Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Structural Optimization and Laser Additive Manufacturing (LAM) in lightweight design: barriers and chances


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Structural Optimization and Laser Additive Manufacturing (LAM) in lightweight design: barriers and chances

  1. 1. Engineering the Future……with PhotonsDevelopmentConsultingEducationResearchStructural Optimization andLaser Additive Manufacturing(LAM) in lightweight design:barriers and chancesDipl.-Ing. J. KranzProf. Dr.-Ing. C. EmmelmannTurin, 23. April 2013
  2. 2. EATC 2013Dipl.-Ing. J. Kranz223.04.2013LZN Laser Zentrum Nord GmbH andInstitut of Laser and System Technologies (iLAS)City of Hamburg, Germany
  3. 3. EATC 2013Dipl.-Ing. J. Kranz323.04.2013Agenda1. Laser Additive Manufacturing2. Current Barriers in Application3. Chances for Lightweight Design4. Conclusion
  4. 4. EATC 2013Dipl.-Ing. J. Kranz423.04.2013Todays challenges1970 1985 2000 20151970 1985 2000 20151970 1985 2000 2015diversity ofvariants andcomplexityproductlifecyclecommodityprice1970 1985 2000 2015developmenttime1970 1985 2000 2015lot size1970 1985 2000 2015cost perpartconventionalmanufacturingsources: EOS,,,,,,
  5. 5. EATC 2013Dipl.-Ing. J. Kranz523.04.2013Basic principles of Laser Additive Manufacturingsource: Leistnerslicing 3D-CADpowder layerapplicationexposureloweringpartextractionrecoaterlifting tablescannerpartsupport structuresthermal induced stresses
  6. 6. EATC 2013Dipl.-Ing. J. Kranz623.04.2013Laser Additive Manufacturing (LAM) - Advantages simple data preparation directly out of CAD-files freedom of geometry– lightweight – design– structural optimization– integration of functions simultaneous manufacturing of variousindividual parts net-shape-manufacturing high material recyclability reduction of time-to-market
  7. 7. EATC 2013Dipl.-Ing. J. Kranz723.04.2013manufacturing restrictionsoften unknownBarriers: Lack of design guidelinesdevelopment of DFM guidelinesnecessary
  8. 8. EATC 2013Dipl.-Ing. J. Kranz823.04.2013Barriers: current optimization tools do notincorporate LAM specific restrictionssource: Altairwithoutmaximummember sizewithmaximummember sizeα?distortioncantilever beam
  9. 9. EATC 2013Dipl.-Ing. J. Kranz923.04.2013Barriers: Conventional CAD – design processunsuitable for LAMconventional CAD-design primarily limited to simple boolean operations conventional CAD-tools provide a parametrized approach ideal for product families limited to simple basic elements for additive and subtractive geometry manipulation complex freeform geometries hard to realize
  10. 10. EATC 2013Dipl.-Ing. J. Kranz1023.04.2013Barriers: Conventional wireframe basedCAD – modelling conditionally suitable for LAMwireframe modelling facilitates freeform design but is complex modelling based on curves and wireframe models high geometrical modelling flexibility with a very time intensive modelling process can be combined with conventional modellingwireframe modelling
  11. 11. EATC 2013Dipl.-Ing. J. Kranz1123.04.2013Chances: new approaches for lightweight designrequirementsstructural optimizationinterpretation of resultsremodelling in CADFE - analysisfinal designshift of manufacturing boundaries geometrically complex framework design manufacturing by conventional processes hardly possible Implementation of complex biomimetic structures possible
  12. 12. EATC 2013Dipl.-Ing. J. Kranz1223.04.2013Chances: Application of biomimeticssource:, Nachtigall, Hill, Matheck,
  13. 13. EATC 2013Dipl.-Ing. J. Kranz1323.04.2013Chances: Catalogue for structural biomimeticssystematical database optimizes the design processAuswahlnachBelastung2. loadingAuswahlnach Form1. form3. lightweightdesignprinciples1. form2. load3. Leichtbau-prinzipienbird‘s boneoptimization resultcatalogue structuretechnicalabstraction
  14. 14. EATC 2013Dipl.-Ing. J. Kranz1423.04.2013Chances: new approaches for lightweight designweight savingconventional design,Al 7075337.5 gLAM, TiAl6V4 250 g26 %bamboo struturerequirementsstructural optimizationinterpretation of resultsremodelling in CADFE - analysisfinal design
  15. 15. EATC 2013Dipl.-Ing. J. Kranz1523.04.2013Successful testing of the LAM design conductedF [kN]1622.4requirement applied load
  16. 16. EATC 2013Dipl.-Ing. J. Kranz1623.04.2013Further lightweight studiessubstitution byoptimization and bionic designintegrative designSource: AirbusSource: AirbusFF
  17. 17. EATC 2013Dipl.-Ing. J. Kranz1723.04.2013number of optimized brackets 120accumulated weight saving 85 kgaverage additional cost[state-of-the-art machines]+ EUR 312.-/kgaverage additional cost[next machine generation]+ EUR 133.-/kg01020302 3 4 5 6 7 8 9 10 11 12 13 14Industrial building speed (cm³/h)Production time/part (h)1 part/job10parts/jobresults of A350 Business Case emphasize potential of laser additivemanufacturing in aviation industryAirbus A350 Business Case – Economic feasibility oflaser additive manufacturing112 4221 11 122721362212 211 11
  18. 18. EATC 2013Dipl.-Ing. J. Kranz1823.04.2013Chances: manufacture for designmanufacture for design approach requires new methods for product development
  19. 19. EATC 2013Dipl.-Ing. J. Kranz1923.04.2013Conclusion available tools for product design not fully suitable for LAM specific methods and tools need to be developed in order to furtherexploit the processes advantages the combination of LAM, structural optimization and biomimeticsenables high lightweight potential LAM shows significant economical and ecological potential forproduction
  20. 20. EATC 2013Dipl.-Ing. J. Kranz2023.04.2013Dipl.-Ing. Jannis Kranzjannis.kranz@tuhh.deTechnische Universität Hamburg HarburgDenickestraße 17 (L)21073 HamburgThe research project “TiLight” on which the results are based isfunded by the “Bundesministerium für Bildung und Forschung"under the support code 03CL20AThank you for your attentionsource: ESA