A proposal to study Calderon’s theatre: Topic Maps and Graph Databases… and a little bit of something else that we don’t k...
Overview<br /><ul><li>1st Approach to the research:
Topic Maps?
Topic Map Creation:
Schema & Population
Analysis & Results
New Measurements
Other Visualizations
Evolution of the research (GDB):
Targeting an specific objective:
One Character
Speech Act Theory
Methodology
First results
Preliminary Conclusions</li></li></ul><li>fromTopicMaps …<br /><ul><li>Model of knowledge representation.
Semantic linking between data, concepts and sources.
Schema layer   vs.  Data layers: different levels of abstraction.
“Layers as independent TMs” takes us to “independence of interpretation”.</li></li></ul><li>InitialTopicMapSchema<br />Mai...
Places
Objects
Feelings
Actions
…</li></li></ul><li>PopulatingtheTopicMap<br /><ul><li>From the plays (interpretation):</li></ul>Ocurrence<br />Señor don ...
Upcoming SlideShare
Loading in …5
×

A proposal to study Calderon_GC'11

434 views

Published on

Emergencies: Grad Students Conference at UWO
Panel 6: Digital Humanities
-A proposal to Study Calderon's Comedias: Topic Maps and Graph Databases

Published in: Education
  • Be the first to comment

  • Be the first to like this

A proposal to study Calderon_GC'11

  1. 1. A proposal to study Calderon’s theatre: Topic Maps and Graph Databases… and a little bit of something else that we don’t know yet… but we’ll keep you posted.<br />Miriam Peña-Pimentel <br />The University of Western Ontario<br />mpenapie@uwo.ca<br />
  2. 2. Overview<br /><ul><li>1st Approach to the research:
  3. 3. Topic Maps?
  4. 4. Topic Map Creation:
  5. 5. Schema & Population
  6. 6. Analysis & Results
  7. 7. New Measurements
  8. 8. Other Visualizations
  9. 9. Evolution of the research (GDB):
  10. 10. Targeting an specific objective:
  11. 11. One Character
  12. 12. Speech Act Theory
  13. 13. Methodology
  14. 14. First results
  15. 15. Preliminary Conclusions</li></li></ul><li>fromTopicMaps …<br /><ul><li>Model of knowledge representation.
  16. 16. Semantic linking between data, concepts and sources.
  17. 17. Schema layer vs. Data layers: different levels of abstraction.
  18. 18. “Layers as independent TMs” takes us to “independence of interpretation”.</li></li></ul><li>InitialTopicMapSchema<br />Mainitems in ourTopicMap:<br /><ul><li>Characters
  19. 19. Places
  20. 20. Objects
  21. 21. Feelings
  22. 22. Actions
  23. 23. …</li></li></ul><li>PopulatingtheTopicMap<br /><ul><li>From the plays (interpretation):</li></ul>Ocurrence<br />Señor don Luis, ya sabéis<br />que estimo vuestras finezas,<br />supuesto que lo merecen<br />por amorosas y vuestras;<br />pero no puedo pagarlas,<br />que eso han de hacer las estrellas<br />y no hay de lo que no hacen<br />quien las tome residencia; <br />si lo que menos se halla<br />es hoy lo que más se precia<br />en la Corte, agradeced<br />el desengaño, si quiera,<br />por ser cosa que se halla<br />con dificultad en ella:<br />quedad con Dios.<br />(La Dama Duende, Jornada 1, Versos: 278-292)<br />Context: Play<br />Don Luis<br />aprecio / esteem<br />mostrar / to show<br />hablar de / totalkabout<br />Doña Beatriz<br />rechazar / toreject<br />hablar de / totalkabout<br />desengaño / unhappyloveaffair<br />corte / court<br />
  24. 24. PopulatingtheTopicMap<br /><ul><li>From “external” sources (they provide new contexts):
  25. 25. Geography: Ocaña is in Spain
  26. 26. History: “La rendición de Bredá” was in 1625
  27. 27. Mythology: Zeus is from Greek Mythology
  28. 28.
  29. 29. Academic annotations (more contexts)</li></li></ul><li>ResultsfromTopicMaps<br />TopicMap<br />Networks<br />
  30. 30. Play 1: H2D<br />“Casa con dos puertas”<br />Characters:<br />Lisardo<br />Marcela<br />Don Félix<br />Laura<br />Topics:<br />Honor<br />Trick<br />Jealousy<br />Ocaña (Place)<br />
  31. 31. Some results from THE analysis<br />
  32. 32. Play 1<br />auxiliarTMs<br />Final TM<br />+<br />=<br />Play 2<br />+<br />Play 3<br />+<br />Schema<br />+<br />
  33. 33. Basic Analysis<br />
  34. 34. Extracting new semantic connections<br />Onlyfrom non-charactertopics<br />If two topics occur in semantic relations in the same fragments of the text a high number of times, they “must” have a semantic relation (at least, subjectively for the author), and has a high philological value for subsequent analysis.<br />UsingCharacters as mediators<br />
  35. 35. OtherVisualizations:<br />TopicMap<br />Timelines<br />
  36. 36. H2D<br />TimelineVisualizationusingexhibit (fromsimile):<br />
  37. 37. Targeting an specific objective<br />One character: The Gracioso in Calderon´sComedias.<br />Speech Act Theory: <br />Verbs: classification of the actions based on the verb that better represents them.<br />Context: the plot of the play determines the reaction of the character.<br />
  38. 38. Collecting the data<br />Description of the Comedia:<br />-Title<br />-Character<br />-Acts<br />-Verses<br />Speech Act:<br />-Verb<br />-Description of the character´s participation<br />Context:<br />-Situation<br />-Place<br />-Character´s disposition<br />
  39. 39. Graph Scheme for Data:<br />
  40. 40. Graph Scheme for Data:<br />Speech Act<br />Context<br />Description<br />
  41. 41. Partialgraphforoneanotation:<br />
  42. 42. Complete Graph<br />… toobigfor visual analysis ...<br />Current Data (~80%):<br /> 10 comedias<br /> ~ 4000 topics<br /> ~ 15,000 links<br />Expected Data:<br /> 12 comedias<br /> ~ 5000 topics<br /> ~ 18,000 links<br />
  43. 43. Queries: Traversal<br />
  44. 44. CombiningQueries<br />["Clas.Calvo" "Verbo" "Acto" "Contexto" "Sit.Tipo" ]<br />["Clas.Calvo" "Verbo" "Acto" "Contexto" "Sit.Honor" ]<br />["Clas.Calvo" "Verbo" "Acto" "Contexto" "Sit.Jerárquica“]<br />
  45. 45. Preliminary Conclusions<br /><ul><li>Networks provide a comfortable tool to organize complex cultural information and generate the first levels of analysis.
  46. 46. Topic Maps (semantic) vs. Text Mining (syntax).
  47. 47. Target of an specific objective and theory.
  48. 48. Moving from TMs to Graph Databases: Visualizations and further analysis.
  49. 49. Implementation of queries.
  50. 50. Moving to Sylva (store, visualization and query system).</li></li></ul><li>Thankyou!<br />http://www.cultureplex.ca/<br />http://www.hispanicbaroque.ca/<br />mpenapie@uwo.ca<br />

×