Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Energy Storage: Nations Vital Security And The Life Line For Renewable Energy Technologies


Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Energy Storage: Nations Vital Security And The Life Line For Renewable Energy Technologies

  1. 1. Nations Vital Security & The Life Line For Renewable Energy Technologies Dr. Najib Altawell [email_address] CEPMLP University of Dundee, Dundee DD1 4HN, Scotland, UK 20 October 2011 Energy Storage
  2. 2. Agenda <ul><li>Introduction </li></ul><ul><li>Storage Technologies </li></ul><ul><li>Ideas and New Approaches </li></ul><ul><li>Conclusion </li></ul>
  3. 3. <ul><li>Electricity Storage </li></ul><ul><li>Electricity Energy Electricity </li></ul>
  4. 4. The Five Dimensions
  5. 5. Energy Storage When?
  6. 6. <ul><li>The Sixth Dimension </li></ul>
  7. 7. The Sixth Dimension
  8. 8. Source: Bulk Energy Storage (BESO) Image source:
  9. 9. <ul><li>Renewable Energy </li></ul><ul><li>Add Value </li></ul><ul><li>Security </li></ul><ul><li>Back-up </li></ul><ul><li>More Options </li></ul><ul><li>Cost Reduction </li></ul>
  10. 10. <ul><li>Not constant </li></ul><ul><li>Excess can be stored </li></ul><ul><li>High demand </li></ul><ul><li>Reduce power system loads </li></ul><ul><li>Efficiency and reliability </li></ul><ul><li>Renewable energy </li></ul>Summary
  11. 11. <ul><li>Bulk Energy Storage (BES) </li></ul><ul><li>Off-Peak electric large volume storage </li></ul><ul><li>(Significant capacity in mwh) longer period of storage but with higher cost </li></ul><ul><li>Examples: Pumped storage hydro (PSH) </li></ul><ul><li>Compressed Air Energy Storage (CAES) </li></ul><ul><li>Distributed energy storage </li></ul><ul><li>Usually small in size and smaller energy storage capacity, short period of storage with lower voltage when it comes to transmission and distribution with lower capital cost than BES </li></ul><ul><li>Examples: Batteries </li></ul><ul><li>Flywheels </li></ul><ul><li>Capacitors </li></ul>
  12. 12. <ul><li>Smart Grid </li></ul><ul><li>Using Real-Time Information </li></ul><ul><li>Heal itself </li></ul><ul><li>Encourage consumers to participate in operations of the grid </li></ul><ul><li>Resist attack </li></ul><ul><li>Provide higher quality power that will save money wasted from outages </li></ul><ul><li>Accommodate all generation and storage options </li></ul><ul><li>Enable electricity markets to flourish </li></ul><ul><li>Efficient </li></ul><ul><li>Enable higher penetration of intermittent power generation sources </li></ul><ul><li>Source: United States Department of Energy </li></ul>
  13. 13. <ul><li>Smart Grid </li></ul><ul><li>Using Real-Time Information </li></ul><ul><li>Enhanced cyber-security </li></ul><ul><li>Handling sources of electricity like wind and solar power </li></ul><ul><li>Integrating electric vehicles onto the grid </li></ul><ul><li>Source: United States Department of Energy </li></ul>
  14. 14. Energy storage systems and typical applications NAS = sodium sulfur; SMES = superconducting magnetic energy storage; UPS = uninterruptible power supply Source: Gyuk 2002 Gyuk, I. (2002), “Energy Storage: A Distributed Energy Resource,” U.S. Department of Energy
  15. 15. <ul><li>Batteries </li></ul>Grid Energy Storage  (Large-scale energy storage – grid e.g. 8MW/32MWh ) Large transportable (e.g. 2MW/500kWh units ) Community Energy Storage (e.g. 25 to 50kW & 50 to 100kWh units) Home Energy Storage Unit (e.g. 4kW/10kWh) Expensive High maintenance cost Limited life-spans (Crystals forming during the charge and discharge cycles) 1
  16. 16. <ul><li>Examples </li></ul><ul><li>Flow Battery </li></ul><ul><li>Sodium–Sulfur Battery </li></ul><ul><li>(Grid Energy Storage) </li></ul>
  17. 17. <ul><li>Flow Battery </li></ul>Li-air batteries ( Li-Ion) REDOX (reduction-oxidation) Image source: Metaefficient Image Source: Argonne, USDE
  18. 18. Sodium–Sulfur Battery (NaS)  Image source: NGK Insulators Ltd.
  19. 19. Types Alkaline dry cells Mercury cells Silver oxide primary cells Lead-acid battery Nickel-iron battery (Alkaline cell) Cadmium battery (Nickel-cadmium cell) Lithium-ion batteries (sometimes abbreviated Li-ion batteries) Nanowire lithium-ion battery Ultra capacitor Sodium-sulfur (NaS) battery L argest rechargeable battery 1,300 tons Power for 7 minutes to 12,000 homes
  20. 20. Electric Vehicles 2 Image Source:
  21. 21. Compressed Air 3 Mechanical Storage Image Source: Sandia National Laboratories
  22. 22. <ul><li>Images Source: </li></ul>Flywheel 4 Mechanical Storage
  23. 23. <ul><li>Image Source: </li></ul>Hydrogen Hydrogen Fuel Cycle 5
  24. 24. Source:
  25. 25. <ul><li>Image Source: </li></ul>Pumped water 6 Mechanical Storage
  26. 26. Hydroelectric dam up-rating 7
  27. 27. <ul><li>Image Source: </li></ul>Superconducting magnetic energy storage (SMES) 8
  28. 28. <ul><li>Image Source: </li></ul>Thermal Ice or cool fluid used to reduce electricity demand 9
  29. 29. Molten Salt 10 Image source/cited:
  30. 30. Molten Salt 10 Source: United Technologies
  31. 31. Source: Capacity
  32. 32. New Approaches
  33. 33. <ul><li>Energy stored by bending/deforming </li></ul><ul><li>The energy released when the material returns to its original shape </li></ul>
  34. 34. <ul><li>Nanotechnology Approach </li></ul>Nanotubes Springs Carbon Nanotubes compete with batteries for energy storage
  35. 35. Energy Stored within the internal space of matter e.g. Papers, clothes
  36. 36. Earth Spin Generator
  37. 37. Combining two (or more) of the established energy storage systems, i.e. creating a hybrid energy storage system A. Possible Approach
  38. 38. Recycling energy output Light Lifts Movement B. Possible Approach
  39. 39. C. Possible Approach Forced arrangement of molecular structures -within the same matter or from two different substances-
  40. 40. D. Possible Approach Using the sea water movement resulted from the gravitational force of the moon
  41. 41. E. Possible Approach Using falling rain water
  42. 42. F. Possible Approach Designing efficient commercially viable photo-synthesis machine
  43. 43. Storing Energy (molecular level) 1. Selecting a suitable substance 2. Creating identical copy of the internal structure via software simulation 3. Experimenting (molecular scale) using the above software 4. Replicating the same experiment on the actual sample (nano-scale) Two Methodologies
  44. 44. Market & Finance
  45. 45. Is it the righ t time to invest in Energy Storage?
  46. 46. <ul><li>Conclusion </li></ul><ul><li>1. There is an urgent ‘need’ for energy storage </li></ul><ul><li>2. Renewable energy </li></ul><ul><li>3. Forecasting for energy demand is unpredictable </li></ul><ul><li>4. Grid reliability </li></ul><ul><li>5. During low demand (e.g. at night) energy stored </li></ul><ul><li>6. Smart grid </li></ul><ul><li>7. Reduction in cost for power stations (reduction in annual peaking requirements) </li></ul>
  47. 47. Thank you for listening.