SlideShare a Scribd company logo
1 of 30
Download to read offline
Efficient Analysis of High Dimensional Data
in Tensor Formats
M. Espig, W. Hackbusch, A. Litvinenko, H. G. Matthies and E. Zander
litvinen@tu-bs.de, 13. Januar 2012
CC
SCScientifi omputing
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Outline
Motivation
Discretisation
Analysis of high dimensional data
Computing the maximum norm
Computation of the characteristic
Computation of level sets and frequency
Numerical Experiments
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 2
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
An example of SPDE
∂
∂t u(x, t) = · (κ(x, ω) u(x, t)) + f(x, t), x ∈ G ⊂ Rd , t ∈ [0, T],
where ω ∈ Ω, and U = L2(G).
For each ω ∈ Ω seek for u(x, t) ∈ L2([0, T]) ⊗ U.
Let S := L2([0, T]) ⊗ L2(Ω), one is looking for u(t, x, ω) ∈ U ⊗ S.
Further decomposition
L2(Ω) = L2(×jΩj) ∼= j L2(Ωj) ∼= j L2(R, Γj) results in
u(t, x, ω) ∈ U ⊗ S = L2(G) ⊗ L2([0, T]) ⊗ j L2(R, Γj) .
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 3
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Discretisation and Tensorial quantities
span {wn}N
n=1 = UN ⊂ U, dim UN = N,
span {τk}K
k=1 = TK ⊂ L2([0, T]) = SI, dim TK = K,
span {Xjm
}Jm
jm=1 = SII,Jm
⊂ L2(R, Γm) = SII, dim SII,Jm
= Jm,
1 m M,
Let P := [0, T] × Ω, an approximation to u : P → U is thus given by
u(x, t, ω1, . . . , ωM) ≈
N
n=1
K
k=1
J1
j1=1
. . .
JM
jM =1
ˆuj1,...,jM
n,k wn
(x) ⊗ τk
(t) ⊗
M
m=1
Xjm
(ωm) .
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 4
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Tensorial quantities
We can write for all
n = 1, . . . , N, k = 1, . . . , K, m = 1, . . . , M, jm = 1, . . . , Jm :
uj1,...,jm,...,jM
n,k = u(xn, tk, ωj1
1 , . . . , ωjM
M ),
has R = N × K × M
m=1 Jm terms.
Look for
(uj1,...,jm,...,jM
n,k ) ≈
R
ρ=1
uρ
wρ ⊗ τρ ⊗
M
m=1
Xρm ,
where R R , wρ ∈ RN, τρ ∈ RK , Xρm ∈ RJm .
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 5
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Values of interest
With the last tensor representation one wants to perform different
tasks:
evaluation for specific parameters (t, ω1, . . . , ωM),
finding maxima and minima,
finding ‘level sets’ and quantiles.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 6
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Spatial discretisation and PCE
UN := {ϕn(x)}N
n=1 ⊂ U:
u(x, ω) =
N
n=1
un(ω)ϕn(x),
un(θ) =
α∈J
uα
n Hα(θ(ω)), where
J is taken as a finite subset of N
(N)
0 , R := |J|.
u(θ) =
α∈J
uα
Hα(θ(ω)),
where uα := [uα
1 , . . . , uα
n ]T .
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 7
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Discretized equation in tensor form
KLE: κ(x, ω) = κ0(x) + ∞
j=1 κjgj(x)ξj(θ), where
ξj(θ) = 1
κj G (κ(x, ω) − κ0(x)) gj(x)dx.
Knowing PCE κ(x, ω) = α κ(α)Hα(θ), compute
ξj(θ) = α∈J ξ
(α)
j Hα(θ), where ξ
(α)
j = 1
κj G κ(α)(x)gj(x)dx.
Further compute ξ
(α)
j ≈ s
l=1(ξl)j
∞
k=1(ξl, k)αk
.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 8
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Discretized equation in tensor form
[Matthies, Keese 04, 05, 07]
Au := ∞
j=0 Aj ⊗ ∆j
α∈J uα ⊗ eα = α∈J fα ⊗ eα =: f,
where eα denotes the canonical basis in M
µ=1 RRµ .
f = α∈J
∞
i=0
√
λifi
αfi ⊗ eα = ∞
i=0
√
λifi ⊗ gi, where
gi := α∈J fi
αeα.
Splitting gi further, obtain
f ≈ R
k=1
˜fk ⊗ M
µ=1 gkµ.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 9
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Final discretized stochastic PDE
Au = f, where
A:= s
l=1
˜Al ⊗ M
µ=1 ∆lµ , ˜Al ∈ RN×N, ∆lµ ∈ RRµ×Rµ ,
u:= r
j=1 uj ⊗ M
µ=1 ujµ , uj ∈ RN, ujµ ∈ RRµ ,
f:= R
k=1
˜fk ⊗ M
µ=1 gkµ, ˜fk ∈ RN and gkµ ∈ RRµ .
[Wähnert, Espig, Hackbusch, Litvinenko, Matthies 02.2012]
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 10
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Notation
Let
T := d
µ=1 Rnµ ,
Rr (T) := Rr := r
i=1
d
µ=1 viµ ∈ T : viµ ∈ Rnµ ,
I := ×d
µ=1 Iµ, where Iµ := {i ∈ N : 1 i nµ}.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 11
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Maximum norm and corresponding index
Let u = r
j=1
d
µ=1 ujµ ∈ Rr , compute
u ∞ := maxi:=(i1,...,id )∈I|ui| = maxi:=(i1,...,id )∈I
r
j=1
d
µ=1
ujµ iµ
.
(1)
Computing u ∞ is equivalent to the following e.v. problem.
Let i∗
:= (i∗
1 , . . . , i∗
d ) ∈ I, #I = d
µ=1 nµ.
u ∞ = |ui∗ | =
r
j=1
d
µ=1
ujµ i∗
µ
and e(i∗
)
:=
d
µ=1
ei∗
µ
,
where ei∗
µ
∈ Rnµ the i∗
µ-th canonical vector in Rnµ (µ ∈ N d ).
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 12
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Then
u e(i∗
)
=


r
j=1
d
µ=1
ujµ




d
µ=1
ei∗
µ

 =
r
j=1
d
µ=1
ujµ ei∗
µ
=
r
j=1
d
µ=1
(ujµ)i∗
µ
ei∗
µ
=


r
j=1
d
µ=1
(ujµ)i∗
µ


ui∗ =
d
µ=1
e(i∗
µ),
from which follows
u e(i∗
)
= ui∗ e(i∗
)
.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 13
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Let D(u) := r
j=1
d
µ=1 diag (ujµ)lµ lµ∈N nµ
, obtain
D(u)v = u v for all v ∈ T.
Corollary
Elements of u are the eigenvalues of D(u) and all eigenvectors e(i)
are of the following form:
e(i)
=
d
µ=1
eiµ
,
where i := (i1, . . . , id ) ∈ I is the index of ui. Therefore u ∞ is the
largest eigenvalue of D(u) with corresp. e.v. e(i∗
).
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 14
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Computing u ∞, u ∈ Rr by vector iteration
1: Choose y0 := d
µ=1
1
nµ
1, where 1 := (1, . . . , 1)T ∈ Rnµ ,
kmax ∈ N, and take ε := 10e − 7
2: for k = 1, 2, . . . , kmax do
3:
qk = u yk−1, λk = yk−1, qk , zk = qk/ qk, qk ,
yk = Appε(zk).
4: end for
yk = Appε(zk), [Approximate iteration, Khoromskij, Hackbusch,
Tyrtyshnikov 05],
Algorithms in [Espig, Hackbusch 2010]
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 15
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Definition (Characteristic, Sign)
The characteristic χI(u) ∈ T of u ∈ T in I ⊂ R is for every multi-
index i ∈ I pointwise defined as
(χI(u))i :=
1, ui ∈ I;
0, ui /∈ I.
(2)
Furthermore, the sign(u) ∈ T is for all i ∈ I pointwise defined by
(sign(u))i :=



1, ui > 0;
−1, ui < 0;
0, ui = 0.
(3)
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 16
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Lemma
Let u ∈ T, a, b ∈ R, and 1 = d
µ=1
˜1µ, where
˜1µ := (1, . . . , 1)t ∈ Rnµ .
(i) If I = R<b, then we have χI(u) = 1
2 (1 + sign(b1 − u)).
(ii) If I = R>a, then we have χI(u) = 1
2 (1 − sign(a1 − u)).
(iii) If I = (a, b), then we have
χI(u) = 1
2 (sign(b1 − u) − sign(a1 − u)).
Computing sign(u), u ∈ Rr , via hybrid Newton-Schulz iteration:
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 17
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Computing the maximum norm Computation of the characteristic
Computing sign(u), u ∈ Rr
1: Choose u0 := u and ε ∈ R+.
2: while 1 − uk−1 uk−1 < ε u do
3: if 1 − uk−1 uk−1 < u then
4: zk := 1
2 uk−1 (31 − uk−1 uk−1)
5: else
6: zk := 1
2 (uk−1 + u−1
k−1)
7: end if
8: uk := Appεk
(zk)
9: end while
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 18
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Definition (Level Set, Frequency)
Let I ⊂ R and u ∈ T. The level set LI(u) ∈ T of u respect to I is
pointwise defined by
(LI(u))i :=
ui, ui ∈ I ;
0, ui /∈ I ,
(4)
for all i ∈ I.
The frequency FI(u) ∈ N of u respect to I is defined as
FI(u) := # supp χI(u). (5)
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 19
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Proposition
Let I ⊂ R, u ∈ T, and χI(u) its characteristic. We have
LI(u) = χI(u) u
and rank(LI(u)) rank(χI(u))rank(u).
The frequency FI(u) ∈ N of u respect to I is
FI(u) = χI(u), 1 ,
where 1 = d
µ=1
˜1µ, ˜1µ := (1, . . . , 1)T ∈ Rnµ .
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 20
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
2D L-shape domain, N = 557.
KLE terms for q(x, ω) = eκ(x,ω): lk = 10,
stoch. dim. mk = 10 and pk = 2,
shifted lognormal distrib. for κ(x, ω),
covκ(x, y) is of the Gaussian type, x = y = 0.3.
RHS: lf = 10, mf = 10, pf = 2 and Beta distrib. {4, 2} for RVs.
covf (x, y) is of the Gaussian type, x = y = 0.6.
Total stoch. dim. mu = mk + mf = 20, |J| = 231
u =
231
j=1
21
µ=1
ujµ ∈ R557
⊗
20
µ=1
R3
.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 21
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
0 1 2 3 4 5
0
0.1
0.2
0.3
0.4
0 0.5 1 1.5
0
0.5
1
1.5
2
2.5
Shifted lognormal distribution with parameters {µ = 0.5, σ2 = 1.0}
(on the left) and Beta distribution with parameters {4, 2} (on the
right).
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 22
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Mean (on the left) and standard deviation (on the right) of κ(x, ω)
(lognormal random field with parameters µ = 0.5 and σ = 1).
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 23
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Mean (on the left) and standard deviation (on the right) of f(x, ω)
(beta distribution with parameters α = 4, β = 2 and Gaussian cov.
function).
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 24
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
M
(on the left) and standard deviation (on the right) of the solution u.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 25
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Results
Computed u ∞ after 20 iterations.
The maximal rank of the intermediate iterants (uk)20
k=1 was 143
(uk)20
k=1 ⊂ R143 is the sequence of generated tensors.
The approximation error εk = 10−6
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 26
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Level sets
Now we compute level sets
sign(b u ∞1 − u)
for b ∈ {0.2, 0.4, 0.6, 0.8}.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 27
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
The computing time to get any row is around 10 minutes.
Tensor u has 320 ∗ 557 = 1, 942, 138, 911, 357 entries.
R1 := rank(sign(b u ∞1 − u)) ,
R2 := max1 k kmaxrank(uk),
Error=
1−ukmax ukmax
(b u ∞1−u) .
b R1 R2 kmax Error
0.2 12 24 12 2.9×10−8
0.4 12 20 20 1.9×10−7
0.6 8 16 12 1.6×10−7
0.8 8 15 8 1.2×10−7
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 28
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Literature
1. P. Wähnert, W.Hackbusch, M. Espig, A. Litvinenko, H. Matthies:
Efficient approximation of the stoch. Galerkin matrix in the
canonical tensor format, (in preparation) MPI Leipzig, 2011.
2. Dissertation of Mike Espig, Leipzig 2008.
3. Mike Espig, W. Hackbusch: A regularized Newton method for
the efficient approx. of tensor represented in the c.t. format, MPI
Leipzig 2010
4. H. G. Matthies, Uncertainty Quantification with Stochastic Finite
Elements, Encyclopedia of Computational Mechanics, Wiley,
2007.
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 29
Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments
Acknowledgement
Project MUNA, German Luftfahrtforschungsprogramm funded by
the Ministry of Economics (BMWA).
Elmar Zander:
A Malab/Octave toolbox for stochastic Galerkin methods
(KLE, PCE, sparse grids, tensors, many examples etc)
Stoch. Galerkin lib.: http://ezander.github.com/sglib/
M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S.
Handschuh, H. Auer
Tensor Calculus lib.: http://gitorious.org/tensorcalculus
CC
SCScientifi omputing
Efficient Analysis of High Dimensional Data in Tensor Formats Seite 30

More Related Content

What's hot

Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPK Lehre
 
Tutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksTutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksAnmol Dwivedi
 
Interconnections of hybrid systems
Interconnections of hybrid systemsInterconnections of hybrid systems
Interconnections of hybrid systemsMKosmykov
 
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Gabriel Peyré
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applicationsFrank Nielsen
 
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientHyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientFabian Pedregosa
 
Tensor Train decomposition in machine learning
Tensor Train decomposition in machine learningTensor Train decomposition in machine learning
Tensor Train decomposition in machine learningAlexander Novikov
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizationsDmitriy Selivanov
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsDmitriy Selivanov
 
MDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/MeasureMDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/MeasureJoe Suzuki
 
Newtons Divided Difference Formulation
Newtons Divided Difference FormulationNewtons Divided Difference Formulation
Newtons Divided Difference FormulationSohaib H. Khan
 
The Universal Measure for General Sources and its Application to MDL/Bayesian...
The Universal Measure for General Sources and its Application to MDL/Bayesian...The Universal Measure for General Sources and its Application to MDL/Bayesian...
The Universal Measure for General Sources and its Application to MDL/Bayesian...Joe Suzuki
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Frank Nielsen
 

What's hot (20)

Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Tutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksTutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian Networks
 
Interconnections of hybrid systems
Interconnections of hybrid systemsInterconnections of hybrid systems
Interconnections of hybrid systems
 
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applications
 
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientHyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
 
Tensor Train decomposition in machine learning
Tensor Train decomposition in machine learningTensor Train decomposition in machine learning
Tensor Train decomposition in machine learning
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizations
 
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender Systems
 
MDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/MeasureMDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/Measure
 
Newtons Divided Difference Formulation
Newtons Divided Difference FormulationNewtons Divided Difference Formulation
Newtons Divided Difference Formulation
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
The Universal Measure for General Sources and its Application to MDL/Bayesian...
The Universal Measure for General Sources and its Application to MDL/Bayesian...The Universal Measure for General Sources and its Application to MDL/Bayesian...
The Universal Measure for General Sources and its Application to MDL/Bayesian...
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...
 

Viewers also liked

Towards energy efficient big data gathering
Towards energy efficient big data gatheringTowards energy efficient big data gathering
Towards energy efficient big data gatheringFinalyear Projects
 
Converting High Dimensional Problems to Low Dimensional Ones
Converting High Dimensional Problems to Low Dimensional OnesConverting High Dimensional Problems to Low Dimensional Ones
Converting High Dimensional Problems to Low Dimensional OnesStrand Life Sciences Pvt Ltd
 
Energy efficient reverse skyline query processing over wireless sensor networks
Energy efficient reverse skyline query processing over wireless sensor networksEnergy efficient reverse skyline query processing over wireless sensor networks
Energy efficient reverse skyline query processing over wireless sensor networksFinalyear Projects
 
Francisko deber de subir
Francisko deber de subirFrancisko deber de subir
Francisko deber de subirMICAELA83
 
ABDUL KARIM CV_ (1)
ABDUL KARIM CV_ (1)ABDUL KARIM CV_ (1)
ABDUL KARIM CV_ (1)ABDUL KARIM
 
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)Como subir o publicar un archivo en blog.pptx (Luis Zambrano)
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)zambranoluis89
 
Dr. Ravi Dhar Summarizes Technology Transfer India 2016
Dr. Ravi Dhar Summarizes  Technology Transfer India 2016Dr. Ravi Dhar Summarizes  Technology Transfer India 2016
Dr. Ravi Dhar Summarizes Technology Transfer India 2016Dr. Ravi Dhar
 
Brayan alexis escobar gomez
Brayan alexis escobar gomezBrayan alexis escobar gomez
Brayan alexis escobar gomezBRAYAN ESCOBAR
 
Web Design and Development
Web Design and DevelopmentWeb Design and Development
Web Design and Developmentunderwoodco
 
Skyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentSkyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentIJMER
 
Batch and Interactive Analytics: From Data to Insight
Batch and Interactive Analytics: From Data to InsightBatch and Interactive Analytics: From Data to Insight
Batch and Interactive Analytics: From Data to InsightWSO2
 
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...Designing Progressive and Interactive Analytics Processes for High-Dimensiona...
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...Cagatay Turkay
 

Viewers also liked (20)

Towards energy efficient big data gathering
Towards energy efficient big data gatheringTowards energy efficient big data gathering
Towards energy efficient big data gathering
 
Converting High Dimensional Problems to Low Dimensional Ones
Converting High Dimensional Problems to Low Dimensional OnesConverting High Dimensional Problems to Low Dimensional Ones
Converting High Dimensional Problems to Low Dimensional Ones
 
Energy efficient reverse skyline query processing over wireless sensor networks
Energy efficient reverse skyline query processing over wireless sensor networksEnergy efficient reverse skyline query processing over wireless sensor networks
Energy efficient reverse skyline query processing over wireless sensor networks
 
Francisko deber de subir
Francisko deber de subirFrancisko deber de subir
Francisko deber de subir
 
Estres laboral
Estres laboralEstres laboral
Estres laboral
 
C
CC
C
 
TEJIDOS BASICOS
TEJIDOS BASICOSTEJIDOS BASICOS
TEJIDOS BASICOS
 
Genesis Startup Master Class
Genesis Startup Master ClassGenesis Startup Master Class
Genesis Startup Master Class
 
Catalogo
CatalogoCatalogo
Catalogo
 
ABDUL KARIM CV_ (1)
ABDUL KARIM CV_ (1)ABDUL KARIM CV_ (1)
ABDUL KARIM CV_ (1)
 
PROFILE NEW
PROFILE NEWPROFILE NEW
PROFILE NEW
 
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)Como subir o publicar un archivo en blog.pptx (Luis Zambrano)
Como subir o publicar un archivo en blog.pptx (Luis Zambrano)
 
Dr. Ravi Dhar Summarizes Technology Transfer India 2016
Dr. Ravi Dhar Summarizes  Technology Transfer India 2016Dr. Ravi Dhar Summarizes  Technology Transfer India 2016
Dr. Ravi Dhar Summarizes Technology Transfer India 2016
 
Inno-W use-case
Inno-W use-caseInno-W use-case
Inno-W use-case
 
Brayan alexis escobar gomez
Brayan alexis escobar gomezBrayan alexis escobar gomez
Brayan alexis escobar gomez
 
Web Design and Development
Web Design and DevelopmentWeb Design and Development
Web Design and Development
 
trabajo4
trabajo4trabajo4
trabajo4
 
Skyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentSkyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed Environment
 
Batch and Interactive Analytics: From Data to Insight
Batch and Interactive Analytics: From Data to InsightBatch and Interactive Analytics: From Data to Insight
Batch and Interactive Analytics: From Data to Insight
 
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...Designing Progressive and Interactive Analytics Processes for High-Dimensiona...
Designing Progressive and Interactive Analytics Processes for High-Dimensiona...
 

Similar to Efficient Analysis of high-dimensional data in tensor formats

SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012Zheng Mengdi
 
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Michael Lie
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsAlexander Litvinenko
 
5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdfRahul926331
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsUmberto Picchini
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsFrank Kienle
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT posterAlexander Litvinenko
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Rediet Moges
 
Lecture 3 image sampling and quantization
Lecture 3 image sampling and quantizationLecture 3 image sampling and quantization
Lecture 3 image sampling and quantizationVARUN KUMAR
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMSJazzieJao1
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics nazlitemu
 

Similar to Efficient Analysis of high-dimensional data in tensor formats (20)

SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012
 
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEs
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo Methods
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT poster
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
 
Unit 3
Unit 3Unit 3
Unit 3
 
Unit 3
Unit 3Unit 3
Unit 3
 
Lecture 3 image sampling and quantization
Lecture 3 image sampling and quantizationLecture 3 image sampling and quantization
Lecture 3 image sampling and quantization
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
5.n nmodels i
5.n nmodels i5.n nmodels i
5.n nmodels i
 
Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics
 

More from Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 

Recently uploaded

4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 

Recently uploaded (20)

4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 

Efficient Analysis of high-dimensional data in tensor formats

  • 1. Efficient Analysis of High Dimensional Data in Tensor Formats M. Espig, W. Hackbusch, A. Litvinenko, H. G. Matthies and E. Zander litvinen@tu-bs.de, 13. Januar 2012 CC SCScientifi omputing
  • 2. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Outline Motivation Discretisation Analysis of high dimensional data Computing the maximum norm Computation of the characteristic Computation of level sets and frequency Numerical Experiments CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 2
  • 3. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments An example of SPDE ∂ ∂t u(x, t) = · (κ(x, ω) u(x, t)) + f(x, t), x ∈ G ⊂ Rd , t ∈ [0, T], where ω ∈ Ω, and U = L2(G). For each ω ∈ Ω seek for u(x, t) ∈ L2([0, T]) ⊗ U. Let S := L2([0, T]) ⊗ L2(Ω), one is looking for u(t, x, ω) ∈ U ⊗ S. Further decomposition L2(Ω) = L2(×jΩj) ∼= j L2(Ωj) ∼= j L2(R, Γj) results in u(t, x, ω) ∈ U ⊗ S = L2(G) ⊗ L2([0, T]) ⊗ j L2(R, Γj) . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 3
  • 4. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Discretisation and Tensorial quantities span {wn}N n=1 = UN ⊂ U, dim UN = N, span {τk}K k=1 = TK ⊂ L2([0, T]) = SI, dim TK = K, span {Xjm }Jm jm=1 = SII,Jm ⊂ L2(R, Γm) = SII, dim SII,Jm = Jm, 1 m M, Let P := [0, T] × Ω, an approximation to u : P → U is thus given by u(x, t, ω1, . . . , ωM) ≈ N n=1 K k=1 J1 j1=1 . . . JM jM =1 ˆuj1,...,jM n,k wn (x) ⊗ τk (t) ⊗ M m=1 Xjm (ωm) . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 4
  • 5. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Tensorial quantities We can write for all n = 1, . . . , N, k = 1, . . . , K, m = 1, . . . , M, jm = 1, . . . , Jm : uj1,...,jm,...,jM n,k = u(xn, tk, ωj1 1 , . . . , ωjM M ), has R = N × K × M m=1 Jm terms. Look for (uj1,...,jm,...,jM n,k ) ≈ R ρ=1 uρ wρ ⊗ τρ ⊗ M m=1 Xρm , where R R , wρ ∈ RN, τρ ∈ RK , Xρm ∈ RJm . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 5
  • 6. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Values of interest With the last tensor representation one wants to perform different tasks: evaluation for specific parameters (t, ω1, . . . , ωM), finding maxima and minima, finding ‘level sets’ and quantiles. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 6
  • 7. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Spatial discretisation and PCE UN := {ϕn(x)}N n=1 ⊂ U: u(x, ω) = N n=1 un(ω)ϕn(x), un(θ) = α∈J uα n Hα(θ(ω)), where J is taken as a finite subset of N (N) 0 , R := |J|. u(θ) = α∈J uα Hα(θ(ω)), where uα := [uα 1 , . . . , uα n ]T . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 7
  • 8. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Discretized equation in tensor form KLE: κ(x, ω) = κ0(x) + ∞ j=1 κjgj(x)ξj(θ), where ξj(θ) = 1 κj G (κ(x, ω) − κ0(x)) gj(x)dx. Knowing PCE κ(x, ω) = α κ(α)Hα(θ), compute ξj(θ) = α∈J ξ (α) j Hα(θ), where ξ (α) j = 1 κj G κ(α)(x)gj(x)dx. Further compute ξ (α) j ≈ s l=1(ξl)j ∞ k=1(ξl, k)αk . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 8
  • 9. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Discretized equation in tensor form [Matthies, Keese 04, 05, 07] Au := ∞ j=0 Aj ⊗ ∆j α∈J uα ⊗ eα = α∈J fα ⊗ eα =: f, where eα denotes the canonical basis in M µ=1 RRµ . f = α∈J ∞ i=0 √ λifi αfi ⊗ eα = ∞ i=0 √ λifi ⊗ gi, where gi := α∈J fi αeα. Splitting gi further, obtain f ≈ R k=1 ˜fk ⊗ M µ=1 gkµ. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 9
  • 10. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Final discretized stochastic PDE Au = f, where A:= s l=1 ˜Al ⊗ M µ=1 ∆lµ , ˜Al ∈ RN×N, ∆lµ ∈ RRµ×Rµ , u:= r j=1 uj ⊗ M µ=1 ujµ , uj ∈ RN, ujµ ∈ RRµ , f:= R k=1 ˜fk ⊗ M µ=1 gkµ, ˜fk ∈ RN and gkµ ∈ RRµ . [Wähnert, Espig, Hackbusch, Litvinenko, Matthies 02.2012] CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 10
  • 11. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Notation Let T := d µ=1 Rnµ , Rr (T) := Rr := r i=1 d µ=1 viµ ∈ T : viµ ∈ Rnµ , I := ×d µ=1 Iµ, where Iµ := {i ∈ N : 1 i nµ}. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 11
  • 12. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Maximum norm and corresponding index Let u = r j=1 d µ=1 ujµ ∈ Rr , compute u ∞ := maxi:=(i1,...,id )∈I|ui| = maxi:=(i1,...,id )∈I r j=1 d µ=1 ujµ iµ . (1) Computing u ∞ is equivalent to the following e.v. problem. Let i∗ := (i∗ 1 , . . . , i∗ d ) ∈ I, #I = d µ=1 nµ. u ∞ = |ui∗ | = r j=1 d µ=1 ujµ i∗ µ and e(i∗ ) := d µ=1 ei∗ µ , where ei∗ µ ∈ Rnµ the i∗ µ-th canonical vector in Rnµ (µ ∈ N d ). CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 12
  • 13. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Then u e(i∗ ) =   r j=1 d µ=1 ujµ     d µ=1 ei∗ µ   = r j=1 d µ=1 ujµ ei∗ µ = r j=1 d µ=1 (ujµ)i∗ µ ei∗ µ =   r j=1 d µ=1 (ujµ)i∗ µ   ui∗ = d µ=1 e(i∗ µ), from which follows u e(i∗ ) = ui∗ e(i∗ ) . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 13
  • 14. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Let D(u) := r j=1 d µ=1 diag (ujµ)lµ lµ∈N nµ , obtain D(u)v = u v for all v ∈ T. Corollary Elements of u are the eigenvalues of D(u) and all eigenvectors e(i) are of the following form: e(i) = d µ=1 eiµ , where i := (i1, . . . , id ) ∈ I is the index of ui. Therefore u ∞ is the largest eigenvalue of D(u) with corresp. e.v. e(i∗ ). CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 14
  • 15. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Computing u ∞, u ∈ Rr by vector iteration 1: Choose y0 := d µ=1 1 nµ 1, where 1 := (1, . . . , 1)T ∈ Rnµ , kmax ∈ N, and take ε := 10e − 7 2: for k = 1, 2, . . . , kmax do 3: qk = u yk−1, λk = yk−1, qk , zk = qk/ qk, qk , yk = Appε(zk). 4: end for yk = Appε(zk), [Approximate iteration, Khoromskij, Hackbusch, Tyrtyshnikov 05], Algorithms in [Espig, Hackbusch 2010] CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 15
  • 16. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Definition (Characteristic, Sign) The characteristic χI(u) ∈ T of u ∈ T in I ⊂ R is for every multi- index i ∈ I pointwise defined as (χI(u))i := 1, ui ∈ I; 0, ui /∈ I. (2) Furthermore, the sign(u) ∈ T is for all i ∈ I pointwise defined by (sign(u))i :=    1, ui > 0; −1, ui < 0; 0, ui = 0. (3) CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 16
  • 17. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Lemma Let u ∈ T, a, b ∈ R, and 1 = d µ=1 ˜1µ, where ˜1µ := (1, . . . , 1)t ∈ Rnµ . (i) If I = R<b, then we have χI(u) = 1 2 (1 + sign(b1 − u)). (ii) If I = R>a, then we have χI(u) = 1 2 (1 − sign(a1 − u)). (iii) If I = (a, b), then we have χI(u) = 1 2 (sign(b1 − u) − sign(a1 − u)). Computing sign(u), u ∈ Rr , via hybrid Newton-Schulz iteration: CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 17
  • 18. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Computing the maximum norm Computation of the characteristic Computing sign(u), u ∈ Rr 1: Choose u0 := u and ε ∈ R+. 2: while 1 − uk−1 uk−1 < ε u do 3: if 1 − uk−1 uk−1 < u then 4: zk := 1 2 uk−1 (31 − uk−1 uk−1) 5: else 6: zk := 1 2 (uk−1 + u−1 k−1) 7: end if 8: uk := Appεk (zk) 9: end while CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 18
  • 19. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Definition (Level Set, Frequency) Let I ⊂ R and u ∈ T. The level set LI(u) ∈ T of u respect to I is pointwise defined by (LI(u))i := ui, ui ∈ I ; 0, ui /∈ I , (4) for all i ∈ I. The frequency FI(u) ∈ N of u respect to I is defined as FI(u) := # supp χI(u). (5) CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 19
  • 20. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Proposition Let I ⊂ R, u ∈ T, and χI(u) its characteristic. We have LI(u) = χI(u) u and rank(LI(u)) rank(χI(u))rank(u). The frequency FI(u) ∈ N of u respect to I is FI(u) = χI(u), 1 , where 1 = d µ=1 ˜1µ, ˜1µ := (1, . . . , 1)T ∈ Rnµ . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 20
  • 21. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments 2D L-shape domain, N = 557. KLE terms for q(x, ω) = eκ(x,ω): lk = 10, stoch. dim. mk = 10 and pk = 2, shifted lognormal distrib. for κ(x, ω), covκ(x, y) is of the Gaussian type, x = y = 0.3. RHS: lf = 10, mf = 10, pf = 2 and Beta distrib. {4, 2} for RVs. covf (x, y) is of the Gaussian type, x = y = 0.6. Total stoch. dim. mu = mk + mf = 20, |J| = 231 u = 231 j=1 21 µ=1 ujµ ∈ R557 ⊗ 20 µ=1 R3 . CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 21
  • 22. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments 0 1 2 3 4 5 0 0.1 0.2 0.3 0.4 0 0.5 1 1.5 0 0.5 1 1.5 2 2.5 Shifted lognormal distribution with parameters {µ = 0.5, σ2 = 1.0} (on the left) and Beta distribution with parameters {4, 2} (on the right). CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 22
  • 23. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Mean (on the left) and standard deviation (on the right) of κ(x, ω) (lognormal random field with parameters µ = 0.5 and σ = 1). CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 23
  • 24. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Mean (on the left) and standard deviation (on the right) of f(x, ω) (beta distribution with parameters α = 4, β = 2 and Gaussian cov. function). CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 24
  • 25. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments M (on the left) and standard deviation (on the right) of the solution u. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 25
  • 26. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Results Computed u ∞ after 20 iterations. The maximal rank of the intermediate iterants (uk)20 k=1 was 143 (uk)20 k=1 ⊂ R143 is the sequence of generated tensors. The approximation error εk = 10−6 CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 26
  • 27. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Level sets Now we compute level sets sign(b u ∞1 − u) for b ∈ {0.2, 0.4, 0.6, 0.8}. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 27
  • 28. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments The computing time to get any row is around 10 minutes. Tensor u has 320 ∗ 557 = 1, 942, 138, 911, 357 entries. R1 := rank(sign(b u ∞1 − u)) , R2 := max1 k kmaxrank(uk), Error= 1−ukmax ukmax (b u ∞1−u) . b R1 R2 kmax Error 0.2 12 24 12 2.9×10−8 0.4 12 20 20 1.9×10−7 0.6 8 16 12 1.6×10−7 0.8 8 15 8 1.2×10−7 CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 28
  • 29. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Literature 1. P. Wähnert, W.Hackbusch, M. Espig, A. Litvinenko, H. Matthies: Efficient approximation of the stoch. Galerkin matrix in the canonical tensor format, (in preparation) MPI Leipzig, 2011. 2. Dissertation of Mike Espig, Leipzig 2008. 3. Mike Espig, W. Hackbusch: A regularized Newton method for the efficient approx. of tensor represented in the c.t. format, MPI Leipzig 2010 4. H. G. Matthies, Uncertainty Quantification with Stochastic Finite Elements, Encyclopedia of Computational Mechanics, Wiley, 2007. CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 29
  • 30. Motivation Discretisation Analysis of high dimensional data Computation of level sets and frequency Numerical Experiments Acknowledgement Project MUNA, German Luftfahrtforschungsprogramm funded by the Ministry of Economics (BMWA). Elmar Zander: A Malab/Octave toolbox for stochastic Galerkin methods (KLE, PCE, sparse grids, tensors, many examples etc) Stoch. Galerkin lib.: http://ezander.github.com/sglib/ M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S. Handschuh, H. Auer Tensor Calculus lib.: http://gitorious.org/tensorcalculus CC SCScientifi omputing Efficient Analysis of High Dimensional Data in Tensor Formats Seite 30