Unit4

3,254 views

Published on

Decimals, add, take away, multiply, divide,...

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,254
On SlideShare
0
From Embeds
0
Number of Embeds
195
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Unit4

  1. 1. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimals Matem´ticas 1o E.S.O. a Alberto Pardo Milan´s e -
  2. 2. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises 1 Decimal expansion 2 Reading decimal numbers 3 Operations with decimals 4 Approximating a quantity 5 ExercisesAlberto Pardo Milan´s e Decimals
  3. 3. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansionAlberto Pardo Milan´s e Decimals
  4. 4. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion What is the decimal expansion of a number? The decimal expansion of a number is its representation in the decimal system. Example: 1 the decimal expansion of 252 is 625, of π is 3.14159 . . . , and of 9 is 0.1111 . . . Numbers can be placed to the left or right of a decimal point, to indicate values greater than one or less than one. The number to the left of the decimal point is a whole number.Alberto Pardo Milan´s e Decimals
  5. 5. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Rational numbers and irrationals The decimal expansion of a number may terminate, become periodic, or continue infinitely without repeating. Rational numbers are numbers that are fractions. There are some numbers that can be written as fraction, called Irrational numbers. All rational numbers have either finite decimal expansions (finite decimals) or repeating decimals. However,irrational numbers, neither terminate nor become periodic (continue infinitely without repeating).Alberto Pardo Milan´s e Decimals
  6. 6. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Finite decimal A finite decimal is a positive number that has a finite decimal expansion. Example: 1/2 = 0.5 is a finite decimal. Recurring decimal A decimal number is a repeating/recurring decimal if at some point it becomes periodic: there is some finite sequence of digits that is repeated indefinitely. The repeating portion of a decimal expansion is conventionally denoted with a vinculum (a horizontal line placed above multiple quantities). Example: 1/3 = 0.33333333 · · · = 0. 3 is a recurring decimal. Note that there are repeating decimals that begin with a non-repeating part. Example: 1/30 = 0.03333333 · · · = 0.03 is a recurring decimal that begin with a non-repeating part.Alberto Pardo Milan´s e Decimals
  7. 7. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  8. 8. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  9. 9. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  10. 10. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  11. 11. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  12. 12. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  13. 13. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  14. 14. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  15. 15. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  16. 16. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  17. 17. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  18. 18. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Decimal expansion Irrationals The decimal expansion of an irrational number never repeats or terminates. Example: π = 3.14159265358979323846264338327950288419716939937510582097494 459230781640628620899862803482534211706798214808651328230664 709384460955058223172535940812848111745028410270193852110555 964462294895493038196442881097566593344612847564823378678316 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129 . . . is an irrational.Alberto Pardo Milan´s e Decimals
  19. 19. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Reading decimal numbersAlberto Pardo Milan´s e Decimals
  20. 20. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Reading decimal numbers When reading and writing decimals take note of the correct place of the last digit in the number. A decimal point means “and”. Remember that the value of a digit depends on its place or position in the number. Look at the names of the different places of a figure (Place underlined - name of position) 7,654,321.234567 Millions 7,654,321.234567 Hundred thousands 7,654,321.234567 Ten thousands 7,654,321.234567 Thousands 7,654,321.234567 Hundreds 7,654,321.234567 Tens 7,654,321.234567 Ones (units) position 7,654,321.234567 Tenths 7,654,321.234567 Hundredths 7,654,321.234567 Thousandths 7,654,321.234567 Ten thousandths 7,654,321.234567 Hundred Thousandths 7,654,321.234567 MillionthsAlberto Pardo Milan´s e Decimals
  21. 21. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Reading decimal numbers Examples: Look at the following examples to learn how to read decimal numbers: 321.7 → Three hundred twenty-one and seven tenths or three hundred twenty-one point seven 5,062.57 → Five thousand sixty-two and fifty-seven hundredths or five thousand sixty-two point five seven 43.27 → Forty-three point two seven 0 → Zero 5.07 → Five point oh seven 0.0305 → Nought point oh three oh five or point oh three oh five e4.67 → Four euros and sixty-seven cents or Four euros sixty-seven 5o → Five Celsius degrees 3.4 → Three point four recurringAlberto Pardo Milan´s e Decimals
  22. 22. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Operations with decimalsAlberto Pardo Milan´s e Decimals
  23. 23. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Operations with decimals Adding and subtracting Addition and subtraction of decimals is like adding and subtracting whole numbers. The only thing we must remember is to line up the place values correctly. Examples: 1 2 .3 5 To add 12.35 + 5.287: + 5 .2 8 7 1 7 .6 3 7 1 2 .9 9 3 To subtract 12.993 − 2.28 : - 2 .2 8 1 0 .7 1 3Alberto Pardo Milan´s e Decimals
  24. 24. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Operations with decimals Multiplying and dividing When multiplying numbers with decimals, we first multiply them as if they were whole numbers. Then, the placement of the number of decimal places in the result is equal to the sum of the number of decimal places of the numbers being multiplied. 2 .8 1 × 3 .1 Example: To multiply 2.81 by 3.1: 2 8 1 8 4 3 8 .7 1 1 Division with decimals is easier to understand if the divisor is a whole number. In this case, when the decimal point appears in the dividend, we put it on the divisor. 3 4. 2 /5 Example: To divide 3.42 by 5: 0 4 2 6. 8 2Alberto Pardo Milan´s e Decimals
  25. 25. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Operations with decimals Multiplying and dividing If the divisor has a decimal in it, we can make it a whole number by moving the decimal point the appropriate number of places to the right. If you move the decimal point to the right in the divisor, you must also do this for the dividend. Example: To divide 13.34 by 3.2 we divide 133.4 by 32.Alberto Pardo Milan´s e Decimals
  26. 26. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Approximating a quantityAlberto Pardo Milan´s e Decimals
  27. 27. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Approximating a quantity Approximating a quantity Rounding off and truncating a decimal are techniques used to estimate or approximate a quantity. Instead of having a long string of figures, we can approximate the value of the decimal to a specified decimal place. Truncating To truncate a decimal, we leave our last decimal place as it is given and discard all digits to its right. Example: Truncate 123,235.23 to the tens place:123,230. Truncate 123,235.23 to the tenth:123,235.2Alberto Pardo Milan´s e Decimals
  28. 28. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Approximating a quantity Approximating a quantity Rounding off After rounding off, the digit in the place we are rounding will either stay the same (referred to as rounding down) or increase by 1 (referred to as rounding up), then we discard all digits to its right. To round off a decimal look at the digit to the right of the place being rounded: • If the digit is 4 or less, the figure in the place we are rounding remains the same (rounding down). • If the digit is 5 or greater, add 1 to the figure in the place we are rounding (rounding up). • After rounding, discard all digits to the right of the place we are rounding. Examples: Round 123,235.23 to the tens place:123,240 we are rounding up. Round 123,234.23 to the tens place:123,230 we are rounding down.Alberto Pardo Milan´s e Decimals
  29. 29. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises ExercisesAlberto Pardo Milan´s e Decimals
  30. 30. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 1 We know that 234 · 567 = 132,678. Find 2.34 · 5.67:Alberto Pardo Milan´s e Decimals
  31. 31. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 1 We know that 234 · 567 = 132,678. Find 2.34 · 5.67: 2.34 · 5.67 = 13.2678Alberto Pardo Milan´s e Decimals
  32. 32. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 2 Carmen earns e4.60 an hour working part-time as a private tutor. Last week she worked 6 hours. How much money did Carmen earn?Alberto Pardo Milan´s e Decimals
  33. 33. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 2 Carmen earns e4.60 an hour working part-time as a private tutor. Last week she worked 6 hours. How much money did Carmen earn? Data: She earns: e4.60 an hour Last week she worked 6 hours. 4.60 · 6 = 27.60 Answer: Carmen earns e27.60 working part-time as a private tutor.Alberto Pardo Milan´s e Decimals
  34. 34. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 2 Carmen earns e4.60 an hour working part-time as a private tutor. Last week she worked 6 hours. How much money did Carmen earn? Data: She earns: e4.60 an hour Last week she worked 6 hours. 4.60 · 6 = 27.60 Answer: Carmen earns e27.60 working part-time as a private tutor.Alberto Pardo Milan´s e Decimals
  35. 35. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 2 Carmen earns e4.60 an hour working part-time as a private tutor. Last week she worked 6 hours. How much money did Carmen earn? Data: She earns: e4.60 an hour Last week she worked 6 hours. 4.60 · 6 = 27.60 Answer: Carmen earns e27.60 working part-time as a private tutor.Alberto Pardo Milan´s e Decimals
  36. 36. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 3 What is the cost of 3 pounds of jellybeans if each pound costs e2.30?Alberto Pardo Milan´s e Decimals
  37. 37. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 3 What is the cost of 3 pounds of jellybeans if each pound costs e2.30? Data: Each pound costs e2.30. 3 · 2.30 = 6.90 Answer: 3 pounds of jellybeans cost e6.90.
  38. 38. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 3 What is the cost of 3 pounds of jellybeans if each pound costs e2.30? Data: Each pound costs e2.30. 3 · 2.30 = 6.90 Answer: 3 pounds of jellybeans cost e6.90.
  39. 39. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 3 What is the cost of 3 pounds of jellybeans if each pound costs e2.30? Data: Each pound costs e2.30. 3 · 2.30 = 6.90 Answer: 3 pounds of jellybeans cost e6.90.
  40. 40. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 3 What is the cost of 3 pounds of jellybeans if each pound costs e2.30? Data: Each pound costs e2.30. 3 · 2.30 = 6.90 Answer: 3 pounds of jellybeans cost e6.90.
  41. 41. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 4 The length of a swimming pool is 16 feet. What is the length of the pool in yards? What is the length of the pool in meters? (Note 1 yard=3 feet=0.9144 meters).Alberto Pardo Milan´s e Decimals
  42. 42. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 4 The length of a swimming pool is 16 feet. What is the length of the pool in yards? What is the length of the pool in meters? (Note 1 yard=3 feet=0.9144 meters). Data: The length is 16 feet. 1 yard=3 feet=0.9144 meters 16 : 3 = 5.333333 (16 : 3) · 0.9144 = 5.333333 · 0.9144 = 4.8768 Answer: The length of the pool is 5.333333 yards. The length of the pool is 4.8768 meters.
  43. 43. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 4 The length of a swimming pool is 16 feet. What is the length of the pool in yards? What is the length of the pool in meters? (Note 1 yard=3 feet=0.9144 meters). Data: The length is 16 feet. 1 yard=3 feet=0.9144 meters 16 : 3 = 5.333333 (16 : 3) · 0.9144 = 5.333333 · 0.9144 = 4.8768 Answer: The length of the pool is 5.333333 yards. The length of the pool is 4.8768 meters.
  44. 44. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 4 The length of a swimming pool is 16 feet. What is the length of the pool in yards? What is the length of the pool in meters? (Note 1 yard=3 feet=0.9144 meters). Data: The length is 16 feet. 1 yard=3 feet=0.9144 meters 16 : 3 = 5.333333 (16 : 3) · 0.9144 = 5.333333 · 0.9144 = 4.8768 Answer: The length of the pool is 5.333333 yards. The length of the pool is 4.8768 meters.
  45. 45. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 4 The length of a swimming pool is 16 feet. What is the length of the pool in yards? What is the length of the pool in meters? (Note 1 yard=3 feet=0.9144 meters). Data: The length is 16 feet. 1 yard=3 feet=0.9144 meters 16 : 3 = 5.333333 (16 : 3) · 0.9144 = 5.333333 · 0.9144 = 4.8768 Answer: The length of the pool is 5.333333 yards. The length of the pool is 4.8768 meters.
  46. 46. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 5 The highest point in Alabama is Cheaha Mountain. It stands just a bit higher than 730 meters. What is this elevation in miles? (Note 1 km=5/8 miles)Alberto Pardo Milan´s e Decimals
  47. 47. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 5 The highest point in Alabama is Cheaha Mountain. It stands just a bit higher than 730 meters. What is this elevation in miles? (Note 1 km=5/8 miles) Data: Cheaha Mountain is 730 meters high. 1 km=5/8 miles 730 m = 0.73 km 0.73 · 5 = 3.65 3.65 : 8 = 0.45625 Answer: Cheaha Mountain is 0.45625 miles high.
  48. 48. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 5 The highest point in Alabama is Cheaha Mountain. It stands just a bit higher than 730 meters. What is this elevation in miles? (Note 1 km=5/8 miles) Data: Cheaha Mountain is 730 meters high. 1 km=5/8 miles 730 m = 0.73 km 0.73 · 5 = 3.65 3.65 : 8 = 0.45625 Answer: Cheaha Mountain is 0.45625 miles high.
  49. 49. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 5 The highest point in Alabama is Cheaha Mountain. It stands just a bit higher than 730 meters. What is this elevation in miles? (Note 1 km=5/8 miles) Data: Cheaha Mountain is 730 meters high. 1 km=5/8 miles 730 m = 0.73 km 0.73 · 5 = 3.65 3.65 : 8 = 0.45625 Answer: Cheaha Mountain is 0.45625 miles high.
  50. 50. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 5 The highest point in Alabama is Cheaha Mountain. It stands just a bit higher than 730 meters. What is this elevation in miles? (Note 1 km=5/8 miles) Data: Cheaha Mountain is 730 meters high. 1 km=5/8 miles 730 m = 0.73 km 0.73 · 5 = 3.65 3.65 : 8 = 0.45625 Answer: Cheaha Mountain is 0.45625 miles high.
  51. 51. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number: Truncate 68.94 to the tenth: Round 68.94 to the nearest tenth: Truncate 125.396 to the hundredth: Round 125.396 to the nearest hundredth:Alberto Pardo Milan´s e Decimals
  52. 52. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number:7.601 8 Truncate 68.94 to the tenth:68.94 68.9 Round 68.94 to the nearest tenth:68.94 68.9 Truncate 125.396 to the hundredth:125.396 125.39 Round 125.396 to the nearest hundredth:125.396 125.40Alberto Pardo Milan´s e Decimals
  53. 53. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number:7.601 8 Truncate 68.94 to the tenth:68.94 68.9 Round 68.94 to the nearest tenth:68.94 68.9 Truncate 125.396 to the hundredth:125.396 125.39 Round 125.396 to the nearest hundredth:125.396 125.40Alberto Pardo Milan´s e Decimals
  54. 54. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number:7.601 8 Truncate 68.94 to the tenth:68.94 68.9 Round 68.94 to the nearest tenth:68.94 68.9 Truncate 125.396 to the hundredth:125.396 125.39 Round 125.396 to the nearest hundredth:125.396 125.40Alberto Pardo Milan´s e Decimals
  55. 55. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number:7.601 8 Truncate 68.94 to the tenth:68.94 68.9 Round 68.94 to the nearest tenth:68.94 68.9 Truncate 125.396 to the hundredth:125.396 125.39 Round 125.396 to the nearest hundredth:125.396 125.40Alberto Pardo Milan´s e Decimals
  56. 56. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 6 Round 7.601 to the nearest whole number:7.601 8 Truncate 68.94 to the tenth:68.94 68.9 Round 68.94 to the nearest tenth:68.94 68.9 Truncate 125.396 to the hundredth:125.396 125.39 Round 125.396 to the nearest hundredth:125.396 125.40Alberto Pardo Milan´s e Decimals
  57. 57. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 7 A can of beans costs e0.0726 per ounce. To the nearest cent, how much does an ounce of beans cost? How much does ten ounces of beans cost?Alberto Pardo Milan´s e Decimals
  58. 58. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 7 A can of beans costs e0.0726 per ounce. To the nearest cent, how much does an ounce of beans cost? How much does ten ounces of beans cost? Data: A can of beans costs e0.0726 per ounce. 0.0726 0.07 0.0726 · 10 = 0.726 0.72 Answer: To the nearest cent, an ounce of beans cost e0.07, ten ounces of beans e0.72.Alberto Pardo Milan´s e Decimals
  59. 59. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity Exercises Exercises Exercise 7 A can of beans costs e0.0726 per ounce. To the nearest cent, how much does an ounce of beans cost? How much does ten ounces of beans cost? Data: A can of beans costs e0.0726 per ounce. 0.0726 0.07 0.0726 · 10 = 0.726 0.72 Answer: To the nearest cent, an ounce of beans cost e0.07, ten ounces of beans e0.72.Alberto Pardo Milan´s e Decimals
  60. 60. Indice Decimal expansion Reading decimal numbers Operations with decimals Approximating a quantity ExercisesExercisesExercise 7 A can of beans costs e0.0726 per ounce. To the nearest cent, how much does an ounce of beans cost? How much does ten ounces of beans cost? Data: A can of beans costs e0.0726 per ounce. 0.0726 0.07 0.0726 · 10 = 0.726 0.72 Answer: To the nearest cent, an ounce of beans cost e0.07, ten ounces of beans e0.72.

×