32 slices
– Table rows are distributed to slices
– A slice processes only its own data
Data Distribution
• Distribution style is a table property which dictates how that table’s data is
distributed throughout the cluster:
• KEY: Value is hashed, same value goes to same location (slice)
• ALL: Full table data goes to first slice of every node
• EVEN: Round robin
• Goals:
• Distribute data evenly for parallel processing
• Minimize data movement during query processing
KEY
ALL
Node 1
Slice 1 Slice 2
Node 2
Slice 3 Slice 4
Node 1
Slice 1 Slice 2
Node 2
Slice 3 Slice 4
Node 1
Slice 1 Slice 2
Node 2
Slice 3 Slice 4
EVEN
Data Distribution: Example
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
) DISTSTYLE (EVEN|KEY|ALL);
CN1
Slice 0 Slice 1
CN2
Slice 2 Slice 3
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Data Distribution: EVEN Example
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
) DISTSTYLE EVEN;
CN1
Slice 0 Slice 1
CN2
Slice 2 Slice 3
INSERT INTO deep_dive VALUES
(1, 'SFO', '2016-09-01'),
(2, 'JFK', '2016-09-14'),
(3, 'SFO', '2017-04-01'),
(4, 'JFK', '2017-05-14');
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 0 Rows: 0 Rows: 0 Rows: 0
(3 User Columns + 3 System Columns) x (4 slices) = 24 Blocks (24MB)
Rows: 1 Rows: 1 Rows: 1 Rows: 1
Data Distribution: KEY Example #1
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
) DISTSTYLE KEY DISTKEY (loc);
CN1
Slice 0 Slice 1
CN2
Slice 2 Slice 3
INSERT INTO deep_dive VALUES
(1, 'SFO', '2016-09-01'),
(2, 'JFK', '2016-09-14'),
(3, 'SFO', '2017-04-01'),
(4, 'JFK', '2017-05-14');
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 2 Rows: 0 Rows: 0
(3 User Columns + 3 System Columns) x (2 slices) = 12 Blocks (12 MB)
Rows: 0Rows: 1
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 2Rows: 0Rows: 1
Data Distribution: KEY Example #2
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
) DISTSTYLE KEY DISTKEY (aid);
CN1
Slice 0 Slice 1
CN2
Slice 2 Slice 3
INSERT INTO deep_dive VALUES
(1, 'SFO', '2016-09-01'),
(2, 'JFK', '2016-09-14'),
(3, 'SFO', '2017-04-01'),
(4, 'JFK', '2017-05-14');
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 0 Rows: 0 Rows: 0 Rows: 0
(3 User Columns + 3 System Columns) x (4 slices) = 24 Blocks (24 MB)
Rows: 1 Rows: 1 Rows: 1 Rows: 1
Data Distribution: ALL Example
CREATE TABLE deep_dive (
aid INT --audience_id
,loc CHAR(3) --location
,dt DATE --date
) DISTSTYLE ALL;
CN1
Slice 0 Slice 1
CN2
Slice 2 Slice 3
INSERT INTO deep_dive VALUES
(1, 'SFO', '2016-09-01'),
(2, 'JFK', '2016-09-14'),
(3, 'SFO', '2017-04-01'),
(4, 'JFK', '2017-05-14');
Rows: 0 Rows: 0
(3 User Columns + 3 System Columns) x (2 slice) = 12 Blocks (12MB)
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 0Rows: 1Rows: 2Rows: 4Rows: 3
Table: deep_dive
User Columns System Columns
aid loc dt ins del row
Rows: 0Rows: 1Rows: 2Rows: 4Rows: 3
Terminology and Concepts: Data Distribution
• KEY
– The key creates an even distribution of data
– Joins are performed between large fact/dimension tables
– Optimizing joins and group by
• ALL
– Small and medium size dimension tables (< 2-3M)
• EVEN
– When key cannot produce an even distribution
Table Design Considerations
• Denormalize/materialize heavily filtered columns into the fact table(s)
– Timestamp/date should be in fact tables rather than using time dimension tables
• Add SORT KEYS to medium and large sized tables on the primary columns that
are filtered on
– Not necessary to add them to small tables
• Keep variable length data types as long as required
– VARCHAR, CHAR and NUMERIC
• Add compression to tables
– Optimal compression can be found using ANALYZE COMPRESSION
Storage Deep Dive
Storage Deep Dive: Disks
• Redshift utilizes locally attached storage devices
• Compute nodes have 2.5-3x the advertised storage capacity
• 1, 3, 8, or 24 disks depending on node type
• Each disk is split into two partitions
– Local data storage, accessed by local CN
– Mirrored data, accessed by remote CN
• Partitions are raw devices
– Local storage devices are ephemeral in nature
– Tolerant to multiple disk failures on a single node
Storage Deep Dive: Blocks
• Column data is persisted to 1MB immutable blocks
• Each block contains in-memory metadata:
– Zone Maps (MIN/MAX value)
– Location of previous/next block
• Blocks are individually compressed with 1 of 10 encodings
• A full block contains between 16 and 8.4 million values
Storage Deep Dive: Columns
• Column: Logical structure accessible via SQL
• Physical structure is a doubly linked list of blocks
• These blockchains exist on each slice for each column
• All sorted & unsorted blockchains compose a column
• Column properties include:
– Distribution Key
– Sort Key
– Compression Encoding
• Columns shrink and grow independently, 1 block at a time
• Three system columns per table-per slice for MVCC
Block Properties: Design Considerations
• Small writes:
• Batch processing system, optimized for processing massive amounts of data
• 1MB size + immutable blocks means that we clone blocks on write so as not to
introduce fragmentation
• Small write (~1-10 rows) has similar cost to a larger write (~100 K rows)
• UPDATE and DELETE:
• Immutable blocks means that we only logically delete rows on UPDATE or DELETE
• Must VACUUM or DEEP COPY to remove ghost rows from table
Column Properties: Design Considerations
• Compression:
• COPY automatically analyzes and compresses data when loading into empty tables
• ANALYZE COMPRESSION checks existing tables and proposes optimal
compression algorithms for each column
• Changing column encoding requires a table rebuild
• DISTKEY and SORTKEY significantly influence performance (orders of magnitude)
• Distribution Keys:
• A poor DISTKEY can introduce data skew and an unbalanced workload
• A query completes only as fast as the slowest slice completes
• Sort Keys:
• A sortkey is only effective as the data profile allows it to be
• Selectivity needs to be considered
Parallelism Deep Dive
Storage Deep Dive: Slices
• Each compute node has either 2, 16, or 32 slices
• A slice can be thought of like a “virtual compute node”
– Unit of data partitioning
– Parallel query processing
• Facts about slices:
– Table rows are distributed to slices
– A slice processes only its own data
– Within a compute node all slices read from and write to all disks
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
• Parser & Rewriter
• Planner & Optimizer
• Code Generator
• Input: Optimized plan
• Output: >=1 C++ functions
• Compiler
• Task Scheduler
• WLM
• Admission
• Scheduling
• PostgreSQL Catalog Tables
• Redshift System Tables (STV)
128GB RAM
16TB disk
16 cores
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
128GB RAM
16TB disk
16 cores
Compute Node
Leader Node
• Parser & Rewriter
• Planner & Optimizer
• Code Generator
• Input: Optimized plan
• Output: >=1 C++ functions
• Compiler
• Task Scheduler
• WLM
• Admission
• Scheduling
• PostgreSQL Catalog Tables
• Redshift System Tables (STV)
Query Execution Terminology
• Step: An individual operation needed during query execution. Steps need to be
combined to allow compute nodes to perform a join. Examples: scan, sort,
hash, aggr
• Segment: A combination of several steps that can be done by a single process.
The smallest compilation unit executable by a slice. Segments within a stream
run in parallel.
• Stream: A collection of combined segments which output to the next stream or
SQL client.
Visualizing Streams, Segments, and Steps
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Time
client
JDBC ODBC
Leader Node
Parser
Query Planner
Code Generator
Final Computations
Generate code for
all segments of
one stream
Explain Plans
Compute Node
Receive Compiled Code
Run the Compiled Code
Return results to Leader
Compute Node
Receive Compiled Code
Run the Compiled Code
Return results to Leader
Return results to client
Segments in a stream are
executed concurrently.
Each step in a segment is
executed serially.
Query Lifecycle
Query Execution Deep Dive: Leader Node
1. The leader node receives the query and parses the SQL.
2. The parser produces a logical representation of the original query.
3. This query tree is input into the query optimizer (volt).
4. Volt rewrites the query to maximize its efficiency. Sometimes a single query will be
rewritten as several dependent statements in the background.
5. The rewritten query is sent to the planner which generates >= 1 query plans for the
execution with the best estimated performance.
6. The query plan is sent to the execution engine, where it’s translated into steps,
segments, and streams.
7. This translated plan is sent to the code generator, which generates a C++ function
for each segment.
8. This generated C++ is compiled with gcc to a .o file and distributed to the compute
nodes.
Query Execution Deep Dive: Compute Nodes
• Slices execute the query segments in parallel.
• Executable segments are created for one stream at a time. When the segments
of that stream are complete, the engine generates the segments for the next
stream.
• When the compute nodes are done, they return the query results to the leader
node for final processing.
• The leader node merges the data into a single result set and addresses any
needed sorting or aggregation.
• The leader node then returns the results to the client.
Visualizing Streams, Segments, and Steps
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Time
Query Execution
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Time
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Stream 0
Segment 0
Step 0 Step 1 Step 2
Segment 1
Step 0 Step 1 Step 2 Step 3 Step 4
Segment 2
Step 0 Step 1 Step 2 Step 3
Segment 3
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5
Stream 1
Segment 4
Step 0 Step 1 Step 2 Step 3
Segment 5
Step 0 Step 1 Step 2
Segment 6
Step 0 Step 1 Step 2 Step 3 Step 4
Stream 2
Segment 7
Step 0 Step 1
Segment 8
Step 0 Step 1
Slices
0
1
2
3
Data Ingestion Best Practices
Data Ingestion: COPY Statement
• Ingestion Throughput:
– Each slice’s query processors
can load one file at a time:
• Streaming decompression
• Parse
• Distribute
• Write
• Realizing only partial node
usage as 6.25% of slices are
active
0 2 4 6 8 10 12 141 3 5 7 9 11 13 15
DS2.8XL Compute Node
1 Input File
Data Ingestion: COPY Statement
• Number of input files should
be a multiple of the number of
slices
• Splitting the single file into 16
input files, all slices are
working to maximize ingestion
performance
• COPY continues to scale
linearly as you add nodes 16 Input Files
Recommendation is to use delimited files – 1MB to 1GB after GZIP compression
0 2 4 6 8 10 12 141 3 5 7 9 11 13 15
DS2.8XL Compute Node
Design Considerations: Data Ingestion
• Export Data from Source System
– Delimited Files are recommend
• Pick a simple delimiter '|' or ',' or tabs
• Pick a simple NULL character (N)
• Use double quotes and an escape character ('  ') for varchars
• UTF-8 varchar columns take 4 bytes per char
– Split Files so there is a multiple of the number of slices
• E.g. 8 Slice Cluster = 8, 16, 24, 32, 40… files
– Files sizes should be 1MB – 1GB after gzip compression
• Useful COPY Options
– MAXERRORS
– ACCEPTINVCHARS
– NULL AS
Data Ingestion: Deduplication/UPSERT
BEGIN;
CREATE TEMP TABLE staging(LIKE PRODUCTION);
COPY INTO staging : ' creds ' COMPUPDATE OFF;
DELETE production p
USING staging s WHERE p.id = s.id;
INSERT INTO production SELECT * FROM staging;
DROP TABLE staging;
COMMIT;
Recently Released Features
Recently Released Features
New Column Encoding ZSTD
Unload – Can now specify file sizes
New Functions - OCTET_LENGTH, APPROXIMATE PERCENTILE_DISC
New Data Type - TIMESTAMPTZ
• Support for Timestamp with Time zone : New TIMESTAMPTZ data type to input complete timestamp values that include the
date, the time of day, and a time zone.
Eg: 30 Nov 07:37:16 2016 PST
Multi-byte Object Names
• Support for Multi-byte (UTF-8) characters for tables, columns, and other database object names
User Connection Limits
• You can now set a limit on the number of database connections a user is permitted to have open concurrently
Automatic Data Compression for CTAS
• All newly created tables will leverage default encoding
Fast @ exabyte scale Elastic & highly available On-demand, pay-per-query
High concurrency:
Multiple clusters access
same data
No ETL: Query data in-
place using open file
formats
Full Amazon Redshift
SQL support
S3
SQL
Run SQL queries directly against data in S3 using thousands of nodes
Amazon Redshift Spectrum
• Amazon Redshift Spectrum seamlessly integrates with your existing SQL & BI
apps
• Support for complex joins, nested queries & window functions
• Support for data partitioned in S3 by any key
Date, time, and any other custom keys
e.g., year, month, day, hour
Amazon Redshift Spectrum
Query
SELECT COUNT(*)
FROM S3.EXT_TABLE
GROUP BY…
Amazon
Redshift
JDBC/ODBC
...
1 2 3 4 N
Amazon S3
Exabyte-scale object storage
Data Catalog
Apache Hive Metastore
• Goal - Automatic handling of run-away (poorly written) queries
• Extension to WLM
• Rules applied onto a WLM Queue
– Queries can be LOGGED, CANCELED or HOPPED
Query Monitoring Rules (QMR)
• Metrics with operators and values (e.g. query_cpu_time > 1000) create a
predicate
• Multiple predicates can be AND-ed together to create a rule
• Multiple rules can be defined for a queue in WLM. These rules are OR-ed
together
If { rule } then [action]
{ rule : metric operator value } e.g.: rows_scanned >
100000
• Metric: cpu_time, query_blocks_read, rows scanned,
query execution time, cpu & io skew per slice,
join_row_count, etc.
• Operator: <, >, ==
• Value: integer
[action]: hop, log, abort
Query Monitoring Rules (QMR)
BI tools SQL clientsAnalytics tools
Client AWS
Redshift
ADFS
Corporate
Active Directory IAM
Amazon Redshift
ODBC/JDBC
User groups Individual user
Single Sign-On
Identity providers
New Redshift
ODBC/JDBC
drivers. Grab the
ticket (userid) and
get a SAML
assertion.
IAM Authentication
SQL Scalar User-Defined Functions
Language SQL Support Added for Scalar UDFs
CREATE OR REPLACE FUNCTION inet_ntoa(bigint)
RETURNS varchar(15)
AS
$$
SELECT
CASE WHEN $1 BETWEEN 0 AND 4294967295 THEN
(($1 >> 24) & 255) || '.' ||
(($1 >> 16) & 255) || '.' ||
(($1 >> 8) & 255) || '.' ||
(($1 >> 0) & 255)
ELSE
NULL
END
$$ LANGUAGE SQL IMMUTABLE;
Example:
• https://github.com/awslabs/amazon-redshift-utils
• https://github.com/awslabs/amazon-redshift-monitoring
• https://github.com/awslabs/amazon-redshift-udfs
• Admin scripts
Collection of utilities for running diagnostics on your cluster
• Admin views
Collection of utilities for managing your cluster, generating schema DDL, etc.
• ColumnEncodingUtility
Gives you the ability to apply optimal column encoding to an established schema with
data already loaded
• Amazon Redshift Engineering’s Advanced Table Design Playbook
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-preamble-prerequisites-and-
prioritization/
Resources
Tony Gibbs
aws.amazon.com/activate
Thank you!

More Related Content

What's hot

Hive and HiveQL - Module6
Hive and HiveQL - Module6Hive and HiveQL - Module6
Hive and HiveQL - Module6Rohit Agrawal
 
Hive query optimization infinity
Hive query optimization infinityHive query optimization infinity
Hive query optimization infinityShashwat Shriparv
 
SQL Server 2014 Memory Optimised Tables - Advanced
SQL Server 2014 Memory Optimised Tables - AdvancedSQL Server 2014 Memory Optimised Tables - Advanced
SQL Server 2014 Memory Optimised Tables - AdvancedTony Rogerson
 
Spark SQL Bucketing at Facebook
 Spark SQL Bucketing at Facebook Spark SQL Bucketing at Facebook
Spark SQL Bucketing at FacebookDatabricks
 
Hadoop first mr job - inverted index construction
Hadoop first mr job - inverted index constructionHadoop first mr job - inverted index construction
Hadoop first mr job - inverted index constructionSubhas Kumar Ghosh
 
2014 11 lucene spatial temporal update
2014 11 lucene spatial temporal update2014 11 lucene spatial temporal update
2014 11 lucene spatial temporal updateDavid Smiley
 
Control dataset partitioning and cache to optimize performances in Spark
Control dataset partitioning and cache to optimize performances in SparkControl dataset partitioning and cache to optimize performances in Spark
Control dataset partitioning and cache to optimize performances in SparkChristophePraud2
 
The Latest in Spatial & Temporal Search: Presented by David Smiley
The Latest in Spatial & Temporal Search: Presented by David SmileyThe Latest in Spatial & Temporal Search: Presented by David Smiley
The Latest in Spatial & Temporal Search: Presented by David SmileyLucidworks
 
U-SQL Query Execution and Performance Tuning
U-SQL Query Execution and Performance TuningU-SQL Query Execution and Performance Tuning
U-SQL Query Execution and Performance TuningMichael Rys
 
Be A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data PipelineBe A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data PipelineChester Chen
 
Hive @ Bucharest Java User Group
Hive @ Bucharest Java User GroupHive @ Bucharest Java User Group
Hive @ Bucharest Java User GroupRemus Rusanu
 
Hive : WareHousing Over hadoop
Hive :  WareHousing Over hadoopHive :  WareHousing Over hadoop
Hive : WareHousing Over hadoopChirag Ahuja
 

What's hot (16)

Hive and HiveQL - Module6
Hive and HiveQL - Module6Hive and HiveQL - Module6
Hive and HiveQL - Module6
 
Hive query optimization infinity
Hive query optimization infinityHive query optimization infinity
Hive query optimization infinity
 
SQL Server 2014 Memory Optimised Tables - Advanced
SQL Server 2014 Memory Optimised Tables - AdvancedSQL Server 2014 Memory Optimised Tables - Advanced
SQL Server 2014 Memory Optimised Tables - Advanced
 
03 hive query language (hql)
03 hive query language (hql)03 hive query language (hql)
03 hive query language (hql)
 
Spark SQL Bucketing at Facebook
 Spark SQL Bucketing at Facebook Spark SQL Bucketing at Facebook
Spark SQL Bucketing at Facebook
 
Hadoop first mr job - inverted index construction
Hadoop first mr job - inverted index constructionHadoop first mr job - inverted index construction
Hadoop first mr job - inverted index construction
 
SqlSaturday199 - Columnstore Indexes
SqlSaturday199 - Columnstore IndexesSqlSaturday199 - Columnstore Indexes
SqlSaturday199 - Columnstore Indexes
 
2014 11 lucene spatial temporal update
2014 11 lucene spatial temporal update2014 11 lucene spatial temporal update
2014 11 lucene spatial temporal update
 
Control dataset partitioning and cache to optimize performances in Spark
Control dataset partitioning and cache to optimize performances in SparkControl dataset partitioning and cache to optimize performances in Spark
Control dataset partitioning and cache to optimize performances in Spark
 
Sql rally 2013 columnstore indexes
Sql rally 2013   columnstore indexesSql rally 2013   columnstore indexes
Sql rally 2013 columnstore indexes
 
Ch1
Ch1Ch1
Ch1
 
The Latest in Spatial & Temporal Search: Presented by David Smiley
The Latest in Spatial & Temporal Search: Presented by David SmileyThe Latest in Spatial & Temporal Search: Presented by David Smiley
The Latest in Spatial & Temporal Search: Presented by David Smiley
 
U-SQL Query Execution and Performance Tuning
U-SQL Query Execution and Performance TuningU-SQL Query Execution and Performance Tuning
U-SQL Query Execution and Performance Tuning
 
Be A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data PipelineBe A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data Pipeline
 
Hive @ Bucharest Java User Group
Hive @ Bucharest Java User GroupHive @ Bucharest Java User Group
Hive @ Bucharest Java User Group
 
Hive : WareHousing Over hadoop
Hive :  WareHousing Over hadoopHive :  WareHousing Over hadoop
Hive : WareHousing Over hadoop
 

Similar to Data warehousing in the era of Big Data: Deep Dive into Amazon Redshift

Amazon Redshift Deep Dive - February Online Tech Talks
Amazon Redshift Deep Dive - February Online Tech TalksAmazon Redshift Deep Dive - February Online Tech Talks
Amazon Redshift Deep Dive - February Online Tech TalksAmazon Web Services
 
Data Warehousing in the Era of Big Data
Data Warehousing in the Era of Big DataData Warehousing in the Era of Big Data
Data Warehousing in the Era of Big DataAmazon Web Services
 
Data Warehousing with Amazon Redshift
Data Warehousing with Amazon RedshiftData Warehousing with Amazon Redshift
Data Warehousing with Amazon RedshiftAmazon Web Services
 
SRV405 Deep Dive on Amazon Redshift
SRV405 Deep Dive on Amazon RedshiftSRV405 Deep Dive on Amazon Redshift
SRV405 Deep Dive on Amazon RedshiftAmazon Web Services
 
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...Amazon Web Services
 
Data Warehousing in the Era of Big Data: Deep Dive into Amazon Redshift
Data Warehousing in the Era of Big Data: Deep Dive into Amazon RedshiftData Warehousing in the Era of Big Data: Deep Dive into Amazon Redshift
Data Warehousing in the Era of Big Data: Deep Dive into Amazon RedshiftAmazon Web Services
 
SRV405 Ancestry's Journey to Amazon Redshift
SRV405 Ancestry's Journey to Amazon RedshiftSRV405 Ancestry's Journey to Amazon Redshift
SRV405 Ancestry's Journey to Amazon RedshiftAmazon Web Services
 
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWSAWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWSCobus Bernard
 
Building your data warehouse with Redshift
Building your data warehouse with RedshiftBuilding your data warehouse with Redshift
Building your data warehouse with RedshiftAmazon Web Services
 
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...Michael Rys
 
AWS June 2016 Webinar Series - Amazon Redshift or Big Data Analytics
AWS June 2016 Webinar Series - Amazon Redshift or Big Data AnalyticsAWS June 2016 Webinar Series - Amazon Redshift or Big Data Analytics
AWS June 2016 Webinar Series - Amazon Redshift or Big Data AnalyticsAmazon Web Services
 
AWS (Amazon Redshift) presentation
AWS (Amazon Redshift) presentationAWS (Amazon Redshift) presentation
AWS (Amazon Redshift) presentationVolodymyr Rovetskiy
 
Best Practices for Migrating Your Data Warehouse to Amazon Redshift
Best Practices for Migrating Your Data Warehouse to Amazon RedshiftBest Practices for Migrating Your Data Warehouse to Amazon Redshift
Best Practices for Migrating Your Data Warehouse to Amazon RedshiftAmazon Web Services
 
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...Amazon Web Services
 
Best Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftBest Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftAmazon Web Services
 
Best Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftBest Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftAmazon Web Services
 

Similar to Data warehousing in the era of Big Data: Deep Dive into Amazon Redshift (20)

Amazon Redshift Deep Dive - February Online Tech Talks
Amazon Redshift Deep Dive - February Online Tech TalksAmazon Redshift Deep Dive - February Online Tech Talks
Amazon Redshift Deep Dive - February Online Tech Talks
 
Deep Dive on Amazon Redshift
Deep Dive on Amazon RedshiftDeep Dive on Amazon Redshift
Deep Dive on Amazon Redshift
 
Data Warehousing in the Era of Big Data
Data Warehousing in the Era of Big DataData Warehousing in the Era of Big Data
Data Warehousing in the Era of Big Data
 
Deep Dive on Amazon Redshift
Deep Dive on Amazon RedshiftDeep Dive on Amazon Redshift
Deep Dive on Amazon Redshift
 
Deep Dive on Amazon Redshift
Deep Dive on Amazon RedshiftDeep Dive on Amazon Redshift
Deep Dive on Amazon Redshift
 
Data Warehousing with Amazon Redshift
Data Warehousing with Amazon RedshiftData Warehousing with Amazon Redshift
Data Warehousing with Amazon Redshift
 
SRV405 Deep Dive on Amazon Redshift
SRV405 Deep Dive on Amazon RedshiftSRV405 Deep Dive on Amazon Redshift
SRV405 Deep Dive on Amazon Redshift
 
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...
Best Practices for Data Warehousing with Amazon Redshift | AWS Public Sector ...
 
Data Warehousing in the Era of Big Data: Deep Dive into Amazon Redshift
Data Warehousing in the Era of Big Data: Deep Dive into Amazon RedshiftData Warehousing in the Era of Big Data: Deep Dive into Amazon Redshift
Data Warehousing in the Era of Big Data: Deep Dive into Amazon Redshift
 
SRV405 Ancestry's Journey to Amazon Redshift
SRV405 Ancestry's Journey to Amazon RedshiftSRV405 Ancestry's Journey to Amazon Redshift
SRV405 Ancestry's Journey to Amazon Redshift
 
Deep Dive on Amazon Redshift
Deep Dive on Amazon RedshiftDeep Dive on Amazon Redshift
Deep Dive on Amazon Redshift
 
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWSAWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
 
Building your data warehouse with Redshift
Building your data warehouse with RedshiftBuilding your data warehouse with Redshift
Building your data warehouse with Redshift
 
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
 
AWS June 2016 Webinar Series - Amazon Redshift or Big Data Analytics
AWS June 2016 Webinar Series - Amazon Redshift or Big Data AnalyticsAWS June 2016 Webinar Series - Amazon Redshift or Big Data Analytics
AWS June 2016 Webinar Series - Amazon Redshift or Big Data Analytics
 
AWS (Amazon Redshift) presentation
AWS (Amazon Redshift) presentationAWS (Amazon Redshift) presentation
AWS (Amazon Redshift) presentation
 
Best Practices for Migrating Your Data Warehouse to Amazon Redshift
Best Practices for Migrating Your Data Warehouse to Amazon RedshiftBest Practices for Migrating Your Data Warehouse to Amazon Redshift
Best Practices for Migrating Your Data Warehouse to Amazon Redshift
 
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...
Best practices for Data warehousing with Amazon Redshift - AWS PS Summit Canb...
 
Best Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftBest Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon Redshift
 
Best Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon RedshiftBest Practices for Migrating your Data Warehouse to Amazon Redshift
Best Practices for Migrating your Data Warehouse to Amazon Redshift
 

More from Amazon Web Services

Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...
Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...
Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...Amazon Web Services
 
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...Big Data per le Startup: come creare applicazioni Big Data in modalità Server...
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...Amazon Web Services
 
Esegui pod serverless con Amazon EKS e AWS Fargate
Esegui pod serverless con Amazon EKS e AWS FargateEsegui pod serverless con Amazon EKS e AWS Fargate
Esegui pod serverless con Amazon EKS e AWS FargateAmazon Web Services
 
Costruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSCostruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSAmazon Web Services
 
Come spendere fino al 90% in meno con i container e le istanze spot
Come spendere fino al 90% in meno con i container e le istanze spot Come spendere fino al 90% in meno con i container e le istanze spot
Come spendere fino al 90% in meno con i container e le istanze spot Amazon Web Services
 
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...Amazon Web Services
 
OpsWorks Configuration Management: automatizza la gestione e i deployment del...
OpsWorks Configuration Management: automatizza la gestione e i deployment del...OpsWorks Configuration Management: automatizza la gestione e i deployment del...
OpsWorks Configuration Management: automatizza la gestione e i deployment del...Amazon Web Services
 
Microsoft Active Directory su AWS per supportare i tuoi Windows Workloads
Microsoft Active Directory su AWS per supportare i tuoi Windows WorkloadsMicrosoft Active Directory su AWS per supportare i tuoi Windows Workloads
Microsoft Active Directory su AWS per supportare i tuoi Windows WorkloadsAmazon Web Services
 
Database Oracle e VMware Cloud on AWS i miti da sfatare
Database Oracle e VMware Cloud on AWS i miti da sfatareDatabase Oracle e VMware Cloud on AWS i miti da sfatare
Database Oracle e VMware Cloud on AWS i miti da sfatareAmazon Web Services
 
Crea la tua prima serverless ledger-based app con QLDB e NodeJS
Crea la tua prima serverless ledger-based app con QLDB e NodeJSCrea la tua prima serverless ledger-based app con QLDB e NodeJS
Crea la tua prima serverless ledger-based app con QLDB e NodeJSAmazon Web Services
 
API moderne real-time per applicazioni mobili e web
API moderne real-time per applicazioni mobili e webAPI moderne real-time per applicazioni mobili e web
API moderne real-time per applicazioni mobili e webAmazon Web Services
 
Database Oracle e VMware Cloud™ on AWS: i miti da sfatare
Database Oracle e VMware Cloud™ on AWS: i miti da sfatareDatabase Oracle e VMware Cloud™ on AWS: i miti da sfatare
Database Oracle e VMware Cloud™ on AWS: i miti da sfatareAmazon Web Services
 
Tools for building your MVP on AWS
Tools for building your MVP on AWSTools for building your MVP on AWS
Tools for building your MVP on AWSAmazon Web Services
 
How to Build a Winning Pitch Deck
How to Build a Winning Pitch DeckHow to Build a Winning Pitch Deck
How to Build a Winning Pitch DeckAmazon Web Services
 
Building a web application without servers
Building a web application without serversBuilding a web application without servers
Building a web application without serversAmazon Web Services
 
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...AWS_HK_StartupDay_Building Interactive websites while automating for efficien...
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...Amazon Web Services
 
Introduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceIntroduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceAmazon Web Services
 

More from Amazon Web Services (20)

Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...
Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...
Come costruire servizi di Forecasting sfruttando algoritmi di ML e deep learn...
 
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...Big Data per le Startup: come creare applicazioni Big Data in modalità Server...
Big Data per le Startup: come creare applicazioni Big Data in modalità Server...
 
Esegui pod serverless con Amazon EKS e AWS Fargate
Esegui pod serverless con Amazon EKS e AWS FargateEsegui pod serverless con Amazon EKS e AWS Fargate
Esegui pod serverless con Amazon EKS e AWS Fargate
 
Costruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSCostruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWS
 
Come spendere fino al 90% in meno con i container e le istanze spot
Come spendere fino al 90% in meno con i container e le istanze spot Come spendere fino al 90% in meno con i container e le istanze spot
Come spendere fino al 90% in meno con i container e le istanze spot
 
Open banking as a service
Open banking as a serviceOpen banking as a service
Open banking as a service
 
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...
Rendi unica l’offerta della tua startup sul mercato con i servizi Machine Lea...
 
OpsWorks Configuration Management: automatizza la gestione e i deployment del...
OpsWorks Configuration Management: automatizza la gestione e i deployment del...OpsWorks Configuration Management: automatizza la gestione e i deployment del...
OpsWorks Configuration Management: automatizza la gestione e i deployment del...
 
Microsoft Active Directory su AWS per supportare i tuoi Windows Workloads
Microsoft Active Directory su AWS per supportare i tuoi Windows WorkloadsMicrosoft Active Directory su AWS per supportare i tuoi Windows Workloads
Microsoft Active Directory su AWS per supportare i tuoi Windows Workloads
 
Computer Vision con AWS
Computer Vision con AWSComputer Vision con AWS
Computer Vision con AWS
 
Database Oracle e VMware Cloud on AWS i miti da sfatare
Database Oracle e VMware Cloud on AWS i miti da sfatareDatabase Oracle e VMware Cloud on AWS i miti da sfatare
Database Oracle e VMware Cloud on AWS i miti da sfatare
 
Crea la tua prima serverless ledger-based app con QLDB e NodeJS
Crea la tua prima serverless ledger-based app con QLDB e NodeJSCrea la tua prima serverless ledger-based app con QLDB e NodeJS
Crea la tua prima serverless ledger-based app con QLDB e NodeJS
 
API moderne real-time per applicazioni mobili e web
API moderne real-time per applicazioni mobili e webAPI moderne real-time per applicazioni mobili e web
API moderne real-time per applicazioni mobili e web
 
Database Oracle e VMware Cloud™ on AWS: i miti da sfatare
Database Oracle e VMware Cloud™ on AWS: i miti da sfatareDatabase Oracle e VMware Cloud™ on AWS: i miti da sfatare
Database Oracle e VMware Cloud™ on AWS: i miti da sfatare
 
Tools for building your MVP on AWS
Tools for building your MVP on AWSTools for building your MVP on AWS
Tools for building your MVP on AWS
 
How to Build a Winning Pitch Deck
How to Build a Winning Pitch DeckHow to Build a Winning Pitch Deck
How to Build a Winning Pitch Deck
 
Building a web application without servers
Building a web application without serversBuilding a web application without servers
Building a web application without servers
 
Fundraising Essentials
Fundraising EssentialsFundraising Essentials
Fundraising Essentials
 
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...AWS_HK_StartupDay_Building Interactive websites while automating for efficien...
AWS_HK_StartupDay_Building Interactive websites while automating for efficien...
 
Introduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceIntroduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container Service
 

Data warehousing in the era of Big Data: Deep Dive into Amazon Redshift

  • 1. Deep Dive on Amazon Redshift Storage Subsystem and Query Life Cycle Tony Gibbs, Data Warehousing Solutions Architect October 2017
  • 2. Are you a user ?
  • 3. Deep Dive Overview • Amazon Redshift History and Development • Cluster Architecture • Concepts and Terminology • Storage Deep Dive • Design Considerations • Query Life Cycle • Data Ingestion Best Practices • Recently Released Features • Open Q&A
  • 4. Amazon Redshift History & Development
  • 5. Columnar MPP OLAP AWS IAMAmazon VPCAmazon SWF Amazon S3 AWSKMS Amazon Route 53 Amazon CloudWatch Amazon EC2 PostgreSQL Amazon Redshift
  • 6. February 2013 October 2017 > 100 Significant Patches > 150 Significant Features
  • 7. Amazon Redshift Cluster Architecture
  • 8. Redshift Cluster Architecture • Massively parallel, shared nothing • Leader node – SQL endpoint – Stores metadata – Coordinates parallel SQL processing • Compute nodes – Local, columnar storage – Executes queries in parallel – Load, backup, restore 10 GigE Ingestion Backup Restore SQL Clients/BI Tools 128GB RAM 16TB disk 16 cores S3 / EMR / DynamoDB / SSH JDBC/ODBC 128GB RAM 16TB disk 16 coresCompute Node 128GB RAM 16TB disk 16 coresCompute Node 128GB RAM 16TB disk 16 coresCompute Node Leader Node
  • 9. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node
  • 10. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node • Parser & Rewriter • Planner & Optimizer • Code Generator • Input: Optimized plan • Output: >=1 C++ functions • Compiler • Task Scheduler • WLM • Admission • Scheduling • PostgreSQL Catalog Tables
  • 11. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node • Query execution processes • Backup & restore processes • Replication processes • Local Storage • Disks • Slices • Tables • Columns • Blocks
  • 12. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node • Query execution processes • Backup & restore processes • Replication processes • Local Storage • Disks • Slices • Tables • Columns • Blocks
  • 14. Designed for I/O Reduction • Columnar storage • Data compression • Zone maps aid loc dt 1 SFO 2016-09-01 2 JFK 2016-09-14 3 SFO 2017-04-01 4 JFK 2017-05-14 • Accessing dt with row storage: – Need to read everything – Unnecessary I/O aid loc dt CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date );
  • 15. Designed for I/O Reduction • Columnar storage • Data compression • Zone maps aid loc dt 1 SFO 2016-09-01 2 JFK 2016-09-14 3 SFO 2017-04-01 4 JFK 2017-05-14 • Accessing dt with columnar storage: – Only scan blocks for relevant column aid loc dt CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date );
  • 16. Designed for I/O Reduction • Columnar storage • Data compression • Zone maps aid loc dt 1 SFO 2016-09-01 2 JFK 2016-09-14 3 SFO 2017-04-01 4 JFK 2017-05-14 • Columns grow and shrink independently • Effective compression ratios due to like data • Reduces storage requirements • Reduces I/O aid loc dt CREATE TABLE deep_dive ( aid INT ENCODE LZO ,loc CHAR(3) ENCODE BYTEDICT ,dt DATE ENCODE RUNLENGTH );
  • 17. Designed for I/O Reduction • Columnar storage • Data compression • Zone maps aid loc dt 1 SFO 2016-09-01 2 JFK 2016-09-14 3 SFO 2017-04-01 4 JFK 2017-05-14 aid loc dt CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ); • In-memory block metadata • Contains per-block MIN and MAX value • Effectively prunes blocks which cannot contain data for a given query • Eliminates unnecessary I/O
  • 18. SELECT COUNT(*) FROM deep_dive WHERE DATE = '09-JUNE-2013' MIN: 01-JUNE-2013 MAX: 20-JUNE-2013 MIN: 08-JUNE-2013 MAX: 30-JUNE-2013 MIN: 12-JUNE-2013 MAX: 20-JUNE-2013 MIN: 02-JUNE-2013 MAX: 25-JUNE-2013 Unsorted Table MIN: 01-JUNE-2013 MAX: 06-JUNE-2013 MIN: 07-JUNE-2013 MAX: 12-JUNE-2013 MIN: 13-JUNE-2013 MAX: 18-JUNE-2013 MIN: 19-JUNE-2013 MAX: 24-JUNE-2013 Sorted By Date Zone Maps
  • 19. Terminology and Concepts: Data Sorting • Goal: • Make queries run faster by optimizing the effectiveness of zone maps • Typically on the columns that are filtered on (where clause predicates) • Impact: • Enables range restricted scans to prune blocks by leveraging zone maps • Overall reduction in block I/O • Achieved with the table property SORTKEY defined on one or more columns • Optimal SORTKEY is dependent on: • Query patterns • Data profile • Business requirements
  • 20. Terminology and Concepts: Slices • A slice can be thought of like a “virtual compute node” – Unit of data partitioning – Parallel query processing • Facts about slices: – Each compute node has either 2, 16, or 32 slices – Table rows are distributed to slices – A slice processes only its own data
  • 21. Data Distribution • Distribution style is a table property which dictates how that table’s data is distributed throughout the cluster: • KEY: Value is hashed, same value goes to same location (slice) • ALL: Full table data goes to first slice of every node • EVEN: Round robin • Goals: • Distribute data evenly for parallel processing • Minimize data movement during query processing KEY ALL Node 1 Slice 1 Slice 2 Node 2 Slice 3 Slice 4 Node 1 Slice 1 Slice 2 Node 2 Slice 3 Slice 4 Node 1 Slice 1 Slice 2 Node 2 Slice 3 Slice 4 EVEN
  • 22. Data Distribution: Example CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ) DISTSTYLE (EVEN|KEY|ALL); CN1 Slice 0 Slice 1 CN2 Slice 2 Slice 3 Table: deep_dive User Columns System Columns aid loc dt ins del row
  • 23. Data Distribution: EVEN Example CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ) DISTSTYLE EVEN; CN1 Slice 0 Slice 1 CN2 Slice 2 Slice 3 INSERT INTO deep_dive VALUES (1, 'SFO', '2016-09-01'), (2, 'JFK', '2016-09-14'), (3, 'SFO', '2017-04-01'), (4, 'JFK', '2017-05-14'); Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 0 Rows: 0 Rows: 0 Rows: 0 (3 User Columns + 3 System Columns) x (4 slices) = 24 Blocks (24MB) Rows: 1 Rows: 1 Rows: 1 Rows: 1
  • 24. Data Distribution: KEY Example #1 CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ) DISTSTYLE KEY DISTKEY (loc); CN1 Slice 0 Slice 1 CN2 Slice 2 Slice 3 INSERT INTO deep_dive VALUES (1, 'SFO', '2016-09-01'), (2, 'JFK', '2016-09-14'), (3, 'SFO', '2017-04-01'), (4, 'JFK', '2017-05-14'); Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 2 Rows: 0 Rows: 0 (3 User Columns + 3 System Columns) x (2 slices) = 12 Blocks (12 MB) Rows: 0Rows: 1 Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 2Rows: 0Rows: 1
  • 25. Data Distribution: KEY Example #2 CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ) DISTSTYLE KEY DISTKEY (aid); CN1 Slice 0 Slice 1 CN2 Slice 2 Slice 3 INSERT INTO deep_dive VALUES (1, 'SFO', '2016-09-01'), (2, 'JFK', '2016-09-14'), (3, 'SFO', '2017-04-01'), (4, 'JFK', '2017-05-14'); Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 0 Rows: 0 Rows: 0 Rows: 0 (3 User Columns + 3 System Columns) x (4 slices) = 24 Blocks (24 MB) Rows: 1 Rows: 1 Rows: 1 Rows: 1
  • 26. Data Distribution: ALL Example CREATE TABLE deep_dive ( aid INT --audience_id ,loc CHAR(3) --location ,dt DATE --date ) DISTSTYLE ALL; CN1 Slice 0 Slice 1 CN2 Slice 2 Slice 3 INSERT INTO deep_dive VALUES (1, 'SFO', '2016-09-01'), (2, 'JFK', '2016-09-14'), (3, 'SFO', '2017-04-01'), (4, 'JFK', '2017-05-14'); Rows: 0 Rows: 0 (3 User Columns + 3 System Columns) x (2 slice) = 12 Blocks (12MB) Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 0Rows: 1Rows: 2Rows: 4Rows: 3 Table: deep_dive User Columns System Columns aid loc dt ins del row Rows: 0Rows: 1Rows: 2Rows: 4Rows: 3
  • 27. Terminology and Concepts: Data Distribution • KEY – The key creates an even distribution of data – Joins are performed between large fact/dimension tables – Optimizing joins and group by • ALL – Small and medium size dimension tables (< 2-3M) • EVEN – When key cannot produce an even distribution
  • 28. Table Design Considerations • Denormalize/materialize heavily filtered columns into the fact table(s) – Timestamp/date should be in fact tables rather than using time dimension tables • Add SORT KEYS to medium and large sized tables on the primary columns that are filtered on – Not necessary to add them to small tables • Keep variable length data types as long as required – VARCHAR, CHAR and NUMERIC • Add compression to tables – Optimal compression can be found using ANALYZE COMPRESSION
  • 30. Storage Deep Dive: Disks • Redshift utilizes locally attached storage devices • Compute nodes have 2.5-3x the advertised storage capacity • 1, 3, 8, or 24 disks depending on node type • Each disk is split into two partitions – Local data storage, accessed by local CN – Mirrored data, accessed by remote CN • Partitions are raw devices – Local storage devices are ephemeral in nature – Tolerant to multiple disk failures on a single node
  • 31. Storage Deep Dive: Blocks • Column data is persisted to 1MB immutable blocks • Each block contains in-memory metadata: – Zone Maps (MIN/MAX value) – Location of previous/next block • Blocks are individually compressed with 1 of 10 encodings • A full block contains between 16 and 8.4 million values
  • 32. Storage Deep Dive: Columns • Column: Logical structure accessible via SQL • Physical structure is a doubly linked list of blocks • These blockchains exist on each slice for each column • All sorted & unsorted blockchains compose a column • Column properties include: – Distribution Key – Sort Key – Compression Encoding • Columns shrink and grow independently, 1 block at a time • Three system columns per table-per slice for MVCC
  • 33. Block Properties: Design Considerations • Small writes: • Batch processing system, optimized for processing massive amounts of data • 1MB size + immutable blocks means that we clone blocks on write so as not to introduce fragmentation • Small write (~1-10 rows) has similar cost to a larger write (~100 K rows) • UPDATE and DELETE: • Immutable blocks means that we only logically delete rows on UPDATE or DELETE • Must VACUUM or DEEP COPY to remove ghost rows from table
  • 34. Column Properties: Design Considerations • Compression: • COPY automatically analyzes and compresses data when loading into empty tables • ANALYZE COMPRESSION checks existing tables and proposes optimal compression algorithms for each column • Changing column encoding requires a table rebuild • DISTKEY and SORTKEY significantly influence performance (orders of magnitude) • Distribution Keys: • A poor DISTKEY can introduce data skew and an unbalanced workload • A query completes only as fast as the slowest slice completes • Sort Keys: • A sortkey is only effective as the data profile allows it to be • Selectivity needs to be considered
  • 36. Storage Deep Dive: Slices • Each compute node has either 2, 16, or 32 slices • A slice can be thought of like a “virtual compute node” – Unit of data partitioning – Parallel query processing • Facts about slices: – Table rows are distributed to slices – A slice processes only its own data – Within a compute node all slices read from and write to all disks
  • 37. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node • Parser & Rewriter • Planner & Optimizer • Code Generator • Input: Optimized plan • Output: >=1 C++ functions • Compiler • Task Scheduler • WLM • Admission • Scheduling • PostgreSQL Catalog Tables • Redshift System Tables (STV)
  • 38. 128GB RAM 16TB disk 16 cores 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node 128GB RAM 16TB disk 16 cores Compute Node Leader Node • Parser & Rewriter • Planner & Optimizer • Code Generator • Input: Optimized plan • Output: >=1 C++ functions • Compiler • Task Scheduler • WLM • Admission • Scheduling • PostgreSQL Catalog Tables • Redshift System Tables (STV)
  • 39. Query Execution Terminology • Step: An individual operation needed during query execution. Steps need to be combined to allow compute nodes to perform a join. Examples: scan, sort, hash, aggr • Segment: A combination of several steps that can be done by a single process. The smallest compilation unit executable by a slice. Segments within a stream run in parallel. • Stream: A collection of combined segments which output to the next stream or SQL client.
  • 40. Visualizing Streams, Segments, and Steps Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Time
  • 41. client JDBC ODBC Leader Node Parser Query Planner Code Generator Final Computations Generate code for all segments of one stream Explain Plans Compute Node Receive Compiled Code Run the Compiled Code Return results to Leader Compute Node Receive Compiled Code Run the Compiled Code Return results to Leader Return results to client Segments in a stream are executed concurrently. Each step in a segment is executed serially. Query Lifecycle
  • 42. Query Execution Deep Dive: Leader Node 1. The leader node receives the query and parses the SQL. 2. The parser produces a logical representation of the original query. 3. This query tree is input into the query optimizer (volt). 4. Volt rewrites the query to maximize its efficiency. Sometimes a single query will be rewritten as several dependent statements in the background. 5. The rewritten query is sent to the planner which generates >= 1 query plans for the execution with the best estimated performance. 6. The query plan is sent to the execution engine, where it’s translated into steps, segments, and streams. 7. This translated plan is sent to the code generator, which generates a C++ function for each segment. 8. This generated C++ is compiled with gcc to a .o file and distributed to the compute nodes.
  • 43. Query Execution Deep Dive: Compute Nodes • Slices execute the query segments in parallel. • Executable segments are created for one stream at a time. When the segments of that stream are complete, the engine generates the segments for the next stream. • When the compute nodes are done, they return the query results to the leader node for final processing. • The leader node merges the data into a single result set and addresses any needed sorting or aggregation. • The leader node then returns the results to the client.
  • 44. Visualizing Streams, Segments, and Steps Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Time
  • 45. Query Execution Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Time Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Stream 0 Segment 0 Step 0 Step 1 Step 2 Segment 1 Step 0 Step 1 Step 2 Step 3 Step 4 Segment 2 Step 0 Step 1 Step 2 Step 3 Segment 3 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Stream 1 Segment 4 Step 0 Step 1 Step 2 Step 3 Segment 5 Step 0 Step 1 Step 2 Segment 6 Step 0 Step 1 Step 2 Step 3 Step 4 Stream 2 Segment 7 Step 0 Step 1 Segment 8 Step 0 Step 1 Slices 0 1 2 3
  • 46. Data Ingestion Best Practices
  • 47. Data Ingestion: COPY Statement • Ingestion Throughput: – Each slice’s query processors can load one file at a time: • Streaming decompression • Parse • Distribute • Write • Realizing only partial node usage as 6.25% of slices are active 0 2 4 6 8 10 12 141 3 5 7 9 11 13 15 DS2.8XL Compute Node 1 Input File
  • 48. Data Ingestion: COPY Statement • Number of input files should be a multiple of the number of slices • Splitting the single file into 16 input files, all slices are working to maximize ingestion performance • COPY continues to scale linearly as you add nodes 16 Input Files Recommendation is to use delimited files – 1MB to 1GB after GZIP compression 0 2 4 6 8 10 12 141 3 5 7 9 11 13 15 DS2.8XL Compute Node
  • 49. Design Considerations: Data Ingestion • Export Data from Source System – Delimited Files are recommend • Pick a simple delimiter '|' or ',' or tabs • Pick a simple NULL character (N) • Use double quotes and an escape character (' ') for varchars • UTF-8 varchar columns take 4 bytes per char – Split Files so there is a multiple of the number of slices • E.g. 8 Slice Cluster = 8, 16, 24, 32, 40… files – Files sizes should be 1MB – 1GB after gzip compression • Useful COPY Options – MAXERRORS – ACCEPTINVCHARS – NULL AS
  • 50. Data Ingestion: Deduplication/UPSERT BEGIN; CREATE TEMP TABLE staging(LIKE PRODUCTION); COPY INTO staging : ' creds ' COMPUPDATE OFF; DELETE production p USING staging s WHERE p.id = s.id; INSERT INTO production SELECT * FROM staging; DROP TABLE staging; COMMIT;
  • 52. Recently Released Features New Column Encoding ZSTD Unload – Can now specify file sizes New Functions - OCTET_LENGTH, APPROXIMATE PERCENTILE_DISC New Data Type - TIMESTAMPTZ • Support for Timestamp with Time zone : New TIMESTAMPTZ data type to input complete timestamp values that include the date, the time of day, and a time zone. Eg: 30 Nov 07:37:16 2016 PST Multi-byte Object Names • Support for Multi-byte (UTF-8) characters for tables, columns, and other database object names User Connection Limits • You can now set a limit on the number of database connections a user is permitted to have open concurrently Automatic Data Compression for CTAS • All newly created tables will leverage default encoding
  • 53. Fast @ exabyte scale Elastic & highly available On-demand, pay-per-query High concurrency: Multiple clusters access same data No ETL: Query data in- place using open file formats Full Amazon Redshift SQL support S3 SQL Run SQL queries directly against data in S3 using thousands of nodes Amazon Redshift Spectrum
  • 54. • Amazon Redshift Spectrum seamlessly integrates with your existing SQL & BI apps • Support for complex joins, nested queries & window functions • Support for data partitioned in S3 by any key Date, time, and any other custom keys e.g., year, month, day, hour Amazon Redshift Spectrum
  • 55. Query SELECT COUNT(*) FROM S3.EXT_TABLE GROUP BY… Amazon Redshift JDBC/ODBC ... 1 2 3 4 N Amazon S3 Exabyte-scale object storage Data Catalog Apache Hive Metastore
  • 56. • Goal - Automatic handling of run-away (poorly written) queries • Extension to WLM • Rules applied onto a WLM Queue – Queries can be LOGGED, CANCELED or HOPPED Query Monitoring Rules (QMR)
  • 57. • Metrics with operators and values (e.g. query_cpu_time > 1000) create a predicate • Multiple predicates can be AND-ed together to create a rule • Multiple rules can be defined for a queue in WLM. These rules are OR-ed together If { rule } then [action] { rule : metric operator value } e.g.: rows_scanned > 100000 • Metric: cpu_time, query_blocks_read, rows scanned, query execution time, cpu & io skew per slice, join_row_count, etc. • Operator: <, >, == • Value: integer [action]: hop, log, abort Query Monitoring Rules (QMR)
  • 58. BI tools SQL clientsAnalytics tools Client AWS Redshift ADFS Corporate Active Directory IAM Amazon Redshift ODBC/JDBC User groups Individual user Single Sign-On Identity providers New Redshift ODBC/JDBC drivers. Grab the ticket (userid) and get a SAML assertion. IAM Authentication
  • 59. SQL Scalar User-Defined Functions Language SQL Support Added for Scalar UDFs CREATE OR REPLACE FUNCTION inet_ntoa(bigint) RETURNS varchar(15) AS $$ SELECT CASE WHEN $1 BETWEEN 0 AND 4294967295 THEN (($1 >> 24) & 255) || '.' || (($1 >> 16) & 255) || '.' || (($1 >> 8) & 255) || '.' || (($1 >> 0) & 255) ELSE NULL END $$ LANGUAGE SQL IMMUTABLE; Example:
  • 60. • https://github.com/awslabs/amazon-redshift-utils • https://github.com/awslabs/amazon-redshift-monitoring • https://github.com/awslabs/amazon-redshift-udfs • Admin scripts Collection of utilities for running diagnostics on your cluster • Admin views Collection of utilities for managing your cluster, generating schema DDL, etc. • ColumnEncodingUtility Gives you the ability to apply optimal column encoding to an established schema with data already loaded • Amazon Redshift Engineering’s Advanced Table Design Playbook https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-preamble-prerequisites-and- prioritization/ Resources