SlideShare a Scribd company logo
1 of 28
Mul$-­‐Agent	
  Modelling	
  	
  
With	
  applica$ons	
  to	
  robo$cs	
  and	
  cogni$on	
  
Dr.	
  Aladdin	
  Ayesh	
  
	
  
Co-­‐ordinator	
  of	
  Intelligent	
  Mobile	
  Robo$cs	
  and	
  Crea$ve	
  Compu$ng	
  Group	
  
(IMRCC-­‐Group)	
  
School	
  of	
  Informa$cs,	
  De	
  MonEort	
  University	
  
email:	
  aayesh@dmu.ac.uk;	
  URL:	
  www.aladdin-­‐ayesh.info	
  	
  
	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Agenda	
  
•  What	
  is	
  an	
  agent?	
  
•  Cogni$on,	
  thinking	
  and	
  conciseness	
  
•  Robo$cs:	
  the	
  ques$on	
  of	
  neurology	
  (senses)	
  
•  Avatars:	
  the	
  ques$on	
  of	
  body	
  
•  Applica$ons	
  
– From	
  AI	
  to	
  SoUware	
  Engineering	
  
– Swarms	
  and	
  Social	
  Modelling	
  
– Human-­‐Computer	
  Interac$on	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
What	
  is	
  an	
  agent?	
  
•  This	
  ques$on	
  has	
  been	
  a	
  philosophical	
  
minefield.	
  
•  To	
  simplify	
  this	
  ques$on	
  let	
  us	
  look	
  at	
  two	
  
separate	
  issues	
  associated	
  with	
  agents:	
  being	
  
and	
  the	
  no$on	
  of	
  agency.	
  
•  In	
  being,	
  let	
  us	
  take	
  a	
  human	
  being	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
What	
  is	
  an	
  agent?	
  
•  What	
  are	
  we	
  as	
  systems	
  concerned?	
  	
  
– Senses?	
  
– Motors?	
  (Neuromotor-­‐psychomotor)	
  
– Mind?	
  
	
  
Agent	
  Structure	
  
•  Now	
  is	
  the	
  no$on	
  of	
  agency	
  	
  
senses	
   cogni$on	
   motor	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Cogni$on,	
  thinking	
  and	
  
conciseness	
  
•  Cogni$on	
  encompasses	
  the	
  different	
  facul$es	
  
associated	
  with	
  human	
  operability:	
  thinking,	
  
memory,	
  language,	
  etc.	
  (cogni$ve	
  psychology)	
  
•  Affects	
  are	
  important	
  and	
  highly	
  connected	
  to	
  
cogni$on	
  but	
  they	
  usually	
  stand	
  separate.	
  
(phenomenological	
  psychology)	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Interest	
  in	
  emo$on	
  modeling	
  has	
  been	
  increasing	
  in	
  the	
  last	
  few	
  years	
  
specially	
  with	
  the	
  increase	
  interest	
  in	
  cogni$ve	
  systems,	
  especially	
  as	
  
they	
  are	
  implemented	
  into	
  games	
  and	
  virtual	
  worlds.	
  There	
  are	
  number	
  
of	
  issues	
  related	
  to	
  emo$on	
  modeling:	
  selec$on	
  of	
  emo$ons,	
  
represen$ng	
  an	
  emo$on,	
  expressing	
  emo$ons,	
  recognizing	
  emo$ons	
  and	
  
so	
  on.	
  Each	
  one	
  of	
  these	
  issues	
  is	
  a	
  research	
  area	
  by	
  itself.	
  
h]p://www.computa$onal-­‐emo$ons.org/	
  is	
  a	
  web	
  site	
  under	
  
construc$on	
  with	
  the	
  aim	
  to	
  provide	
  informa$on	
  on	
  research	
  in	
  this	
  
area.	
  
NOTE	
  ON	
  EMOTION	
  MODELING	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Cogni$on,	
  thinking	
  and	
  
conciseness	
  
•  Similar	
  to	
  emo$on	
  modelling	
  each	
  cogni$ve	
  
faculty	
  is	
  a	
  research	
  area	
  by	
  itself,	
  e.g.	
  
memory	
  architectures,	
  learning	
  algorithms,	
  
etc.	
  
•  What	
  brings	
  these	
  different	
  areas	
  together	
  to	
  
form	
  a	
  cogni$ve	
  system?	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Cogni$on,	
  thinking	
  and	
  
conciseness	
  
•  A	
  cogni$ve	
  architecture	
  is	
  oUen	
  developed	
  for	
  
the	
  purpose	
  of	
  pu_ng	
  together	
  the	
  building	
  
blocks	
  of	
  the	
  internals.	
  
•  Most	
  architectures	
  are	
  developed	
  to	
  explore	
  
par$cular	
  idea,	
  e.g.	
  child	
  development	
  
through	
  implemen$ng	
  cogni$ve	
  learning	
  
theories.	
  Few	
  aim	
  to	
  develop	
  a	
  generic	
  fits	
  all.	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Cogni$on,	
  thinking	
  and	
  
conciseness	
  
•  All	
  of	
  these	
  architectures,	
  however,	
  need	
  a	
  
container	
  in	
  which	
  to	
  be	
  implemented.	
  
An	
  agent	
  embodiment!	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
ROBOT	
  OR	
  AVATAR	
  
So	
  when	
  we	
  explore	
  cogni$on	
  we	
  have	
  to	
  explore	
  body-­‐mind	
  
rela$onship	
  or	
  the	
  embodiment	
  of	
  that	
  cogni$on.	
  As	
  systems	
  and	
  
engineering	
  concerned,	
  there	
  are	
  two	
  forms	
  of	
  decision-­‐making	
  
embodiments,	
  each	
  goads	
  number	
  of	
  outstanding	
  philosophical	
  inquires	
  
and	
  evocates	
  new	
  systems	
  related	
  ques$ons.	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Robo$cs:	
  the	
  ques$on	
  of	
  
neurology	
  
•  Robo$cs	
  are	
  effec$vely	
  a	
  physical	
  form	
  of	
  
agents.	
  
•  They	
  have	
  the	
  full	
  structure:	
  senses-­‐control-­‐
motor	
  
•  But	
  because	
  they	
  are	
  physical	
  they	
  impose	
  
ques$ons	
  related	
  to	
  physical	
  limita$ons,	
  e.g.	
  
sensory	
  errors,	
  real-­‐$me	
  response,	
  and	
  
physical	
  embodiment.	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Robo$cs:	
  the	
  ques$on	
  of	
  
neurology	
  
•  These	
  physical	
  limita$ons	
  forces	
  us	
  to	
  look	
  at	
  
the	
  neural	
  construc$on	
  of	
  human	
  being	
  and	
  
the	
  signal	
  processing	
  aspect	
  of	
  cogni$on.	
  
•  However,	
  we	
  are	
  not	
  all	
  signal	
  processing,	
  and	
  
a	
  domes$c	
  robot	
  should	
  stop	
  an	
  think	
  from	
  
$me	
  to	
  $me.	
  
•  This	
  gives	
  a	
  rise	
  to	
  hybrid	
  architectures	
  of	
  
localized	
  responses	
  with	
  global	
  reasoning	
  
(conscious).	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
NOTE	
  ON	
  AESTHETICS	
  
The	
  shape	
  of	
  the	
  robot,	
  func$onality	
  and	
  the	
  aesthe$cs	
  of	
  look	
  and	
  
behavior	
  has	
  great	
  effects	
  on	
  accep$ng	
  the	
  physical	
  en$ty.	
  One	
  of	
  the	
  
projects	
  we	
  done	
  on	
  this	
  front	
  in	
  AIBO	
  stories	
  and	
  AIBO	
  oracle.	
  But	
  can	
  
we	
  formalize	
  the	
  aesthe$cs	
  of	
  buddying	
  devices	
  in	
  a	
  quan$fied	
  rules?	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Avatars:	
  the	
  ques$on	
  of	
  body	
  
•  Are	
  avatars	
  agents?	
  
•  The	
  strict	
  answer	
  is	
  no,	
  not	
  really!	
  
•  Many	
  agent	
  systems	
  use	
  no	
  graphical	
  
representa$on	
  or	
  oUen	
  a	
  simplified	
  one,	
  i.e.	
  a	
  
dot!	
  
This	
  was	
  the	
  big	
  cri$cism	
  against	
  agents	
  and	
  
simula$ons,	
  no	
  realis$c	
  physical	
  simula$on.	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
NOTE	
  ON	
  PHENOMENOLOGY	
  OF	
  
BEING	
  
Many	
  people,	
  nowadays,	
  develop	
  their	
  avatars	
  to	
  reflect	
  their	
  percep$on	
  
of	
  themselves	
  rather	
  than	
  themselves.	
  I	
  have	
  started	
  about	
  a	
  year	
  ago	
  to	
  
collect	
  evidence	
  on	
  how	
  people	
  use	
  avatars	
  and	
  online	
  profiles	
  to	
  project	
  
their	
  internal	
  representa$on	
  of	
  themselves	
  or	
  what	
  they	
  wish	
  they	
  were.	
  
Far	
  from	
  developing	
  avatars	
  to	
  carry	
  their	
  conscious	
  to	
  immortalise	
  
them,	
  they	
  are	
  reincarna$ng	
  themselves	
  of	
  an	
  an$-­‐existen$alist	
  	
  
phenomena.	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Applica$ons	
  
•  Agent	
  technologies	
  have	
  many	
  applica$ons	
  
and	
  almost	
  appear	
  as	
  if	
  they	
  are	
  the	
  answer	
  to	
  
all	
  system	
  problems.	
  
•  To	
  men$on	
  but	
  few	
  applica$ons:	
  
– Web	
  enterprise	
  applica$ons	
  
– Ubiquitous	
  and	
  pervasive	
  intelligence	
  (e.g.	
  
Intelligent	
  homes)	
  
– eLearning	
  
– Controllers	
  
And	
  many	
  many	
  many	
  more!	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
From	
  AI	
  to	
  SoUware	
  Engineering	
  
•  Agent-­‐based	
  system	
  analysis	
  and	
  design	
  is	
  
becoming	
  fast	
  the	
  new	
  OOSAD.	
  
•  The	
  reasons	
  are:	
  
	
  	
  
– Support	
  of	
  distributed	
  systems	
  
– Support	
  of	
  complex	
  systems	
  
scalability	
   portability	
   Interoperability	
   versa$lity	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Swarms	
  and	
  Social	
  Modelling	
  
•  The	
  very	
  early	
  applica$ons	
  of	
  mul$-­‐agent	
  
systems	
  were	
  ecological,	
  economical	
  and	
  
social	
  modelling	
  applica$ons.	
  	
  
•  Simply	
  the	
  applica$ons	
  had	
  a	
  number	
  of	
  
independent	
  actors,	
  with	
  what	
  seems	
  as	
  free	
  
well,	
  but	
  governed	
  by	
  clear	
  infinite	
  set	
  of	
  
(simple)	
  rules.	
  The	
  intelligence	
  is	
  distributed	
  
among	
  these	
  en$$es	
  and	
  emerge	
  from	
  the	
  
interac$on	
  of	
  the	
  rules	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DAI!	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Swarms	
  and	
  Social	
  Modelling	
  
•  With	
  the	
  development	
  of	
  object-­‐based	
  agents	
  
the	
  rules	
  are	
  distributed	
  in	
  the	
  en$$es	
  and	
  
intelligence	
  appears	
  as	
  part	
  of	
  interac$on	
  
within	
  the	
  collec$ve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Collec$ve	
  Intelligence	
  
•  Endless	
  analogical	
  examples	
  in	
  nature	
  
provided	
  inspira$on	
  for	
  a	
  whole	
  new	
  sets	
  of	
  
algorithms:	
  ACO,	
  PSO,	
  Beehives,	
  flocking,	
  etc.	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Swarms	
  and	
  Social	
  Modelling	
  
•  While	
  many	
  of	
  swarm	
  intelligence	
  algorithms	
  
opt	
  for	
  simple	
  set	
  of	
  interac$on	
  rules,	
  
collec$ve	
  intelligence	
  has	
  deeper	
  
philosophical	
  founda$on	
  in	
  common	
  
knowledge/beliefs	
  and	
  social	
  behavior.	
  	
  
•  Thus	
  one	
  of	
  the	
  distributed	
  decision	
  making	
  
techniques	
  being	
  developed	
  in	
  mul$-­‐agent	
  
systems	
  is	
  vo$ng	
  and	
  consensus	
  techniques.	
  
•  But	
  …	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Swarms	
  and	
  Social	
  Modelling	
  
•  Assume	
  we	
  are	
  simula$ng	
  human	
  swarm.	
  
•  Now	
  introduce	
  cogni$ve	
  facul$es	
  
•  Now	
  introduce	
  mo$vators,	
  esp.	
  emo$ons.	
  
•  We	
  start	
  to	
  get	
  interes$ng	
  revela$ons	
  on	
  
human	
  cogni$on	
  and	
  social	
  interac$ons	
  and	
  
their	
  impact	
  on	
  behavior	
  and	
  decision	
  making.	
  
•  We	
  are	
  so	
  complicated	
  we	
  have	
  to	
  be	
  simple!	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Human-­‐Computer	
  Interac$on	
  
•  An	
  agent	
  on	
  every	
  mobile	
  phone?	
  
•  Assis$ve	
  agents	
  have	
  been	
  in	
  limited	
  use	
  or	
  
some$me.	
  
•  The	
  cogni$ve	
  architectures	
  enable	
  user	
  
profiling,	
  memorising	
  and	
  behaviour	
  selec$on.	
  
•  Embedded	
  agents	
  –	
  assisted	
  living	
  spaces	
  
•  Domes$c	
  robots	
  –	
  reshaped	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Human-­‐Computer	
  Interac$on	
  
•  And	
  of	
  course,	
  serious	
  gaming!	
  
•  The	
  applica$on	
  of	
  game	
  technology	
  to	
  
develop	
  serious	
  applica$ons,	
  e.g.	
  medical	
  
training.	
  
•  With	
  advances	
  of	
  visualiza$on	
  techniques	
  and	
  
physics	
  modeling	
  engines,	
  make	
  the	
  
development	
  of	
  augmented	
  reali$es	
  easier	
  in	
  
which	
  agents	
  become	
  legi$mate	
  residents.	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Extending	
  the	
  Boundaries	
  
•  Emo$ons	
  –	
  non	
  	
  verbal	
  communica$on	
  
•  Emo$ons	
  –	
  caring	
  ubiquitous	
  surroundings	
  
•  Conscious	
  machines	
  –	
  immortal	
  avatars	
  
•  	
  Companions	
  and	
  domes$c	
  robo$c	
  being	
  
•  Singularity	
  –	
  ethical	
  issues	
  
Terminators	
  or	
  saviours?!	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Some	
  published	
  papers	
  
•  W.	
  Blewi],	
  A.	
  Ayesh,	
  R.	
  I.	
  John,	
  and	
  S.	
  Coupland,	
  "A	
  Millenson-­‐based	
  approach	
  to	
  
emo$on	
  modelling,"	
  	
  Human	
  System	
  Interac$ons,	
  2008	
  Conference	
  on,	
  2008,	
  pp.	
  
491-­‐496.	
  
•  A.	
  Ayesh,	
  J.	
  Stokes,	
  and	
  R.	
  Edwards,	
  "Fuzzy	
  Individual	
  Model	
  (FIM)	
  for	
  Realis$c	
  
Crowd	
  Simula$on:	
  Preliminary	
  Results,"	
  	
  Fuzzy	
  Systems	
  Conference,	
  2007.	
  FUZZ-­‐
IEEE	
  2007.	
  IEEE	
  Interna$onal,	
  2007,	
  pp.	
  1-­‐5,	
  1098-­‐7584.	
  
•  A.	
  Ayesh,	
  "Structured	
  Sound	
  Based	
  Language	
  for	
  Emo$onal	
  Robo$c	
  
Communica$ve	
  Interac$on,"	
  	
  Robot	
  and	
  Human	
  Interac$ve	
  Communica$on,	
  2006.	
  
ROMAN	
  2006.	
  The	
  15th	
  IEEE	
  Interna$onal	
  Symposium	
  on,	
  2006,	
  pp.	
  135-­‐140,	
  DOI.	
  
•  A.	
  Ayesh,	
  "Emo$onally	
  mo$vated	
  reinforcement	
  learning	
  based	
  controller,"	
  	
  
Systems,	
  Man	
  and	
  Cyberne$cs,	
  2004	
  IEEE	
  Interna$onal	
  Conference	
  on,	
  2004,	
  pp.	
  
874-­‐878	
  vol.1,	
  1062-­‐922X.	
  
•  A.	
  Ayesh,	
  "Talking	
  to	
  one's	
  self:	
  a	
  li]le	
  architecture	
  for	
  thinking	
  "	
  in	
  UK	
  Grand	
  
Challenges	
  (GC'04)	
  -­‐	
  GC5:	
  the	
  Architecture	
  of	
  Brain	
  and	
  Mind.	
  Newcastle,	
  UK:	
  
UKCRC,	
  2004.	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
Some	
  published	
  papers	
  
•  A.	
  Ayesh,	
  "Percep$on	
  and	
  Emo$on	
  Based	
  Reasoning:	
  A	
  Connec$onist	
  Approach,"	
  
Informa$ca,	
  vol.	
  27,	
  pp.	
  119-­‐126,	
  2003.	
  ISSN:	
  0350-­‐5596,	
  DOI.	
  1854-­‐3871	
  
•  A.	
  Ayesh,	
  "Memory	
  Architecture	
  for	
  Argumenta$on-­‐based	
  Adap$ve	
  System,"	
  	
  
IASTED	
  Interna$onal	
  Conference	
  Applied	
  Informa$cs	
  (AI	
  2002),	
  Innsbruck,	
  Austria,	
  
2002,	
  pp.	
  DOI.	
  	
  
•  A.	
  Ayesh,	
  "Towards	
  Memorizing	
  by	
  Adjec$ves,"	
  	
  AAAI	
  Fall	
  Symposium	
  on	
  
Anchoring	
  Symbols	
  to	
  Sensor	
  Data	
  in	
  Single	
  and	
  Mul$ple	
  Robot	
  Systems,	
  2001,	
  pp.	
  
117-­‐118,	
  DOI.	
  	
  
•  A.	
  Ayesh,	
  "Thinking-­‐Learning	
  by	
  Argument,"	
  in	
  Intelligent	
  Agent	
  Technology:	
  
Research	
  and	
  Development,	
  N.	
  Zhong,	
  J.	
  Liu,	
  S.	
  Ohsuga,	
  and	
  J.	
  Bradshaw,	
  Eds.	
  New	
  
Jersey:	
  World	
  Scien$fic,	
  2001,	
  pp.	
  230-­‐234.ISBN:	
  9810247060.	
  
•  A.	
  Ayesh,	
  "Argumenta$ve	
  Agents-­‐based	
  Structure	
  for	
  Thinking-­‐Learning,"	
  	
  IASTED	
  
Interna$onal	
  Conference	
  Ar$ficial	
  Intelligence	
  and	
  Applica$ons	
  (AIA	
  2001),	
  
Marbella,	
  Spain,	
  2001,	
  pp.	
  DOI.	
  	
  
•  	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
And	
  unpublished	
  
•  A.	
  Ayesh,	
  S.	
  Thomas,	
  S.	
  Perill,	
  and	
  C.	
  Joseph,	
  "Aesthe$cs	
  of	
  a	
  Robot:	
  Case	
  Study	
  on	
  
AIBO	
  Dog	
  Robots	
  for	
  Buddy-­‐ing	
  Devices.”	
  
•  A.	
  Ayesh,	
  "Integra$ng	
  Physical	
  and	
  Cogni$ve	
  Features	
  in	
  Cogni$ve-­‐Causa$on	
  Maps	
  
for	
  Spa$al	
  Reasoning.”	
  	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  
CONCLUSION	
  AND	
  QUESTIONS	
  
Dr.Aladdin	
  Ayesh	
  
	
  
email:	
  aayesh@dmu.ac.uk;	
  URL:	
  www.aladdin-­‐ayesh.info	
  	
  
Keynote	
  talk	
  at	
  ESM	
  2008	
  Conference	
  

More Related Content

What's hot

Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe Vizzari
Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe VizzariAgent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe Vizzari
Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe VizzariGiuseppe Vizzari
 
The Culture of Scheme Programming
The Culture of Scheme ProgrammingThe Culture of Scheme Programming
The Culture of Scheme ProgrammingMaciek Godek
 
Konica Minolta - Artificial Intelligence White Paper
Konica Minolta - Artificial Intelligence White PaperKonica Minolta - Artificial Intelligence White Paper
Konica Minolta - Artificial Intelligence White PaperEyal Benedek
 
System thinking in public sector architecture
System thinking in public sector architectureSystem thinking in public sector architecture
System thinking in public sector architectureAndres Kütt
 
Ben Goertzel - Singularity Summit Australia talk in 2011
Ben Goertzel - Singularity Summit Australia talk in 2011Ben Goertzel - Singularity Summit Australia talk in 2011
Ben Goertzel - Singularity Summit Australia talk in 2011Adam Ford
 
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...Raffaele Mauro
 
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...Adrien Joly
 
Lec 0 about the course
Lec 0 about the courseLec 0 about the course
Lec 0 about the courseEyob Sisay
 
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learning
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded LearningKeynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learning
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learningsuthers
 

What's hot (12)

Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe Vizzari
Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe VizzariAgent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe Vizzari
Agent-based modeling and simulation tutorial - EASSS 2009 - Giuseppe Vizzari
 
The Culture of Scheme Programming
The Culture of Scheme ProgrammingThe Culture of Scheme Programming
The Culture of Scheme Programming
 
Konica Minolta - Artificial Intelligence White Paper
Konica Minolta - Artificial Intelligence White PaperKonica Minolta - Artificial Intelligence White Paper
Konica Minolta - Artificial Intelligence White Paper
 
System thinking in public sector architecture
System thinking in public sector architectureSystem thinking in public sector architecture
System thinking in public sector architecture
 
The End of Privacy Hypothesis
The End of Privacy HypothesisThe End of Privacy Hypothesis
The End of Privacy Hypothesis
 
Ben Goertzel - Singularity Summit Australia talk in 2011
Ben Goertzel - Singularity Summit Australia talk in 2011Ben Goertzel - Singularity Summit Australia talk in 2011
Ben Goertzel - Singularity Summit Australia talk in 2011
 
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...
Introduction to Artificial Intelligence and Machine Learning: Ecosystem and T...
 
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...
Tangible Contextual Tag Clouds towards Controlled and Relevant Social Inter...
 
Sins2016
Sins2016Sins2016
Sins2016
 
Lec 0 about the course
Lec 0 about the courseLec 0 about the course
Lec 0 about the course
 
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learning
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded LearningKeynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learning
Keynote Talk at ITS 2014: Multilevel Analysis of Socially Embedded Learning
 
Unit 1
Unit 1Unit 1
Unit 1
 

Viewers also liked

5 Medical Distribution Strategies Doomed to Fail in 2012
5 Medical Distribution Strategies Doomed to Fail in 20125 Medical Distribution Strategies Doomed to Fail in 2012
5 Medical Distribution Strategies Doomed to Fail in 2012Gunter Wessels
 
Effective distribution strategies to boost productivity and sales
Effective distribution strategies to boost productivity and salesEffective distribution strategies to boost productivity and sales
Effective distribution strategies to boost productivity and salesKompanija Dunav osiguranje
 
Who wants to pass this course
Who wants to pass this courseWho wants to pass this course
Who wants to pass this courseadvancedfunctions
 
Nace Jesús, hijo de Dios y de María
Nace Jesús, hijo de Dios y de MaríaNace Jesús, hijo de Dios y de María
Nace Jesús, hijo de Dios y de MaríaRamón Rivas
 
Tartarian Lamb: Emotion, Knowledge and The Web
Tartarian Lamb:  Emotion, Knowledge and The WebTartarian Lamb:  Emotion, Knowledge and The Web
Tartarian Lamb: Emotion, Knowledge and The Web0neW0rldT0gether
 
ir¿Eres tú el que ha de venir?
ir¿Eres tú el que ha de venir?ir¿Eres tú el que ha de venir?
ir¿Eres tú el que ha de venir?Ramón Rivas
 
¿Cuáles son las urgencias de nuestra vida?
¿Cuáles son las urgencias de nuestra vida?¿Cuáles son las urgencias de nuestra vida?
¿Cuáles son las urgencias de nuestra vida?Ramón Rivas
 
Haptic medicine - sustainable, accessible, low-cost
Haptic medicine - sustainable, accessible, low-costHaptic medicine - sustainable, accessible, low-cost
Haptic medicine - sustainable, accessible, low-cost0neW0rldT0gether
 
Proposal for channel partner
Proposal for channel partnerProposal for channel partner
Proposal for channel partnerThinnkware Noida
 
Distribution channels marketing management ppt
Distribution channels marketing management pptDistribution channels marketing management ppt
Distribution channels marketing management pptGanesh Asokan
 

Viewers also liked (15)

5 Medical Distribution Strategies Doomed to Fail in 2012
5 Medical Distribution Strategies Doomed to Fail in 20125 Medical Distribution Strategies Doomed to Fail in 2012
5 Medical Distribution Strategies Doomed to Fail in 2012
 
Effective distribution strategies to boost productivity and sales
Effective distribution strategies to boost productivity and salesEffective distribution strategies to boost productivity and sales
Effective distribution strategies to boost productivity and sales
 
Who wants to pass this course
Who wants to pass this courseWho wants to pass this course
Who wants to pass this course
 
Nace Jesús, hijo de Dios y de María
Nace Jesús, hijo de Dios y de MaríaNace Jesús, hijo de Dios y de María
Nace Jesús, hijo de Dios y de María
 
Tartarian Lamb: Emotion, Knowledge and The Web
Tartarian Lamb:  Emotion, Knowledge and The WebTartarian Lamb:  Emotion, Knowledge and The Web
Tartarian Lamb: Emotion, Knowledge and The Web
 
ir¿Eres tú el que ha de venir?
ir¿Eres tú el que ha de venir?ir¿Eres tú el que ha de venir?
ir¿Eres tú el que ha de venir?
 
Internet Hungary 2012: Digitális leinformálhatóság
Internet Hungary 2012: Digitális leinformálhatóság Internet Hungary 2012: Digitális leinformálhatóság
Internet Hungary 2012: Digitális leinformálhatóság
 
¿Cuáles son las urgencias de nuestra vida?
¿Cuáles son las urgencias de nuestra vida?¿Cuáles son las urgencias de nuestra vida?
¿Cuáles son las urgencias de nuestra vida?
 
Haptic medicine - sustainable, accessible, low-cost
Haptic medicine - sustainable, accessible, low-costHaptic medicine - sustainable, accessible, low-cost
Haptic medicine - sustainable, accessible, low-cost
 
B&M_Bangkok_Tax
B&M_Bangkok_TaxB&M_Bangkok_Tax
B&M_Bangkok_Tax
 
Aula 1 alzheimer
Aula 1   alzheimerAula 1   alzheimer
Aula 1 alzheimer
 
Mise en oeuvre de principes choisis de la recommendation de l'OCDE sur les ma...
Mise en oeuvre de principes choisis de la recommendation de l'OCDE sur les ma...Mise en oeuvre de principes choisis de la recommendation de l'OCDE sur les ma...
Mise en oeuvre de principes choisis de la recommendation de l'OCDE sur les ma...
 
Assistance de SIGMA dans le cadre de la réforme des marchés publics, Piotr-Ni...
Assistance de SIGMA dans le cadre de la réforme des marchés publics, Piotr-Ni...Assistance de SIGMA dans le cadre de la réforme des marchés publics, Piotr-Ni...
Assistance de SIGMA dans le cadre de la réforme des marchés publics, Piotr-Ni...
 
Proposal for channel partner
Proposal for channel partnerProposal for channel partner
Proposal for channel partner
 
Distribution channels marketing management ppt
Distribution channels marketing management pptDistribution channels marketing management ppt
Distribution channels marketing management ppt
 

Similar to Multi-Agent Modelling With applications to robotics and cognition

Software Ecosystem Evolution. It's complex!
Software Ecosystem Evolution. It's complex!Software Ecosystem Evolution. It's complex!
Software Ecosystem Evolution. It's complex!Tom Mens
 
Inuse seminar Nov 20, 2012 Salovaara
Inuse seminar Nov 20, 2012 SalovaaraInuse seminar Nov 20, 2012 Salovaara
Inuse seminar Nov 20, 2012 Salovaarainuseproject
 
Systems Thinking workshop @ Lean UX NYC 2014
Systems Thinking workshop @ Lean UX NYC 2014Systems Thinking workshop @ Lean UX NYC 2014
Systems Thinking workshop @ Lean UX NYC 2014johanna kollmann
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptxISSIP
 
Objective Fiction, i-semantics keynote
Objective Fiction, i-semantics keynoteObjective Fiction, i-semantics keynote
Objective Fiction, i-semantics keynoteAldo Gangemi
 
Goal Dynamics_From System Dynamics to Implementation
Goal Dynamics_From System Dynamics to ImplementationGoal Dynamics_From System Dynamics to Implementation
Goal Dynamics_From System Dynamics to ImplementationAmjad Adib
 
From Inter-Agent to Intra-Agent Representations
From Inter-Agent to Intra-Agent RepresentationsFrom Inter-Agent to Intra-Agent Representations
From Inter-Agent to Intra-Agent RepresentationsGiovanni Sileno
 
Towards the Intelligent Internet of Everything
Towards the Intelligent Internet of EverythingTowards the Intelligent Internet of Everything
Towards the Intelligent Internet of EverythingRECAP Project
 
SW ecosystems for Business-IT alignment
SW ecosystems for Business-IT alignmentSW ecosystems for Business-IT alignment
SW ecosystems for Business-IT alignmentPanagiotis Papaioannou
 
Co-creation of Learning and Social CRM
Co-creation of Learning and Social CRMCo-creation of Learning and Social CRM
Co-creation of Learning and Social CRMDarshan Desai
 
AE Rio 2011 - Escolas Europeias Jose Tribolet
AE Rio 2011 - Escolas Europeias Jose TriboletAE Rio 2011 - Escolas Europeias Jose Tribolet
AE Rio 2011 - Escolas Europeias Jose TriboletFernando Botafogo
 
Engineering Self-organizing Urban Superorganisms
Engineering Self-organizing Urban SuperorganismsEngineering Self-organizing Urban Superorganisms
Engineering Self-organizing Urban Superorganismsfzambonelli
 
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...Difference between Artificial Intelligence, Machine Learning, Deep Learning a...
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...Sanjay Srivastava
 
Ethical AI - Open Compliance Summit 2020
Ethical AI - Open Compliance Summit 2020Ethical AI - Open Compliance Summit 2020
Ethical AI - Open Compliance Summit 2020Debmalya Biswas
 
Systems Dynamics in boundaries @ HaCIRIC 2010 conference Edinburgh
Systems Dynamics in boundaries @ HaCIRIC 2010 conference EdinburghSystems Dynamics in boundaries @ HaCIRIC 2010 conference Edinburgh
Systems Dynamics in boundaries @ HaCIRIC 2010 conference EdinburghMaria Kapsali
 

Similar to Multi-Agent Modelling With applications to robotics and cognition (20)

Software Ecosystem Evolution. It's complex!
Software Ecosystem Evolution. It's complex!Software Ecosystem Evolution. It's complex!
Software Ecosystem Evolution. It's complex!
 
Inuse seminar Nov 20, 2012 Salovaara
Inuse seminar Nov 20, 2012 SalovaaraInuse seminar Nov 20, 2012 Salovaara
Inuse seminar Nov 20, 2012 Salovaara
 
Systems Thinking workshop @ Lean UX NYC 2014
Systems Thinking workshop @ Lean UX NYC 2014Systems Thinking workshop @ Lean UX NYC 2014
Systems Thinking workshop @ Lean UX NYC 2014
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
 
Objective Fiction, i-semantics keynote
Objective Fiction, i-semantics keynoteObjective Fiction, i-semantics keynote
Objective Fiction, i-semantics keynote
 
Goal Dynamics_From System Dynamics to Implementation
Goal Dynamics_From System Dynamics to ImplementationGoal Dynamics_From System Dynamics to Implementation
Goal Dynamics_From System Dynamics to Implementation
 
From Inter-Agent to Intra-Agent Representations
From Inter-Agent to Intra-Agent RepresentationsFrom Inter-Agent to Intra-Agent Representations
From Inter-Agent to Intra-Agent Representations
 
IJCS_2015_0201003
IJCS_2015_0201003IJCS_2015_0201003
IJCS_2015_0201003
 
Integrating Semantic Systems
Integrating Semantic SystemsIntegrating Semantic Systems
Integrating Semantic Systems
 
Towards the Intelligent Internet of Everything
Towards the Intelligent Internet of EverythingTowards the Intelligent Internet of Everything
Towards the Intelligent Internet of Everything
 
SW ecosystems for Business-IT alignment
SW ecosystems for Business-IT alignmentSW ecosystems for Business-IT alignment
SW ecosystems for Business-IT alignment
 
Co-creation of Learning and Social CRM
Co-creation of Learning and Social CRMCo-creation of Learning and Social CRM
Co-creation of Learning and Social CRM
 
AE Rio 2011 - Escolas Europeias Jose Tribolet
AE Rio 2011 - Escolas Europeias Jose TriboletAE Rio 2011 - Escolas Europeias Jose Tribolet
AE Rio 2011 - Escolas Europeias Jose Tribolet
 
Engineering Self-organizing Urban Superorganisms
Engineering Self-organizing Urban SuperorganismsEngineering Self-organizing Urban Superorganisms
Engineering Self-organizing Urban Superorganisms
 
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...Difference between Artificial Intelligence, Machine Learning, Deep Learning a...
Difference between Artificial Intelligence, Machine Learning, Deep Learning a...
 
Week 3
Week 3Week 3
Week 3
 
Ethical AI - Open Compliance Summit 2020
Ethical AI - Open Compliance Summit 2020Ethical AI - Open Compliance Summit 2020
Ethical AI - Open Compliance Summit 2020
 
Ljc
LjcLjc
Ljc
 
Ha ciric 2010
Ha ciric 2010Ha ciric 2010
Ha ciric 2010
 
Systems Dynamics in boundaries @ HaCIRIC 2010 conference Edinburgh
Systems Dynamics in boundaries @ HaCIRIC 2010 conference EdinburghSystems Dynamics in boundaries @ HaCIRIC 2010 conference Edinburgh
Systems Dynamics in boundaries @ HaCIRIC 2010 conference Edinburgh
 

More from Aladdin Ayesh

Empathic AI: Human Factors, System Assessment and Standardisation
Empathic AI: Human Factors, System Assessment and StandardisationEmpathic AI: Human Factors, System Assessment and Standardisation
Empathic AI: Human Factors, System Assessment and StandardisationAladdin Ayesh
 
User-Centric AI Analytics for Chronic Health Conditions Management
User-Centric AI Analytics for Chronic Health Conditions ManagementUser-Centric AI Analytics for Chronic Health Conditions Management
User-Centric AI Analytics for Chronic Health Conditions ManagementAladdin Ayesh
 
AI in Inter-Connected World
AI in Inter-Connected WorldAI in Inter-Connected World
AI in Inter-Connected WorldAladdin Ayesh
 
Intelligent Swarms ≈ Creative Swarms
Intelligent Swarms ≈ Creative SwarmsIntelligent Swarms ≈ Creative Swarms
Intelligent Swarms ≈ Creative SwarmsAladdin Ayesh
 
Social Robots: From Emotional Consciousness to Buddy Devices
Social Robots: From Emotional Consciousness to Buddy DevicesSocial Robots: From Emotional Consciousness to Buddy Devices
Social Robots: From Emotional Consciousness to Buddy DevicesAladdin Ayesh
 
Cognitive Reasoning and Inferences through Psychologically based Personalised...
Cognitive Reasoning and Inferences through Psychologically based Personalised...Cognitive Reasoning and Inferences through Psychologically based Personalised...
Cognitive Reasoning and Inferences through Psychologically based Personalised...Aladdin Ayesh
 
Complex Systems Approach to Emotionally-aware Learning Environments
Complex Systems Approach to Emotionally-aware Learning EnvironmentsComplex Systems Approach to Emotionally-aware Learning Environments
Complex Systems Approach to Emotionally-aware Learning EnvironmentsAladdin Ayesh
 
Agent-Oriented Systems: From the Primitive to the Emotional
Agent-Oriented Systems: From the Primitive to the EmotionalAgent-Oriented Systems: From the Primitive to the Emotional
Agent-Oriented Systems: From the Primitive to the EmotionalAladdin Ayesh
 

More from Aladdin Ayesh (8)

Empathic AI: Human Factors, System Assessment and Standardisation
Empathic AI: Human Factors, System Assessment and StandardisationEmpathic AI: Human Factors, System Assessment and Standardisation
Empathic AI: Human Factors, System Assessment and Standardisation
 
User-Centric AI Analytics for Chronic Health Conditions Management
User-Centric AI Analytics for Chronic Health Conditions ManagementUser-Centric AI Analytics for Chronic Health Conditions Management
User-Centric AI Analytics for Chronic Health Conditions Management
 
AI in Inter-Connected World
AI in Inter-Connected WorldAI in Inter-Connected World
AI in Inter-Connected World
 
Intelligent Swarms ≈ Creative Swarms
Intelligent Swarms ≈ Creative SwarmsIntelligent Swarms ≈ Creative Swarms
Intelligent Swarms ≈ Creative Swarms
 
Social Robots: From Emotional Consciousness to Buddy Devices
Social Robots: From Emotional Consciousness to Buddy DevicesSocial Robots: From Emotional Consciousness to Buddy Devices
Social Robots: From Emotional Consciousness to Buddy Devices
 
Cognitive Reasoning and Inferences through Psychologically based Personalised...
Cognitive Reasoning and Inferences through Psychologically based Personalised...Cognitive Reasoning and Inferences through Psychologically based Personalised...
Cognitive Reasoning and Inferences through Psychologically based Personalised...
 
Complex Systems Approach to Emotionally-aware Learning Environments
Complex Systems Approach to Emotionally-aware Learning EnvironmentsComplex Systems Approach to Emotionally-aware Learning Environments
Complex Systems Approach to Emotionally-aware Learning Environments
 
Agent-Oriented Systems: From the Primitive to the Emotional
Agent-Oriented Systems: From the Primitive to the EmotionalAgent-Oriented Systems: From the Primitive to the Emotional
Agent-Oriented Systems: From the Primitive to the Emotional
 

Recently uploaded

Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxFIDO Alliance
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...ScyllaDB
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...ScyllaDB
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightSafe Software
 
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...SOFTTECHHUB
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe中 央社
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfOverkill Security
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsLeah Henrickson
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxFIDO Alliance
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewDianaGray10
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Paige Cruz
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfalexjohnson7307
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxMarkSteadman7
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc
 

Recently uploaded (20)

Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdf
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptx
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 

Multi-Agent Modelling With applications to robotics and cognition

  • 1. Mul$-­‐Agent  Modelling     With  applica$ons  to  robo$cs  and  cogni$on   Dr.  Aladdin  Ayesh     Co-­‐ordinator  of  Intelligent  Mobile  Robo$cs  and  Crea$ve  Compu$ng  Group   (IMRCC-­‐Group)   School  of  Informa$cs,  De  MonEort  University   email:  aayesh@dmu.ac.uk;  URL:  www.aladdin-­‐ayesh.info       Keynote  talk  at  ESM  2008  Conference  
  • 2. Agenda   •  What  is  an  agent?   •  Cogni$on,  thinking  and  conciseness   •  Robo$cs:  the  ques$on  of  neurology  (senses)   •  Avatars:  the  ques$on  of  body   •  Applica$ons   – From  AI  to  SoUware  Engineering   – Swarms  and  Social  Modelling   – Human-­‐Computer  Interac$on   Keynote  talk  at  ESM  2008  Conference  
  • 3. What  is  an  agent?   •  This  ques$on  has  been  a  philosophical   minefield.   •  To  simplify  this  ques$on  let  us  look  at  two   separate  issues  associated  with  agents:  being   and  the  no$on  of  agency.   •  In  being,  let  us  take  a  human  being     Keynote  talk  at  ESM  2008  Conference  
  • 4. What  is  an  agent?   •  What  are  we  as  systems  concerned?     – Senses?   – Motors?  (Neuromotor-­‐psychomotor)   – Mind?     Agent  Structure   •  Now  is  the  no$on  of  agency     senses   cogni$on   motor   Keynote  talk  at  ESM  2008  Conference  
  • 5. Cogni$on,  thinking  and   conciseness   •  Cogni$on  encompasses  the  different  facul$es   associated  with  human  operability:  thinking,   memory,  language,  etc.  (cogni$ve  psychology)   •  Affects  are  important  and  highly  connected  to   cogni$on  but  they  usually  stand  separate.   (phenomenological  psychology)   Keynote  talk  at  ESM  2008  Conference  
  • 6. Interest  in  emo$on  modeling  has  been  increasing  in  the  last  few  years   specially  with  the  increase  interest  in  cogni$ve  systems,  especially  as   they  are  implemented  into  games  and  virtual  worlds.  There  are  number   of  issues  related  to  emo$on  modeling:  selec$on  of  emo$ons,   represen$ng  an  emo$on,  expressing  emo$ons,  recognizing  emo$ons  and   so  on.  Each  one  of  these  issues  is  a  research  area  by  itself.   h]p://www.computa$onal-­‐emo$ons.org/  is  a  web  site  under   construc$on  with  the  aim  to  provide  informa$on  on  research  in  this   area.   NOTE  ON  EMOTION  MODELING   Keynote  talk  at  ESM  2008  Conference  
  • 7. Cogni$on,  thinking  and   conciseness   •  Similar  to  emo$on  modelling  each  cogni$ve   faculty  is  a  research  area  by  itself,  e.g.   memory  architectures,  learning  algorithms,   etc.   •  What  brings  these  different  areas  together  to   form  a  cogni$ve  system?   Keynote  talk  at  ESM  2008  Conference  
  • 8. Cogni$on,  thinking  and   conciseness   •  A  cogni$ve  architecture  is  oUen  developed  for   the  purpose  of  pu_ng  together  the  building   blocks  of  the  internals.   •  Most  architectures  are  developed  to  explore   par$cular  idea,  e.g.  child  development   through  implemen$ng  cogni$ve  learning   theories.  Few  aim  to  develop  a  generic  fits  all.   Keynote  talk  at  ESM  2008  Conference  
  • 9. Cogni$on,  thinking  and   conciseness   •  All  of  these  architectures,  however,  need  a   container  in  which  to  be  implemented.   An  agent  embodiment!   Keynote  talk  at  ESM  2008  Conference  
  • 10. ROBOT  OR  AVATAR   So  when  we  explore  cogni$on  we  have  to  explore  body-­‐mind   rela$onship  or  the  embodiment  of  that  cogni$on.  As  systems  and   engineering  concerned,  there  are  two  forms  of  decision-­‐making   embodiments,  each  goads  number  of  outstanding  philosophical  inquires   and  evocates  new  systems  related  ques$ons.   Keynote  talk  at  ESM  2008  Conference  
  • 11. Robo$cs:  the  ques$on  of   neurology   •  Robo$cs  are  effec$vely  a  physical  form  of   agents.   •  They  have  the  full  structure:  senses-­‐control-­‐ motor   •  But  because  they  are  physical  they  impose   ques$ons  related  to  physical  limita$ons,  e.g.   sensory  errors,  real-­‐$me  response,  and   physical  embodiment.     Keynote  talk  at  ESM  2008  Conference  
  • 12. Robo$cs:  the  ques$on  of   neurology   •  These  physical  limita$ons  forces  us  to  look  at   the  neural  construc$on  of  human  being  and   the  signal  processing  aspect  of  cogni$on.   •  However,  we  are  not  all  signal  processing,  and   a  domes$c  robot  should  stop  an  think  from   $me  to  $me.   •  This  gives  a  rise  to  hybrid  architectures  of   localized  responses  with  global  reasoning   (conscious).   Keynote  talk  at  ESM  2008  Conference  
  • 13. NOTE  ON  AESTHETICS   The  shape  of  the  robot,  func$onality  and  the  aesthe$cs  of  look  and   behavior  has  great  effects  on  accep$ng  the  physical  en$ty.  One  of  the   projects  we  done  on  this  front  in  AIBO  stories  and  AIBO  oracle.  But  can   we  formalize  the  aesthe$cs  of  buddying  devices  in  a  quan$fied  rules?   Keynote  talk  at  ESM  2008  Conference  
  • 14. Avatars:  the  ques$on  of  body   •  Are  avatars  agents?   •  The  strict  answer  is  no,  not  really!   •  Many  agent  systems  use  no  graphical   representa$on  or  oUen  a  simplified  one,  i.e.  a   dot!   This  was  the  big  cri$cism  against  agents  and   simula$ons,  no  realis$c  physical  simula$on.   Keynote  talk  at  ESM  2008  Conference  
  • 15. NOTE  ON  PHENOMENOLOGY  OF   BEING   Many  people,  nowadays,  develop  their  avatars  to  reflect  their  percep$on   of  themselves  rather  than  themselves.  I  have  started  about  a  year  ago  to   collect  evidence  on  how  people  use  avatars  and  online  profiles  to  project   their  internal  representa$on  of  themselves  or  what  they  wish  they  were.   Far  from  developing  avatars  to  carry  their  conscious  to  immortalise   them,  they  are  reincarna$ng  themselves  of  an  an$-­‐existen$alist     phenomena.     Keynote  talk  at  ESM  2008  Conference  
  • 16. Applica$ons   •  Agent  technologies  have  many  applica$ons   and  almost  appear  as  if  they  are  the  answer  to   all  system  problems.   •  To  men$on  but  few  applica$ons:   – Web  enterprise  applica$ons   – Ubiquitous  and  pervasive  intelligence  (e.g.   Intelligent  homes)   – eLearning   – Controllers   And  many  many  many  more!   Keynote  talk  at  ESM  2008  Conference  
  • 17. From  AI  to  SoUware  Engineering   •  Agent-­‐based  system  analysis  and  design  is   becoming  fast  the  new  OOSAD.   •  The  reasons  are:       – Support  of  distributed  systems   – Support  of  complex  systems   scalability   portability   Interoperability   versa$lity   Keynote  talk  at  ESM  2008  Conference  
  • 18. Swarms  and  Social  Modelling   •  The  very  early  applica$ons  of  mul$-­‐agent   systems  were  ecological,  economical  and   social  modelling  applica$ons.     •  Simply  the  applica$ons  had  a  number  of   independent  actors,  with  what  seems  as  free   well,  but  governed  by  clear  infinite  set  of   (simple)  rules.  The  intelligence  is  distributed   among  these  en$$es  and  emerge  from  the   interac$on  of  the  rules                                    DAI!   Keynote  talk  at  ESM  2008  Conference  
  • 19. Swarms  and  Social  Modelling   •  With  the  development  of  object-­‐based  agents   the  rules  are  distributed  in  the  en$$es  and   intelligence  appears  as  part  of  interac$on   within  the  collec$ve                                 Collec$ve  Intelligence   •  Endless  analogical  examples  in  nature   provided  inspira$on  for  a  whole  new  sets  of   algorithms:  ACO,  PSO,  Beehives,  flocking,  etc.     Keynote  talk  at  ESM  2008  Conference  
  • 20. Swarms  and  Social  Modelling   •  While  many  of  swarm  intelligence  algorithms   opt  for  simple  set  of  interac$on  rules,   collec$ve  intelligence  has  deeper   philosophical  founda$on  in  common   knowledge/beliefs  and  social  behavior.     •  Thus  one  of  the  distributed  decision  making   techniques  being  developed  in  mul$-­‐agent   systems  is  vo$ng  and  consensus  techniques.   •  But  …   Keynote  talk  at  ESM  2008  Conference  
  • 21. Swarms  and  Social  Modelling   •  Assume  we  are  simula$ng  human  swarm.   •  Now  introduce  cogni$ve  facul$es   •  Now  introduce  mo$vators,  esp.  emo$ons.   •  We  start  to  get  interes$ng  revela$ons  on   human  cogni$on  and  social  interac$ons  and   their  impact  on  behavior  and  decision  making.   •  We  are  so  complicated  we  have  to  be  simple!   Keynote  talk  at  ESM  2008  Conference  
  • 22. Human-­‐Computer  Interac$on   •  An  agent  on  every  mobile  phone?   •  Assis$ve  agents  have  been  in  limited  use  or   some$me.   •  The  cogni$ve  architectures  enable  user   profiling,  memorising  and  behaviour  selec$on.   •  Embedded  agents  –  assisted  living  spaces   •  Domes$c  robots  –  reshaped     Keynote  talk  at  ESM  2008  Conference  
  • 23. Human-­‐Computer  Interac$on   •  And  of  course,  serious  gaming!   •  The  applica$on  of  game  technology  to   develop  serious  applica$ons,  e.g.  medical   training.   •  With  advances  of  visualiza$on  techniques  and   physics  modeling  engines,  make  the   development  of  augmented  reali$es  easier  in   which  agents  become  legi$mate  residents.     Keynote  talk  at  ESM  2008  Conference  
  • 24. Extending  the  Boundaries   •  Emo$ons  –  non    verbal  communica$on   •  Emo$ons  –  caring  ubiquitous  surroundings   •  Conscious  machines  –  immortal  avatars   •   Companions  and  domes$c  robo$c  being   •  Singularity  –  ethical  issues   Terminators  or  saviours?!   Keynote  talk  at  ESM  2008  Conference  
  • 25. Some  published  papers   •  W.  Blewi],  A.  Ayesh,  R.  I.  John,  and  S.  Coupland,  "A  Millenson-­‐based  approach  to   emo$on  modelling,"    Human  System  Interac$ons,  2008  Conference  on,  2008,  pp.   491-­‐496.   •  A.  Ayesh,  J.  Stokes,  and  R.  Edwards,  "Fuzzy  Individual  Model  (FIM)  for  Realis$c   Crowd  Simula$on:  Preliminary  Results,"    Fuzzy  Systems  Conference,  2007.  FUZZ-­‐ IEEE  2007.  IEEE  Interna$onal,  2007,  pp.  1-­‐5,  1098-­‐7584.   •  A.  Ayesh,  "Structured  Sound  Based  Language  for  Emo$onal  Robo$c   Communica$ve  Interac$on,"    Robot  and  Human  Interac$ve  Communica$on,  2006.   ROMAN  2006.  The  15th  IEEE  Interna$onal  Symposium  on,  2006,  pp.  135-­‐140,  DOI.   •  A.  Ayesh,  "Emo$onally  mo$vated  reinforcement  learning  based  controller,"     Systems,  Man  and  Cyberne$cs,  2004  IEEE  Interna$onal  Conference  on,  2004,  pp.   874-­‐878  vol.1,  1062-­‐922X.   •  A.  Ayesh,  "Talking  to  one's  self:  a  li]le  architecture  for  thinking  "  in  UK  Grand   Challenges  (GC'04)  -­‐  GC5:  the  Architecture  of  Brain  and  Mind.  Newcastle,  UK:   UKCRC,  2004.   Keynote  talk  at  ESM  2008  Conference  
  • 26. Some  published  papers   •  A.  Ayesh,  "Percep$on  and  Emo$on  Based  Reasoning:  A  Connec$onist  Approach,"   Informa$ca,  vol.  27,  pp.  119-­‐126,  2003.  ISSN:  0350-­‐5596,  DOI.  1854-­‐3871   •  A.  Ayesh,  "Memory  Architecture  for  Argumenta$on-­‐based  Adap$ve  System,"     IASTED  Interna$onal  Conference  Applied  Informa$cs  (AI  2002),  Innsbruck,  Austria,   2002,  pp.  DOI.     •  A.  Ayesh,  "Towards  Memorizing  by  Adjec$ves,"    AAAI  Fall  Symposium  on   Anchoring  Symbols  to  Sensor  Data  in  Single  and  Mul$ple  Robot  Systems,  2001,  pp.   117-­‐118,  DOI.     •  A.  Ayesh,  "Thinking-­‐Learning  by  Argument,"  in  Intelligent  Agent  Technology:   Research  and  Development,  N.  Zhong,  J.  Liu,  S.  Ohsuga,  and  J.  Bradshaw,  Eds.  New   Jersey:  World  Scien$fic,  2001,  pp.  230-­‐234.ISBN:  9810247060.   •  A.  Ayesh,  "Argumenta$ve  Agents-­‐based  Structure  for  Thinking-­‐Learning,"    IASTED   Interna$onal  Conference  Ar$ficial  Intelligence  and  Applica$ons  (AIA  2001),   Marbella,  Spain,  2001,  pp.  DOI.     •      Keynote  talk  at  ESM  2008  Conference  
  • 27. And  unpublished   •  A.  Ayesh,  S.  Thomas,  S.  Perill,  and  C.  Joseph,  "Aesthe$cs  of  a  Robot:  Case  Study  on   AIBO  Dog  Robots  for  Buddy-­‐ing  Devices.”   •  A.  Ayesh,  "Integra$ng  Physical  and  Cogni$ve  Features  in  Cogni$ve-­‐Causa$on  Maps   for  Spa$al  Reasoning.”       Keynote  talk  at  ESM  2008  Conference  
  • 28. CONCLUSION  AND  QUESTIONS   Dr.Aladdin  Ayesh     email:  aayesh@dmu.ac.uk;  URL:  www.aladdin-­‐ayesh.info     Keynote  talk  at  ESM  2008  Conference