SlideShare a Scribd company logo
1 of 104
A
Un~t -5
r--}1
k,.ll ::VI
ftbs-cu..~ velct~~ o.1· ~CIet a.od
OLLtlet ·
u., OJ)d u'l. - +Q.()crf~nJ vel~t~~ o.t inlet a.nd
Otiliet
ou.Het
V1 1 a.nd V"f 2.. _ .JLS>J o..hJe vect~~ o.t net ono
out lei::.
}F2 - VelDt~~ est' ~low o..t ou.ttet.
s.
cp ::. i~ -ho ::::. &0°
cJ ==-a.9&
:::::. tJ .98 x. ~ ~X9 .<6 X~tJ
Lv, "&3.11 "'I~ l
~3.11
j v"(1
"" t3.,, ms:)
F'lbm 0 u.::let veDti~ l"fiQ()at~ dlo.._J'1ClCY
CM ~ :: U.2. t}w'L
v.'l.
~"(, ~ v..'l. :: ~.'111'1)s
cos ~(J
_ lo +/w'l-
1~.'11
hlcr-rK done 9
0 Jet pen seco{)d
== I'~ [ /w1 t/w~ Ll
:oc tn~D X 0.1 [~3-11 t ~.q~ X1
1l
u ==- u.1 ~u1 :::. &.M}s
~ == o.'l rn~! s
N()te : b'Yo.W veoti+:J
T"lCJ.n~e d?~l'{o.I'C)
::: l t;.~~ NlS:
r"n>f'{) 1~oth_j Try~a.rJh~ d.~o.3C'(a.m we ~C)IJW Tho.t.
I
v ~ /w,
)  ~ u.., T V'"'fI
1 S .BS -::: ~ t J'Y,
F"fnrn ou.t:i~:- veloti~ T"f~o.(0e <lfD-j"fa.N
Co~4 - U.'l.t-/w'l.
Jry'2..
Vrrl '==- Jry'l. ~ h~. ~ S rn)s.
c~ s. CX.t> - I~ t Jw'l..
b~.1gs
} Vw2- " ltnlMs J
~ c..o.(~c_ ~c~e()c
0
~'._~ "' ~ [vwl+lw'>-Ju.
V'2..
I
i!
'I'
II
H
t'·
S.lc;
I
I
I
I!
I
I
p :::. t. 4-1 Xto~ W
I
I~ven:
I
I
I~
velot~hj oF 'J€t
_I D
b
V1 ~ Cv X J2-3H
.::. ().9gx ~~x~.fS x3~
[v1 ==- 84-.b&I'C)s.
/elatl~ o~ whe.e.
U ~ ku.. JI)_5H
J'<
I
Ii
lL ~ (:).4s x ~ ax~.%. x ~g-.o
~ L. == 3l.Ssc;roJs.
Ll :::. ITDN
be
~g.~ss - 3.4-XDX lt;D
-
bt:~
l b~ Cl.9B't ('{)J
Jet c:Ha.Me~ (_at'i)OOZ~~~~ Do.m~~
d ~_!_tJ
b
d -::::. () .9% x.L
I b
J d "'- o.tbt.p"']
OVeJ'lo.. ~Clel)c.a
'V(
0
~ ~ha.J:t ~ow~
f3 E;?H
I ..... 11'11~ Xb3.
CL&-o
Di.sc.hC/)~ Of) <i Jeb
1_ ::: AV,
::.:. ..!I_ X d~ '>< V1
4-
~ ~ X. D.6'1-"- ~ S 4- .-b&.
0
S.11 &.,ven :
I
d I_ .... _
[) -' lt>
~o ~p,so/()
~let~~ DF 0er
V ::: c_J ~-- 2-31
= CL~% X~~><~·8"-1 X3()-b
/elot~~ oF- w~e.
u~t<LL~~<jH
::: tJ.4-<; X J~X9.~PX ~Q()
 u. ::o. 34- .s~4- ~'~"~I" J
D~a.rne~ D~ Whw
I
u_ ~ ffDN
bo
34--.t;& 4- ~ 3.4-~D xsso
be
d~_!_xD
ID
~Tt;-xl·t~9
[ d ~ 0.119f'il]
OVe.J1~l ~c..tell(d
rio ::: S.~Oft pew~
PS~H
c.gc; ..,__ ~D<J()Xto1
iD{)D X1.~ 'X~ X10't)
( {1) "' ~•:S't f'()?,is l
Di.sc_hMr- tJ() o.. Jet
't ':: 11 v,
9.- ~ 1L d1
xv,
4-
[ 9_ ~ o.1>4- m
3
/ s J
NllN)b~ aF 1er
S.~~- Cn~ver'l:t
::: ~
~
- &·3~
0 ·~4-
- ~.ss
~hc1i=-t pow~ ~ 90 oo Xlt)~ W
1l ~ Sa0'1~ro
Via ~ ~S c/o
JL ~10
d
Jeoc.~~ DF- :Jet
1 ~ C.v X~ 2.5-
=:::- t).9~ X ~ d. X~ .<6 X~(.)~
I vi ==- ls. I&~ m<:. 
Ve.(oc.i~ o~ Whe.52. 
ll !::: <ll. ~ 2 ~i-· _________________......__
[ ll ~ 34 .sa N)l~ J
b~a.rnet~ o~ w h~
I
U ~{1DN
b1:1
34-·S~ _ 3.4- XtJ ox.soo
be
[ D -"'l·31m ]
.s:hQ~ [- ioWE:l
~b ~ ----~--~~-----
D.8t; --
rj ~H
9aoo XtD:l
t t:.. Jl X D.l~l'l. X 15.~c;
4-
l 't =--- .ot rt-?is 
Numh~ o~ j€1-
~ Q--9..
3.S9
l ·c I
..... 3·S
~ 4- Jet
Numb~ oF bl.t<ets
I
:L =:: ts +~
~~
~ ==- ts+ t. ~'------'--
~)({).1~
::::. 4-·S XD.l~
[ 8 == o.sgro 1
Rn.dr~J len0~
L ~ ~.c;d
L ~ &·s Xt ·~  .._ o.9~ m
s.
s. & . Cr,~v en:
h5 ~l~fY)
hF- ::: ~DN
d ~a.rn
9. ==- o.3, rn~Js
Sha.ft (Jt>W€n ::: ~Cl8 XI~') W
l1echo.nic.a. lDS:s. ::: 4-• ~ Xlt~ W
I
velt>tl':1 o~ Jet
}I~ Cv J~CJ;
T()ta. h£>CJ.d
H ~ hg -hf
i H ~9~ro l
v, ~ o.qg J&x1.&1 x...9~
I VI.::: 4-l.b~M]s.

"~lf)~~1-:1 ot- wheel
Ll :::: ku. J~3 H
I
.,
.
·f.
[ LL "'- 19-llm~ J
PDw€h deJ~oped +itTh9.bo.~e. q: Nc~~€
.:::: ~1D.1 XlD~ W
Note:
[ ll "'"L sfnal~ l)(}~~le fs use~
:: _.l_ 0' vl 'l..
~
:::: ~ xf>.f1.v.v1
Q..
"= +X IDOO X 0.?, l( 4-.-!,~0)
- ~'5~.9 )(log W
.lnput (p{)Wfu ..... k~feh. ~o~(Y:J -t- powE:.b o~~
in ())~~le
()
ci.lt). '1 Xl D3 ::._ ~59.' Xtt? t pc~~ los~ o
()~ '2.czh~.
()
~()
I
I!
I
I
I!
l
I1
~
l
II
l
I
.1npu.tpow€]) ,._
~1D .1 Xtt
3
~
S~Oft(JbWE?h -tpolN~os.s ~n oo~~~
't"pDW~ os.~ f{) Ru..n"e/ t-Mec.~o.n?c<l
loss.
. ~
3 tID.% X.lt!3 t- 4- ·~X h>
~D&XltJ
! 0
S.I~R-1 ~IVejt ·.
l
l
I
I
I
!
I
I
Veloc.~t:1 cF J~t
V1
t::. Cv. JfL.JH.
:=:.. D.en X J ~~q .~ 'X..~1S
[ v, o=.1.~s""Js
===- 3.  4- X. b X 4-CC
ba
! tt "' 93.51 rnj.: }
· speo.d k?uJfooF pet too 1-unb~ ()e
Lt ::: ku. J 2._3H
tl
btsc.hOJ)~·
I rtb =:::. ShQ~t powe.t
rc:1 ~ H
IDt)t> X~·~ X~ X~1<;
[ q> ~ I.5I m~/~J
Sinte Oumb~ Of Jets noc cr/eo. rr~~U.('(e
s~od~ Je:
9.~ fi/1
J_ :::. lL xd')_ xvt
4-
l·S ==- JI.xJ~x1.~S
. 4-
f cl :co c.lbro j ·
s.
. ·. pow€!) shllu.d b~
8ub~fhd"£ in KLO
c&1~ JSft.t- .
i
l
i
I
N~ .::. ~ .4-~
;l
s.t~s !Cniven:
t
I hQ !:::. 51Dm
I ..J .
~ ~ t ~ ~.~rJ>Js
4 ~ ~ -16s
I)
~ lS
Cv !::.I
ku.. ~ D .4:-S
We know Thai
h~ - ~-
3
,...._
5D
3
.-- 1o rY)
~to.t hSJ_Qd
H~ h3 -hF
..... Sta-lD
- 34-C rn
ve.cc.~~ ~~ jet
v1~ tv·~· 2-<Ji
.::::_')(~-~X.<).RX14-D
[ V1 c::: ~.b1 mjr,. ]
 Vw-1 "::.8.1:,1 m)~ l
we. knl)J.N ffi ol
ll :::: ktt. ~ 2.~ H
u. ~ D -4-5 X~ ~X9-~ t( 34-b
[ LL ::: 3b .1t; m)~ J
we know ffia.t
v, c: u_, ;-1"(
&.61 ~3b.lS t-Jry,
lv'Y, '::. l.j-4-~1 mls. J
~Dm cu.tl~t ve.ltJt.l+j Try~o.nde a~a~r-tom
/ry, .::}~1...
C..es t;~ ,__ '2> ~ •1 5 +]VJ 1-
4-t;-.~
[ Jw'l "' u.,s m 1s. J
w~'l < dtJne. {5~ 0e.t p~ SettH)d
lt:)"f)
t)
p 0 w~ crv(?_() Q~ tM. L.JG..~ h tM l<u({~
I
:::. ~~ ( Vw, -t-Jw2 ) LL
~ looo x ~..~ ( 2-1.61 t-t:,.b'~s) X3b~c;
~ 1'.~9XobW
~ h ~ ot cvl;J,t-lw,_l u.
v,"l..
.... & [ e.b, +h. b~ ~l x~b.1s
~ () ,q13
~'11.~0/C)
A e
l
r------+--•-·-·-..£~
t - - - - - - t - - - - - 1
u, Vy1
Vwl c~ V
j
t
-r
~
I
I
I VetDt.l~ Df: 1er
"1 ~ ev · J~jH
~ t X ~-.2..X9·<61 X 10 0
['v, ::::. l t:l-19 rn (s. J
LL ~ tit> N
bo
-::::_ 3.14- X. t )( IDOO
ho
[ LL. == s~.?.~ l'rl}s J
~m velac.?~ T"f~o.odl~ d~o.3 "fo. M
V1 ~Vw 1
Vw1 ~l1.t9.rnh
"I ~ u. I +Icy,
l1.9:: s~.31 +/"(,
[ )-rI "' b4:- .~r; f'r8
r...-nm CvJtle.t ve..loc.l~ TIYlQO~te_ d~Q-.~C"l'O.('(
v~ ~v'Y'l.
t.t)s cp !::. u.':L +}w '")_
v"'('2.
1
C..C~lt; ..... 5~.~~ t-J'w'l)_
blt. %S
[ Vw,_ ::ID-~1 mEJ
pow~ nvo.loble o..t Tho. nu12~le
:::. f~ [ Vw, +Vw2-J KLL
I
- b.b1Xb~W
h.~d<¥c..l?t ~c.leo t~
'v1 h :: ~ [ Vw1 +Vw2.] xu.
v,':l.
- .g) [rn.19 +1D."11] xs~.i3.
j,
ii
5.114-- · Cn~ven:
eA
lr----,-----.SJ~~
r--cs--~~r--V~y~~~J
I I I
V~-;I '::. )-1
I
Speti~ct Sp€..Qd
N.s,~ NJQ
M3/cr
Ns ~ NJ P
HS/4-
- 14-D J9ootJ >(ln~
(_g l))Sftt-
..... '4-D ~~ qooa
5.1
5. ~0.
_!L !::.0
a
Ve_Dc.lt-:1 DF 'Jet
v1
~ Cv ).).2_~H
.::. D-92 X J2..'X~. ~I X4--So
[ VI " 9&.l)§m /sJ
l a L
l Venc:11)1 Of: wnee
U. ::. Ku. ~-2-9 H
U ~ 0·4-S ~ ~X~.%X 4-t;D
/ Ll " 4~.&.!<rnIs 
b~o.metenof- wheel
Ll:: IT{) N
bo
4&.~~ ::;. 3.4- X DX' 4-%D
be
l D =- I .b& rn J
.b<;S .:::d
J Dist.hM(Y or: n~!:!.rz..e
I, 9.."' IWI
.::: li xof2- X V1
I 4-
, ~ JI_ XD.h2'l X <f~.o~
I 4-
[ [ <t == &.o4-rn
3
h J
I
I
I
l
I
I
(O:J C:V H
18 X lt1btJ ,g .:::.
-----
l {) OD X <j.~  X ~ X 4-c; 0
[ (o/ "' s.o6 rn3
}s J
Numb~ o~ ']ec
.::: _Q_
~
::::. S .D,b
~·04-
~ ~.4-9
~ 3 Jet.
S.ll
s .19 . ~~ve():
''
!i
l
I
I
I
I'~
Il
I
'
N ::. ~~a t'fpro
H ::: Sloro
a ~D.~{'()
~ '=-9..-
cp ::._ ~-be;
0
=:.t;
I vetoc.l~ ~F- Jet
I
::::- o .9g X ~ 2_X9.~ XSia
rv, ::: 9a.o31Yljs 
Veloc.~t:J D~ whe~l
Ll ::: ku. ~ ~~1-
~ D.4-S Jt}_X9.~ XSI~
[ LL ""- 't'>·Oiml~ J
b~.sthOf(f
9_~Av 1
=: rr xd'l xv,
4-
:: 1T x: o.~~ >< qa. ~3
4-
= 3. ~1 {'()'11 ~
I
~
i'.1
l
~esuttn'lt-. ~C"fte tlC) f$lltket
F ~ P~ [vw1
-VwJ
~ lh Vw,_ i
I
V1
r::: 'Jw ,
Vw  -:: 9<a .t:)3 m }s.
VI =:: LL, +/ryl
~ %·D3 ~ 4S. a +J"ft
[ J"fl "'- 53. tl I rn/s. J
F"()m au.t-e.t- v~lC~<:.~~ T"(~n'JI~ d_,t)a.5cro.n
Co~¢ :=. U'L+Vw '2..
Jy2..
C0S l~ ~ lt-S.D t Vw?...
S~. Si )ry2
'[_V_w_l.._:::_-t~.4-_R_C'f_l-~
I
I
l
Cos l'S
0
_ U:L. - Vw'l..
}"( 2.
... 4S.at -Vw"l..
~{'}_
n&~~cy rou.Q ~s.
~ IMo )( 3.01 ["!:l.c'$ -I ·4-~ Vw,- Vw,_
Jio ~ _<;_h~_t-_p_nLJJ_€V)_ __
f<] ~H
S hcs..f?. t pow ~ =: ~trllT
bD
U ~ TTDN
bO
4S.0 l -:: 3. 4- X D ~ 3t>u
bo
r-[-D-!::.-~-.-gb-m---.]
• i
'
i
'l
Ij
I
il
i
l
Il
l
l
1
l
';
·I
!!
T -:::: ~'lb. 4-3. Xi~~ "1.. ~ .&6
~
T ::::: 4 ~ j .~ N -m Xt IJ~ ::::: 4-~3.<~ X IJ~ N M
ShClFt powen :::. &O'NI
bn
...... eX)(3·J 4-- X~n{) 'X. it-~3.q Xt?
be
- 13.~ x1o
6
w
rv{6
- l3.3XInb
IDOO X 9 -~ X~-01 XS!o
I
!:::'- 8b.1 D/a
Wo..~ powen c::. f3 ~ i
~ taoaX<t .g. 'X 3.a1 x 5 o
=IS.3r; X. lob W
l 0
5.13 . Ien,Ve () :
j
I
I
I

i
I
I
I
II
l
veot~1:3 a~ ]et-
I
v~ SBM~
~.DS
:=.. l.f-b. DSf<) Is
S~ -:::. b .9g ~ ..2X q.~ X-
[ fi"' I1'5.S&rn l
v, ::_ llf/'1"
S% ::. 46.oc; +f'Y
[ ]"r "' ti . 9s rnJc,. J
:::::. o.~ x. .qs
[ V'Y,_ ::: In.1<; rnjs J
Wh€.n weknaw Tha}·
'1..!:::: AV1
~JI.dlx.vl
4-
:::. lL X. ~DoXl()
3
)'l. X s~
4-
[ 9.. ::: o.lj.<; s3 rn' J~ l
t'YCm nu.tel: vecc.~t:i Tt-t~a.n
0e da.~ C'for<l
tos ¢ - ll'l.. +'-Jw2
v...,'l-
costa - 4-b.oc; -- Jw'l.
0. <;
[ Vw2.. "' -?,<;. '--b N I~ 1
F'"Ttl('() veoc.~-:j T..ia.nae. d~D.~'1aM Cl.C ou.tet
TfuL tfQd~c.l velacli-rj Jrr'l- le~s. ~o.r1 11.Q
(CS tp ~ li":L-Jw'l.
Jl'L
(tl~ o - 4-b.os -lw~
ID~S
I
I
ovena.ll ~c.lent~
I
Y{~ ~ ShD.~t pa~€A
P:J~ l-
Sho..~t pcwe,., ::: ~n-N.T.
bD
U.. ~ t1DN
bo
T ~ F- X~
~
==- .~cl X0~ '/.... ~.5
~
T ::: ·l.- XIJ4- NrO
So.~t poweA ~ CQlNT
~a
.._ 6) X3.4- X3~ D 'X. -4-- 'X 104-
bo
- ~:1~6 X10
5
hl.
Y1b - 4- .1~6 xtb
5
DanXq.'6 Xb-4-t;S~ X l19-S~
~ 0 .:::. S9 ·~1 io
Ii
I
I
f
Wu.ten ~ow€.1 =- P3~ 1:1
~noD~ 9·~ X D.4S ~j X 18 .c;~
S · I~1 .· (n~Vef) :
I
d~o.oq m
/1 ::. lSO')~
b = I~Sm
cp .::::. ?o - n0 :::::.. toll
U,::: o.'tbv,
~ ==--0.4-b
v,
k4. ::::.0 ·4-b
Velot~t:-J of: Jt:t
V1 ~ CvJ 2.~H
IS ~ 0 .91.8 ~ 2-X~.~I )(-,
I.____ _ _ _ ____J
·!
1
velatit"j oF whee :
Ll :::: Ku J2-3H
::::. 0.4-b ~~ 2.X 9.~ X ~91.14-
1U. ==. 3S.~1MS
spe.ed
U. ~ lTtYN
bo
3S. ctl -:: 3.4-X.l .s 'XN
bo
I N =44-'1.01 "I'"' I
l
l11eD.i~ ht~ ~DWell
I
I P-tt. ~ f'~ ( /w1-tVw.,_) Ll
I~ro veat~~ T'1CIO.n(1e dla..a('{o.ro a.( llel:
l
Il
I
l
Ij
I
I
I
l we knew n;oJ
I
I
C.os~ =
Ll2tJw2.
lry'l...
8S. ci1 +Jw~
3~.1~
[ Vt.J'L = 3.ss mhJ
t
!) .L t)
NufrbE11 D~ ']e Is. fD crve.C)
J.s sll""'e s?n8e sel
ll.
~ .lL X 0.D9 X 1 S
4-
lteo!i ~tcl1 powe.J)
P~ -= f~ ( Vw, +/ll-11.,) 3s. ~l
5". 1~ o Cnive o:
q ~ 0 .b.t-N'I
=-l.olox 0.4-1 x 0s+3.gs) '3s.~n
Sh<tft pow~
f3~ 1
- .'3XQ,b
------------------
IDOo X.~-% X 1:).4-1 X ~9q .1
c? =~~ 1& .::8°
veocl~ aF ']et
v, ~ Cv. ~ 2-3-
[ J1 = s~.lbmls]
velat~t:J OF whe~
I
l.l. ~ '{ l1. J~5-
.:::. n. 4-cl. ~ .2 ~ <1 -~ Xt;o ,
[ u ::: &1:).1Rmh J.
U. ~ ITDN ~
bo
&_~.1~::: 3-l4- Xt>.'1S N
to
) N == SRo .so 'YfHYl J
} Vw1:o. S3.J, m}i 1
V1
+u1 ~ Jry,
S~.l 6 =:: U., +Vry 1
t~m velotihj T'"'f~ctn~~ dfCl.-3"1 o..ro
((:)S ~ =::. ll':l.-t/lJJ"l..
l'Y'"l-
v~2. :::..C~.91 v~1
::: 0 .91 X 3o .~ ~
[ V'Y2. , ~'I 4-bml £J
Cos 8 - ~~ .1g -t Vwl..
&~ .4-6
l
Jl. X Q'l 'I.V 1
4-
,__ ..II.. X '0 .o'+'L xs~.l b
It
- o. Obbl m~Js
Wcryk dnoe p€r1 setnnd
:::: f~ (vw,+Vwl.JLl
==- ltJoo XD.Dbbl ( S~./6 +b.4-c1) ~~.18-
.::::. 9o. b x 1o3 w
- lOCO X.9.!S ') O.Ob6l.X lr;o
5'. j
~clencd ~ Sho.r: paw~
I
f<jQ1
qo.bxtJ
<fow ~a.c~cfl tu'"lb~nes
/
N :.:: ~IH)Clp<'v'l
8l '::. ().~M
u.')_ -----i
0
tX '= D
U. 1 ·== fTD 11J
be
::::. 3.1 4-- X o.q X: ~ oo
bo
='l. 4-~ rnl~
u2 :=. rm2.N
be
I - TT X 0 ·4-S )( ~ Q G
6c
= 4-·ltmls
1Qsou.l-t- v~lClt~i-J Qt inet
~~m Veatf:j T'TfQnale c:Wo.3"f0-M aJ·t"'et-
Sfn D( -- Vr:-,
v,
sir) It> ,... ~.~
v,
V1 :: Jo.3bs ('()1~
t~h fu. I velot~~ oJ In et
ta.n o{ :::_ /t:-1
vv..q
J
C:os a :::::
Vw, ~ tD .~om)~
ReoJ~v~ velot.~t-:-1 a.b ?ne:
~m velac~~ T~~c."0!e ciih3C'fo.('() o.t inte:
V-yl "' J /~~ + (Vw1
-u,)"-
,. j(t.l)'L t (t~.:.c-'1-42)"-
Vr-r, ==- L9t.t m  ~
Ruf)n en ~I a.Ae a_{)
0e Qt ioer
I ~m ~~ac_~~ T'Y~Q.(cr e dl~~Q ~
sine ~ Vf,
v"r,
8 .:::: b'r. ~~
0
f'ufO en Qo.de Q_{)ae o.t OtAt-le.t ·
fo.ncV "-
VF2
Ll'l.
cp ' !:o. ...( (- I ·I< .
- n 4-·1 )
Mas~ bF wa.~ .Jtow~ ocr Tt'YOuof' p~re Cf- ((>u.Joe.n
N1 ::: f.A./
M :::: P.Q
I
- 3.4-X o.q X o.~ X·~
m = P.~
::: IOOa X.0l
- 1. on>< to
1
k3 ~
Heo.d Qt ~ n e1:- D~ 1u.'""bI()e
.~ + VF,'L
H- ::::: __ . v w I • Li 1
3 ~3
'l..
t. <6
X Io. cl.o X 9 .1~'4- -- - -
paw€.rl dev~ loped
5.1
::: (Doo 'X.. 'l.~ X  .o.1 X 9 .9'3
::::. '1·9&t Xlo'+ w
VF2 '::: 3N)Is.
cp :: lgo
ID.&G X 9 -4-~
9.8 X 9 .9 5 .
- 0. 984
~ ~ 9Qc ( cra.d?o. )
~"Y''M veoc.i~ T"'~aJ)(]e q~~t'fo.M
aJ- otiler 1-a.n~ ::: 1F2.
u'l.
t D.() Us :::::. _3---.
ll~
ll.~ == 9·~~mjs.
!::: DOQX .Oil
XI c .aox9·4-~
- 9.11 X 10~ W
I
I
<J·~, I
. .
g,14- X tl.9S X N
6a
N = ~~1. 3!S"'6'pl'o
lo.n~n h
0
oJ vel{)~~~ o.t Inlet
I
h~d"'Ca.l ?t
- 3.1q_x t x D1a1·~~
6a
- (c).~s rnJ~-
~c~e()t
0 Qt ~etd bcm
Yf h ~
~
Vw Ut
''jH
0.9& - Vw 1 xto.<as
't. 8 X bo
Vwl::::: 4-9·9oroJs.
S.l
I
l
VF' ~ vf'l-
Q ':::::. TlD 1 B1 VF,
o.~~== rtxxB, x~
l s t 0
j nm ve cc.,~ rrya_()dte d?o.JC'((ffi o.t 7net
+a.() D( ::: V+-,
I
i
!!
l
I
II~
l
I
I
i
I
I
Ill
!
I
lI
I
I
6 Ir o
S. 3 . i.fIV~&l:
l
1
l
l
l
I
l
j
I
j
1
Jw1
+-l ( ~. 
c{ -:::: nr, 49.~c)
D( :::. ;s.1+4-0
+o.n e :::. ·_J_F_:._,- -
Vw
1
.__.u.,
e ::: +o.n~' ( ~ . ' 
l 4-C?.qo -1 o.ec; )
:::. IDoox c.6b x ·4-9.9ox· ro.~t;
H ::: lbfY'I
I
ii..
I
i
N ~ Ic'i) a "l'pM
h~d~a.l~c. loss ::. r;aJ,
·
1
Ta.ncr-nha~l. Velol?~ o..t in-el:-
u., ~· 3, .~ JH
.:::;_ 3.j .Jb
u., ::: l~.r5lmj~
J-ow Jeo t?~ o..:- f'le.r
I
vF,~r.tJH
!::.I.~
~ +teQd ~t-lolet - hea.d os~
,I h'j ::: - - - - - - - - -
b~a.ene~ -ot- R~no€b
llr ~ TT D11
bo
~.~:::: 3.t~+-Xt 1 Xt~o
bo
t, ~ ~. It~ I rn
hlhfY~l Jelot~t:1 oJ:- f)et
'Vi Vw, Ll
'1h !::::

I
_ Jw 1 x3.~
9·8 X b
Vw1 :::: Lo.  mJ~
~u~d~ 11la.de o..nae
t
'j
I
1
VO.nf!
l
It
~
I
l I
I;

~
F~(Y) vdat~t:1 Tryfo.flale dfo.jr>[o.m a.t- inlet
+a.() D( ::::. VFI
Vw 1
D( :::: TOO~ ( 4·~ 
l ~·I )
o(. ::::._ cl.~. r; '+0
Q(
0le o..t- ~C)et
+o..nS - VF,
---Vw,-u.,
[-·. S'lnte U.1 ~Vw 1]
0 :: I~ -e-
0
.:::: ~ - r;4- .~?.
Drsc_hOJ~
"' I~t;.16o .t'----Vw-,-----1~
~
0
-:::. &ho.~- pnw e.,
~3~t
0. ~ - l~b X t ~) o(
looux ~. <5 X~ )(lb·:--l_-'-__1
w~---_-____-;..L-.._u_1....:...__~--~
I
.It
s-.14-1 ~~ven:
I
VF, ~ Vf2 !:: 3ms.
~ ::.9()0
iF & ~ 9 a"' [J:()ler 'Yo.d~QI j
I
e ~~co
I
1,
u 1c:::Vw1
V--r1 ::: VF,
LL 1 ~ Vw 1
U!
i
jJt.J I
~'Y'Cm veac}t~ T~~o.nd~ dictJ"fa.m o1 rnlet-
to..f) o( ::: VF I
u.,
•l ::::::. rrc,Nu.,
b~
11.0 - 3.~XXN
b()
5
l'Qn~oh'oJ velt ci~ o..t t)u.t-et
ll2.. '= frD2. N
ba
- g.I4- X' c. <; X ~ ~ 4- ,q4-
bD
- ~-'5o 'Y)s
FcroNJ ve.oc_~t:J T'Y~Q.I)ae d?(3L"'{o.r<, a.t- ~u.t-c+
+Cncp :: VF':L.
u~
I
5. 14- ' Cn~ven:
c(:::: ~~
~
/F2 ~ 3mj s
u =:. rro,N
bu
cp ~ tctr)l (_ 3 
 & ·Sa )
::::: g.14-X a.b><:~tra
bD
Vr;, I
I
3.14-X o .~x ?,oo
 6c
II u2. ::. 4- .1, m ~
'
I
I rrcom v~IDt~hj l'l"~O.n8e dlc.3C'fam Qt inet-
1
I -to.()<>< == Jr.,
Vw 1
+no ~~ :::: '3
Vw,
}w  ::. '1 .4-~ m S.
K>u.nnen ~l~d~ Anate Qt- ~"et a.()d
I
+a.n (t ~ - e_) ~
f%n-e Sb.3cl
0
--
ouHet
& ,.._
I~- Sb.~~o
e - ~~~.b~l)
+oncp ...._ JF:L.
u.'l..
cp~ 3~).4-&-i.)
s
]
=IT X a. 6 X D .lS ~ '3.
::::. ().<64-1 ~ N)31 ~
p ~ fDoo X G .g 4-1~ X i·4-~ X 'l· ~
D 1 ~(.~rn
A ::. a .l}.N'l..
:::_ 3.14-X I·~ X 4-Sn
bo
_ ~a. ~1rnf ~
~'Yllm Velot?~ hi M~le d~o.31'fo.ro a.t:-1"et-
VF,
Vw1
Vt:1 :::: Vw1
+o.n ~o
1:
I
vw1 -~g-~1 :::: o.~bVw 1
fa.'l bo
0.19~ 1 Vw1
~~e. cil
Vw1
~ 3S. bS m!s
vl=, ~ Q.'3bx3~.6~
IVolu.me op ~ow na.re
cy ::. v~, x: A
==- l~. 2-4-N) Is
::::. r~. 94- x tJ. '--
~ :: s.?:. mgls
l pow&
p ::. P~ Vw1 • 1,
I
I

::::. ooc xc;.3.X 9s.bgX ~&·&1
== S.iS Xo~ w
+t1ccyo.u.~c. ~Clc.eCc.~
)b~ .::. . Vw1·Ut
S.l~. ~iv~n:
Vw1 ~ 3.~Jl=
IF :::. l .0 5J=
I
'Vw2.. ::: c.~~ JH
VF2 ::: t .g3 ~
H =3(:)m
D2 ~ (). bD
1
l1h ~ ~tJ 1o
Frroffi vel ot~'hj Ctt i Cet- and ou.et
VF1 ~ I.Dt;~
=:::...oc;~
.:::: s.1s {"Y)ls
VF.2. :::: 0 .~3 ~
~ 4-· ~4-6 ~ s:
Whrr~ll v~l cc_~t:J a.l: !"tel:- O.r)cl ouH~r
Vw -==- ~.IS~
::: 1.~S ~ rnJs
Vw2 :::: b .~~ JH
~ Q.~~~Q
=  .~D4-ml s.
rrrt)m ve.lot~~ T<J~Qf)oe d~cts~QMOf i~er
+Q() c( - VFI-
Vw1
D{ :ctcu)' (S·1S Jll·d-S'?>
D{
~
~ I c;s. ~~
I
"'1h~ - Vw1 • l. 1
3H
'O.<a - ll.~t;j X~,
too e :::. VF1
-~-
Vw,-llt
+a-(~ ~ Jf2.
/w 'l.
~ da.01
(
4-·~4-b
t ,~tiLt-
~
1:1
I
~ lS.6s
we_ Know 'ffio.b
D2.. ~o.bD 1
ll.l :::. f1D 1N
be
U2. !:::- nD'l.-N
be
ll2_ ~O.blll
I
ll2- ==- 0. bX 1~. b4-6·
u_2.. ::. @.1~1 b
we. knl)w ThQt-
Iu_2. ~ ITD2N
ba
g. ~1b ..._ n X D2.Xtl
bo
N ..._
IS b. 4-S
ll2.;. rrD2 N
ba
b:L
8- .t&1b - ~. 4- X D'l. X
.bu
)
UL_ lVw~
I
Vw, j
We.. K()ow
I
+a.(r-. ~ If2.
/w "l.
~ do.r1
(
lt- ·~4-b
l .~t)Lt-
~
t)
I
=:.lS.6t;
"ffio.l-
I
N -- IS b. 4-S
b2...
)
UL.. I~w~
2:>. 4- X Dl. X tSl::. .4-S
Dl-
I
VF~::. ~-~9 rnl~
F"'mm veloc.l~ Tr-r~c..('~e d~o.3c-to.M ou.t-let
I ..
Fr-ro0() vetb c.fj
to.f) ct =- VF')_.
·' Lll_
D.err; -:::. Vw 1 x ~~.19
9-81 xt6o
/wl :::: s·19 N  ~
T"'f ~a.l'late .olr()..3"' cdY ;oJ ·,~nltt
+a.f o( ::. JF1
Jw,
0/..::. +o.r ( 3·S
)S.1~
ta.n e ::.
vVJ,-u~
L -
0 ~!O.f (-
3·S
S[.19 - &9.191
D,
lt~ "f<1.h beh..ue..eo w?dth +o d~ome~
T't C)
.Jcroro +n 0.4-VOJ1e~ o.t~-
'I
I
I I
f=-low So.h
0
o ::: h:l
t
J&~ H
[va.n7e~ ~om 0. 1'5 to o.'3o]
Spee~ 'Yo..h()o.:::: Ll,
----
J ~3H
[ V<ll~e' ~om o. 1, -/, o -~ J
}1 h~ :;:. Cf'; r:./o
Y1C1 :::. lfS 0/o
- c.~
:::. a.
[)2 ::. -k-D 1
1t~t k fess. :::.. ·~ 'io tfrcc.u.~~Ch
11
o. Ol.Q.Q. ~ch.~.~d
DVeJ)a.ll
I
~trenty
~
0
~ sha.(:t pcwe.J
. P<J~ H
o.~s = 4-oo XlD~
ltH~OX9.RI X~X1o
D~SC..hOJ.~
~ ~ rrD1 el vF-,
VFI
=0.&
~ ~5H
"h :: t) .~x J~X~.~ Xlo
VF, = 1-4-1 mj~
VF2 =1-4-1 ro}s
~ :::: 0 .9.4-X 11 XD1 X 0 .l[)
1 ~ 1 ·4- I
'D.b8S:::. 0-94-- Xfl Xt) 1 xn.D, X.1·4-
b I :::. 0. SS'9 ro
b2 ~ +D1
e,
p,
::::::.. _!_xt,.S"S'f
3
-=- '0.
eI ~ 0. X 0. ss~
fS2. :::..O.Ib&-m
Tao~n~n.l Ve.loc.~t:J OJ..t- i(ler Qod ou.t!et
u, .::::. ffD,N
bt~
- ~.14-X O-SS9 X.g.oo
bo
~ 3.~xo.t~-x.%Co
bo
.::. '1 -i 8 ens.
, ~d«)'uuJft ~0
defC~
'Vf Vw 1 LL,
•  h ~
a .9!; .=: Vw1 X ~3-4l
9.<iS 'X 1a,
Vw1 ::: &1-~ c-nJs.
~"nlm rllet- vetoeS~ rt'{?o.~e d~5C'(Q('v)
(n LL?de ~la.d e Q.n8'fe inlet
I
+a.J) 6 :::. _v_F,__
rrrt~ro OLLttet Veac~~ Tr-t?tin~(l. dfQjt'(~ t"vl
'2unJ)ei ~I ade on~e oJ- ot.ttfef:
to.n cP :::. VF'2..
Ll'l.
S".ILJ.t; ~~veo :
H- -:::.1 Cit')
N !:::. 1~ ccypC1
&~o.~t- pow~ :::. 31 b KW
- (j.~
~ a. l
ob b~ 0
cv~Clll ~c,en:i
~ Cl ~ ~h a.J=f:- pcwe..,
r ~~t+
o.&-s -
b
bt 'c..hOJ(f-
~
fY ~ ITD 18 1 VF- 1
VF-,
::: ~-~
~5H
VF, ::. o·~ X J ~X 9 -~1 X(-c
vF, !::-_ 1.4-1<6 rnk
VF2 ~1·4-I&N'l/~
D1 ~1.% D1..
6 ·4-~b ~ 1·8 D2
f$,
~ o. I-
Bl ::::: 0 -I X 0 ·4-~b
8, ~t~.04-'b~
D.S'31 ~ 0 -9~~ X~ .14- X 0 ·~1 ~ X ~'l. X 'l· 4-l&
B2... ~o.oS9bm
u
1 ~ rrc,N
be
,.._ 3.14-X D.4-9b X. l&a
bo
tt 1:: ISl·bRI'Y)J_s
U.2 .... rrD2-N
be
- 3.14-Xo.~1r%-X1g)D
bo
- fa.39 N)Js_ ·
·. ~ d~ alAlrt ~(r€()c:J.
Cnu~de
Y1 h .::. Jw, u.,
<JH
0.9 _ Vw 1
X l8.bfS
9·8 X1D
v~l ac_~~ rty~o..nctf~ d~o.J"fClN)
gln.d e f.)~)ate ;(eb
+ctn rX .:::. Vr:.,
Vw,
(
1·LH2 
ol. ~ hn"
1
~~.a!~ )
Ru.~neJ ~I a.de ~01e. fn/E:?t
--Qo e- :=. VF-t
----
Vw,-U,
e ~ to.o-l (-v__F-,___
Vw 1
- u,
Blo..de O..{)~e o.t ou.tlet.
ton¢ ~ ~
I
u~
~ ~ t-a_n-t (1·4-1<
ID-~9
'Yiov~ ::.. -fb ~a
l-t:::R-f'O
pe.rJpheho..l velad~ u.1
~ o.as ~- ~3H-
:,
. '
)
Ii
U I ~ D ·&c; J"~<J H
~Q.~S s~x~.%X&
=:6 .f3~ mls
==- 3. ~~~ mls
VF 1 ==- o .Cfc; JD) 3 »
:: o .~c; J&X9.Sl-1 X2.
~h~ - Vw1
xu,·
I 5H
0.~ ~ /w 1 X 3 ·I~~
9 .<3 )(~
I Vw 1
~ .~o .04-~ N~lr
I
ICr.u.?de Blo..de o..nale o..~ lo le~
I
I tc.n r~_ -- VFr
• <:)
0- ~ 3t;; l~
We.kfOW Tho..t ..
T~n~C)~o..l velotfh.:i .
0V€J)c:d I
I
S.lSo Gtveo :
U. ~ nD 1N
be
3.1~&_ ~ ~.14-XDI X~o
bb
Y'J 0
!::: Sha.~t pow€.1-.
P:}.~H
0.16 ~ _rs_t:~_x_r_a3
_ _
loon 'X9.~1 X.~ X~
1::. l·b~fY'l
p~~~~C1. v~lod ~ u.1::: 0
.016 J~5H
>1 h~d~Y~C - IOo -&~
,.._ 18oto
u 1 ::: ().~{, Jd.:JH
:::_ 0 ·~ b ~~ ~ X 1·%1 X 1. bcS)
:::_ 3.19 ro Js
~F- 1 r::-c.96 ~~<jH
I
~ 0.96 J ~X~-~ X 1-b~
D.1~ ~ Vw1 X 3.119
9 .&1 X1-b2.
VVJI ::::. 19 .34- N) l.s.
Runn~ Bnde ()j')aJe. o.t- t()l~r
+~n ~ ~ _v_F..,._t- -
Vw, -ll
+
- ( tt.1'.3~
(9 ~ O.t) )
18-·~4- -3.119
we t-<l'low Th a.l:
I
To..n~ht~QI Ve!Dtf~
ll ~ ITD 1N
be
.3.1'19 ~ 3·.14- XD; X !So
be
bl ~ ~. &b('Y')
bl ~D. 4D4-M
Y1o ~ S ho..~ bp~w~
f«j ~ H
0.1S:::: l~9·ct-6Xto?.
l DDo X~.% I 'X ~ )( 1· b'2.
~ ::.. nD, 8 1Vf:1
~ .t6 ~ rt '>< t ·lt--D4- X f.S, X I .1'-s &
I .
I
5.14-4-· ~~ven:
3
Sha.~l: pt)weJ) :::: lbl~o X ltl 'W
p1
~t.c;ro
e1
:::. O.t9.SM
~ ~,ro~ls
v,_ ::-16 ('1l ~
oven a.II ~c.i enc.~
Y1 0
== Sha.r:t p~:~w&
p~ <:¥ H
::: lbl&.c Xto
3
lDCic X9.%1 XlX~6o
:::: 9c-~R
0
/~
~ c)ryctul~~ ~t.ceoCJj
}... C)_
"VV H- ""
'lh :::. D1s
H
- 0.94-99
Ib1),
~X9.&1
_ 94-.99 ~/o
I
I
1a.n~nh~ Jelt~c.~~ a.t- ~ne(
Llt ~ nl),N
6o
,..._ ~-14-X'·S X bDo
bo
I
~~II
:::::: lt1. ~ms
I
I
Ij
i
'
r-{h ~ Vw, u,
3H
o .94-99 ':;.. Vw 1 X 4-1.1&
~-~ x~bc
I
JF, == ll . oc~M  s.
~u.~d€ a.note at ihtec
+a.n ~ ::::. Vr:,
Vw,
t " (ll.oo~
c/. ~ Qf)
Sl·'+-1'1·
)
.t. - ( n.c)tg )
B =:::.I d.()
S. 4-l - 4-1. ld_
"YJoV~o.. .::. 90 ()/o
u.,
::Cl.b
u.. :::: d.
~- ~3H
u., ~ & j &x9.8 x r;
ll, .::: 11 .81Jml~
~ lnw velac~~ Qt if.et-
}F-1
:::. 1l . b
~... ~3H
VFI ':::. 0. b ~ ~ )(~ .~'1.. s
OVeJ)o.. ~c.fent~
I
1ic ~ ShQ~t ~cw~
P9~H
Q::. A. JF,
'13S.9 :::. lT
CD: . ~]
- -J)b
4
JFJ
1~5-9 - tl l b; - (o.Lf.D~)'LJVF- 1-4-
1315.9
" ~ [o.&4Db'LJ x s.~~
De, :::: o ·4-Dt~
~ D-4- xs.~~
b
S'naJ:t poW& ::: IS Xlt~ w
D(:::... 3otl.
~ ~ 9o~ ( "fQd~o.)
1 Vw2. :o
l J/~~11 ~t~cfeo :J
~
"Ylo ::: shOf'b pow~
P8~H
D.~::::.. l~Xtob
I looox9.l}p(~X~ol:1
1
j ~ :::. Cf s. ~6 ro~l~
l 0
bl~t)OJ)(pL
I
!
I

~ :::. ~ [ IJ~'l.. - f)b'L] · VF,
rr-rocY velat.~~ T<') ~<H3e d~a.<Jryo.m o.t- inet-
to.n o< ~ VF-,
Vw 1
ta.n~~.::: 8·!!!S
Vw,
Vw1:::. IS.~Ns.
%dry o.u.l~c ~0
tlel}c.~
rfh ::: Vw1 u,
3H
a.9 ,... lS.~I xu,
cr.~t ><~o
I I ..... rrDc N
......1- - - -
be
li.S3 ~ 3.14-X4-X.N
bo
Va.ne a_()aes
f:-l'io~ inlet Ve[oc_i~ rty~af~le dio...~C'iQM
fa.n6 =- _V_f"-!1__
Vw1-u.,
S. bo . Cn~ven :
H ::. &5 l"tt
U.l ~ UL.
VF, ::: VFL.
cp ::. to.n' (-e.~c; 
.c;~ -)
T1 o = as D/ o
Y1h :::: 9D
0
/
0
i I
I
!
"'· 1
Dv'€1o. ~cient~
n.Bs -
Doc X 9.% X~ X ciS
0
DIS c.h oJ)~
t? ::: Jl. [Do!).. -~'l.J ·lf.,
4
41.::l1 ~ _!!_ [l-1.~~] .. Vf:,
'+
vi=, ~ &.M3 M/~·
H:Jd"f clLJ~t ~0
cie()~
'Vf _ Vw1
u,
, Ih -
jH
Vw 1 == LL 1
~~en velcc.~t:t Trr~o.nae d~Q3"{o.rn
~peed
Yf~ -
LL,(L
jH
'2..
'D.1o = · u..,'
9·gl X~t;
u.,.::. 14-.ar;m~
Ll, - f1DbN
to
!4:-.cg 5 - 3.Itt X'3 XN
bD
.· ·. Vw1 :::.U1
g. 1';6.
!
1l ==- 9 4- .r; ~ repM
Va.ne o.o01e a.t- .ou.lret
1-aJ) cP VM.:::: ___
u.,:: u'l.
l0iven :
I
. 5ha.t.t
I u.,
== &.ott
~ ~31-t
1 F1
o.bR-
~-
~3-i
u,
~ ~3H
U.r :::. ~.oq ~ ~'X~-~1 X S-St
u 1 ~ ~l.ll mj
~ow velDt~~ al i"et
Y}
0
::: Shu~[ pCJw~:
~3 c:tH
D. b :::::. 1~S). t; X lc?
rODCJ xq .~ xlSfX' s.t;()
(::)
D1 st.h()J) au
I
~~JI. [ '2. J4- Do -· Dg'L V t:1
g,,n~1"' : [ [)~ _ (-P·)')_] ><l·bb~
0)~1- cl.l ~ ~ [ Do'L - n.l1 r:,.;J 'X1· cl,~
3~ .111 - 0 · b~l o& Do'L
De .::: Do
,3
...._ b.1qt,.-
3
;::: ~.~b4-lY
s. ~S1. Cniven:
I
Speed Lt. 1 ===- IT DoN
bo
~1.11 ~ S.I4--X ~·194- XN
bt:.
speed .
Ns!::: NfP
H t:f tr
,_ bl· bS9 ~ 1~Sl· ~
Cs.r;) r;./4-
Ns ~ be}I. 91~
H~ s.sm
Llt
J ~<jf-t
u_I .::- ~· 0 9~ ~ X 9.~I ')( S·r;
~()W v~loc.~ ~ ·
Vf:, ::::. (). ~~
I
{~31-
I vF, ~ a.6& ~&x9.<a1 xc;.t;II
I :::1.tlk~ N 1s.'
I
OV~oJ ~c..ieot~
l'1c~
sho.~~p~w~
fl~~ H
a.b - 1~bt XIC'l-
IDt:lD ')(9 -R ')('~ xs.s
I Dlsd~M~
Il
!I
1
I!
!
II!
l!
l
l
I
I
.l
!
j
l
j
I1
lI
j
l
'·
{
i
SpeJ>.ci
l Dn 0o ~-1'1MJ
Dg ~ Do
3
.-- ~·~bm
..... bi·09 ~i~bn
l S·SJS/4-
1Ft
---- =().bg
D() ~fDa
To..o(ff)){Q ve1Dt7t:J a.f: ~nler
u,
u 1
:::: & ~ ~ x<=t .~ x s.b
u.1 :::- ~0 .qb m(s
!::::. 1. 1~1 Ml.s.
tlV~o.l} ~~c.f~()t_~
rvfo :::. shof:t pow~
~ p~~~
!
I ~
/ a.~~ _9_1_~_c_x_'~-------
l l{j b a 'X q.~ X G( X s. b .
l
j ~ ~ lq~ .bI f'n~Is..
D~£ch OJ)}Q
I
~ t: f [Du')_ -Dr?-] vF,
lc:r~ .b I ~ _!C_ rJJc'L - -L~'LJ X 1·1~'l
4- lj . 9 .
&l.b!:)!:; .."' ~ [D.&&St>o2.]
d. 1. a dS ::::. D · b91 Do'l..
b[)2
.:J€ -ll
~ ~h.&&b1'0
LL 1
~ ITDt:~N
be
&D .C)b r:::: 3 .14- 'X b·ct ~ b XN
bD
spec~~
0
C. Spe,Qcl
N~ ~ N lf
HS/4-
''
S.lbl
::: btt· 3~ ~ 9f oc
9
C_s ob )sf4-
Ns :: 11& 0
&4-
H ::. ~ {'()
J:)B .:: D.3S Dt~
cp :::. c;~
v~,
~-~~H
To.n~ ~oJ veloc~~ ~t- ?0tet
LL1~ rT DoN
bo
J='low vel cc..if) a.t- ?nl et- 0
VF-r
~ D1<j H
Vf:-1 c::. D 0
6J& X~ o~l XI~
T"Y~o.n 3te d1bo. 5Yo. m
to.ncP ·-== VF'l.
u'l.
~ q.~b6
{a.o ~
et~ oliffet
-0. /F-1 ~ VF"l..
Ll'L -::: 34-.~c;!ml.s.
f! · To.n(F'hl'.a. velbd f:j
u_ " ffDDN
~----
I
be
34-.'3S1 ::::: 3·14-Dc~N
be
e, 4-.~ r; l :;: 3 ·l 4- X De 'X I0 0
-be
De, ~ o·~c;Dc
~ ~ .d.9 {'()
~ ::= JL [Dc'l. -DB.~] X/F-1
4-
0:. ~ [!:,.sbc?- -.':). ~q2.}x: 'Pl.ob
- &1 3. 1s rn3
/ s.
0
S.Is&. i cntve-n:
5.NO Spec, taftc. -Speed llJ.Jbine
I. ID -~l) st()(J-le Jet petbe()
whee
&. 11- SD
I+wt ~et petot)
wlteet.
I I! ~I
J i
s. ~4--1o
~UJI Jec p~ltco
whee
t---·-!---._.,_,______,____________,__,___,_ !----·-~--~---·-----·•-c-~---
4. 10 -&s-l <h-anc~s. bb()e
1---t------------+--·-·---------··<•·~"·
s.
s-peed
Ns o:::: _N_J_Q_
I
H3J4
- 4bDxfu~
( cl.r;,)?.J4-
N5 ~ ~1. ~9
Velotihj Of: 'Jet
Vi!::. C.v J1.3H
- o.9~ ~&X9.<61 '><cl'S
-= ~.1 ms
V€lotff:j (jF whee
u, ~ l<u. .f&S'H___
- 0.4-S~ ~X1.&X'~S
- 'i-9bms
--------·--
tn,
kQpQ.( iwlbr(e
. j A wo..t& 1-ttrtbtne hct~ a. JQlot~hj ~~ gmjs. . o.t- ~
~
lentt"fo..nc.e Of: d"fo..~r · +u~e o.{)d /elctt~ c~ ~-s mt
ia.t ·e~~t . fu ~ichac()o.. · t~ss OJUt c. sro o.nd lt~ +o..nI
I
IWo..+en ¥~ bm belcw TTuL e.nt'"(ctnce · ctd!"fo..r:t ~bef
!
~
0
nd ·~ p_M.~s~ he-o.d o..t erd'YQ.t'C€'·.
I!CnC)I tV~():
i Po..l
:t - -
f,
- - ::. - 8.44-ro
fj
~ Ne~a.h""ve ~f(f ~nd~c Q..l'e.~ Vo..ctu(Y) p.l.9.~~uS.Q.
~.
·1
l
A (t~f~c. o.l d"Cct~t 1t.tbe ho.vlnd Inlet o.od
cl~o..O'Ie~~ ho.~ J-~ro o.nd 1. &- I.Q.sre~ hlrel~.
outlet
been d~s.<:har,(f ctt ~c.s.+tet ·w~th velot~~ oF 3cns . 11s.
Tctctl leootr-. DF drro.r+ fu.be f's 1·~m c..nc:{ (.4-4-ro o~
fu {en0ffi· OJ! d~o.f:t 1-a.b~ is JfY)ffi~~ed ~0 wo.f€n. .tp_ ~
o.l:-mos;:phe.ti.~·c p.rtQ.Sil.uu heo..d It~. 3('() uod ~ fos5. ~f-
hea.d du.e ~~~l<:~o() ~n d~Y~t -h.tb-e i~ o.~ lfn1~~ OJ:
vel cc~ ~ hRo.d and ou.tt-re.t c~ dcyo.J:t fu.b-e.
J)e+eJHn~oe· n_ 1'rot'r,.,u., h d l ~ ( t d tJI'Ul. 1 ...-.;)~....... U'- E'a a.c roe an ou.let
I
V2. :::. ar-nJ~
Hs~ :: 1·&ro
~ ~ I. 4-4-Nl
rr 'l. '-
~ x:.8 x3
4-
Ii
I
.j, r 'l..
· . ' tc L1s .
lf3 +-'1. ~ -
3'1. ~'l..
o.~ + -~ t-e +b·&2_
~X' .<6 ~X9-RI
I•:
i-l·,~
=1.3~lm
"Y]d -
I
b.'l ~'l.
~x~.~~
c~.3~.;)-f).4J;" _ O.Qql)
''i
'
~0
ctE?n ~ o.NL &~ 'YIS a.nd g.o "'/6 SUtS. pec.HJellj. ~ top
OF dc-co.j:t tube. ?.s l·~m below ~ CQfltenlfie. Cf-
~
splc-ra.l ca.sn5 wh~e fu ktl '1ClCe ~s. 3.9 m b~aw
fu hp of- fu. d~apt tube. TI.9. d~ome~ oF- dr;Q.J:t
t. or; m a.t t"-'-He.t ·
I
D.1..:::: l.osm
biL
.:::_ 4--8 +--
~1(1·%'
t
<Jfef) <:ll ~c.l ei)Oj
H-ec.d Io~s
~ c ::::. Shaft pew~
fl<J ty H
o.& - shc:q::t pew~
v';)_ :::. ~·4-& rnl~
Head' u_l)l~~ed R~ ~b~f)e
- H- hF-t: - ht-d
- 54-.b?. -{hr:t +hr:~
H-~d'la.u.l ~t. ~<:_~E'OC.~
Yfh ~ 'H-eo.d LLiflf~ed ~'j -h16r~e
1-teo.cl f"let- 6F ~h~oe
o.<J3 :: 5 4-·b~ -~~t + hFdJ
54- .q ~
hrr: +h~cl =- 9 .o~N)
i
,,~
l'Jmec..h c: a.9b~~
~ ro ec. h ~
sho.~t-· poVJe;
.,
Runn~ pew~
..... ~hat=b- powe,...,-
r+Pr-
o.qb3~ - 90S. ~S XID~
~os. 3s Xlo
3
+--Pf:
[ p~ - !l4-XIo
3
W J
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 82
UNIT – V – TURBINES
PART - A
5.1) Define turbo machines.
5.2) Define turbine.
5.3) What is a pump turbine? Is it the same as turbine pump? [AU, April / May - 2015]
5.4) Classify fluid machines. [AU, April / May - 2010]
5.5) Give the classification of turbines.
5.6) How are hydraulic turbines classified
[AU, May / June - 2009, 2014, Nov / Dec - 2009 April / May - 2011]
5.7) What are high head turbines? Give example. [AU, Nov / Dec - 2009]
5.8) State the principles on which turbo-machines are based. [AU, Nov / Dec - 2010]
5.9) Explain specific speed. [AU, Nov / Dec - 2005]
5.10) Define specific speed. [AU, Nov / Dec - 2009]
5.11) Define specific speed of a turbine. [AU, Nov / Dec – 2003,
2008, 2009, May / June–2007, 2009, April / May –2010, 2011]
5.12) Define specific speed of a turbine. What is its usefulness?
[AU, Nov / Dec - 2007]
5.13) How is specific speed of a turbine defined? [AU, May / June - 2006]
5.14) What is meant by specific speed of a turbine? [AU, April / May - 2010]
5.15) Why not the specific speed of a hydraulic turbine is calculated using watts, instead
of metric horse power? [AU, April / May - 2015]
5.16) Write the equation for specific speed for pumps and also for turbine.
[AU, Nov / Dec - 2012]
5.17) Define specific speed and unit speed of a turbine. [AU, April / May - 2015]
5.18) List the range of head for various turbines. [AU, April / May - 2015]
5.19) What is hydraulic turbine? [AU, May / June - 2006]
5.20) State and concise on Euler turbine equation. [AU, Nov / Dec - 2014]
5.21) Classify turbines according to flow. [AU, Nov / Dec - 2005]
5.22) Define impulse turbine and give examples.
5.23) Explain the working of impulse turbine. [AU, April / May - 2011]
5.24) Define reaction turbine and give examples.
5.25) What is reaction turbine? Give examples [AU, April / May - 2003]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 83
5.26) Differentiate between reaction turbine and impulse turbine.
[AU, Nov / Dec - 2003, April / May - 2008, 2015, May / June - 2012]
5.27) What is a ‘breaking jet’ in Pelton wheel/turbine?
[AU, May / June - 2007, Nov / Dec – 2007, 2012]
5.28) Draw velocity triangle diagram for Pelton wheel turbine.
[AU, Nov / Dec - 2008, 2014]
5.29) Define tangential flow turbine.
5.30) Define radial flow - turbine.
5.31) Define axial flow turbine.
5.32) Define mixed flow turbine.
5.33) Define the flow ratio of reaction radial flow turbine. [AU, Nov / Dec - 2012]
5.34) Draw a sketch of a Francis turbine and name its components.
[AU, April / May - 2005]
5.35) List the main parts of Kaplan turbine. [AU, Nov / Dec - 2012]
5.36) What is draft tube? [AU, Nov / Dec - 2012]
5.37) What is a draft tube? Explain why it is necessary in reaction turbine.
5.38) What is draft tube? In which type of turbine is mostly used?
[AU, Nov / Dec - 2003]
5.39) Write the function of draft tube in turbine outlet?
[AU, April / May - 2005, 2008, Nov / Dec - 2011]
5.40) What is the function of draft tube?
[AU, May / June– 2007, Nov / Dec - 2009]
5.41) What are the different types of draft tubes? [AU, Nov / Dec - 2009]
5.42) Why does a Pelton wheel not possess any draft tube? [AU, May / June - 2012]
5.43) Mention the importance of Euler turbine equation. [AU, Nov / Dec - 2011]
5.44) What are the different efficiencies of turbine to determine the characteristics of
turbine? [AU, May / June – 2012]
5.45) Define hydraulic efficiency of turbine
5.46) Define hydraulic efficiency and jet ratio of a Pelton wheel.
[AU, Nov / Dec - 2010]
5.47) Define hydraulic efficiency and axial thrust of a roto-dynamic hydraulic machine.
[AU, May / June - 2013]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 84
5.48) What is meant by hydraulic efficiency of turbine?
[AU, Nov / Dec – 2012, 2013]
5.49) Define hydraulic efficiency and overall efficiency of a turbine.
[AU, Nov / Dec - 2012]
5.50) Define -volumetric efficiency of turbine. [AU, Nov / Dec - 2014]
5.51) What are the different efficiencies of turbine to determine the characteristics of
turbine? [AU, Nov / Dec - 2006]
5.52) Define overall efficiency and plant efficiency of turbines.
[AU, May / June– 2007, 2012]
5.53) Draw the characteristics curves of a turbine with head variation.
[AU, April / May - 2005]
5.54) What is the difference between a turbine and a pump?
[AU, Nov / Dec – 2010, May / June - 2012]
5.55) Differentiate between pumps and turbines.
[AU, May / June, Nov / Dec – 2007, 2008]
5.56) A shaft transmits 150 Kw at 600 rpm. What is the torque in Newton –meters?
[AU, April / May - 2011]
5.57) The mean velocity of the buckets of the Pelton wheel is 10 m/s. The jet supplies
water at 0.7 m3
/s at a head of 30 m. The jet is deflected through an angle of 160° by
the bucket. Find the hydraulic efficiency. Take CV = 0.98.
[AU, April / May - 2010]
5.58) A water turbine has a velocity of 8.5m/s at the entrance of draft tube and velocity
of 2.2m/s at exit. The frictional loss is 0.15m and the tail race water is 4m below the
entrance of draft tube. Calculate the pressure head at entrance.
[AU, April / May - 2011]
PART – B
5.59) Derive the general equation of turbo machines and draw the inlet and outlet
triangles. [AU, April / May - 2011]
5.60) How will you classify the turbines? [AU, Nov / Dec - 2008]
5.61) Enumerate the differences between an impulse turbine and reaction turbine.
[AU, April / May - 2015]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 85
5.62) Describe briefly the function of the various main components of a Pelton wheel
turbine with neat sketches.
5.63) Describe briefly the functions of various components of Pelton turbine with neat
sketches. [AU, Nov / Dec - 2008]
5.64) Explain the component parts and working of a Pelton wheel turbine.
[AU, April / May - 2010]
5.65) Define and derive an expression for specific speed of a turbine.
5.66) Explain the terms unit power, unit speed and unit discharge with reference to a
turbine.
5.67) Explain the hydraulic efficiency of a turbine. [AU, Nov / Dec - 2009]
5.68) Sketch the velocity triangles at inlet and outlet of a Pelton wheel.
5.69) Draw inlet and outlet velocity triangles for a Pelton turbine and indicate the
direction of various velocity components. Also obtain the expression for the work
done per second by water on the runner of the Pelton wheel. [AU, April / May - 2015]
5.70) What is breaking jet in Pelton wheel turbine?
[AU, April / May – 2004, Nov / Dec - 2005, May / June– 2012]
5.71) Differentiate Pelton wheel turbine with Francis turbine.
[AU, April / May - 2005]
5.72) Distinguish between reaction turbine and impulse turbine.
[AU, May / June - 2013]
5.73) Give the comparison between impulse and reaction turbine.
[AU, Nov / Dec - 2005]
5.74) With the help of neat diagram explain the construction and working of a Pelton
wheel turbine. [AU, Nov / Dec - 2005]
5.75) With a neat sketch, explain the working of a Pelton wheel.
[AU, April / May - 2008]
5.76) With a neat sketch, explain the working of a Pelton wheel. Also obtain the
expression of the work done. [AU, Nov / Dec - 2012]
5.77) Obtain an expression for power developed in a reaction turbine.
[AU, Nov / Dec - 2011]
5.78) What is the condition for hydraulic efficiency of a Pelton wheel to be maximum?
[AU, Nov / Dec - 2005]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 86
5.79) Explain the construction and working of the following turbines with neat
sketches.
(i) Pelton wheel turbine (ii) Francis turbine (iii) Kaplan turbine
5.80) Compare radial flow and axial flow turbo machines.
5.81) Draw the inlet and outlet velocity triangles for an inward flow reaction turbine
indicating the various components. [AU, Nov / Dec - 2009]
5.82) Derive an expression for the maximum hydraulic efficiency of an impulse turbine.
5.83) Obtain an expression for the work done per second by water on the runner of a
Pelton wheel. Hence derive an expression for maximum efficiency of the Pelton
wheel giving the relationship between the jet speed and bucket speed.
[AU, Nov / Dec - 2007]
5.84) Obtain the expression for the work done per second by water on the runner of a
Pelton wheel and draw inlet and outlet velocity triangles for a Pelton turbine and
indicates the direction of various velocities. [AU, May / June - 2009]
5.85) Derive the velocity triangle for Pelton wheel and obtain the expression for the
work done. [AU, Nov / Dec - 2010, April / May - 2011]
5.86) Sketch the velocity triangles at inlet and outlet of Pelton wheel.
[AU, Nov / Dec - 2006]
5.87) Derive the expression for efficiency and work done for a Pelton wheel and draw
the velocity triangles. [AU, May / June - 2012]
5.88) Explain how the net head on the reaction turbine is increased with the use of draft
tube. [AU, April / May - 2008]
5.89) Derive Euler’s equation of motion for turbines and obtain the components of
energy transfer with a construction of velocity triangles. [AU, May / June - 2012]
5.90) An inward flow reaction turbine has inlet and outlet vane angles φ and Ф are both
equal to 90°. If H = head of the machine, α = guide vane angle and C = ratio of
velocity of flow at outlet and inlet, show that the peripheral velocity and hydraulic
efficiency are given by [AU, Nov / Dec - 2009]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 87
5.91) Show that the hydraulic efficiency for a Francis turbine having velocity flow
through runner as constant given by relation. [AU, April / May - 2011]
5.92) An inward flow reaction turbine discharges radially and the velocity of flow is
constant, show that the hydraulic efficiency can be expressed by
Where α and θ are the guide and vane angles at inlet. [AU, May / June - 2012]
5.93) Write a short note on Governing of Turbines. [AU, Nov / Dec - 2008]
5.94) Classify hydraulic machines and give one example for each.
[AU, Nov / Dec - 2008]
5.95) Explain the working principle of Kaplan turbine and derive the working
proportion of its design. [AU, Nov / Dec - 2008]
5.96) Draw a neat sketch of Kaplan turbine, name the parts and briefly explain the
working. [AU, May / June - 2007]
5.97) Draw a schematic diagram of a Kaplan turbine and explain its construction and
Working. [AU, May / June - 2014]
5.98) Explain with help of a diagram, the essential features of Kaplan turbine.
[AU, Nov / Dec - 2009]
5.99) Draw a schematic diagram of a Kaplan turbine and explain briefly its construction
and working. Obtain an expression for work done by the runner.
[AU, Nov / Dec - 2011]
5.100) Discuss about construction details of Kaplan turbine with a neat sketch.
[AU, Nov / Dec - 2014]
5.101) What is function draft tube in Francis turbine?
[AU, April / May – 2003, 2010]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 88
5.102) Discuss about draft tube and its types. [AU, Nov / Dec - 2014]
5.103) Derive an expression for the efficiency of draft tube. [AU, Nov / Dec - 2006]
5.104) Derive an expression for specific speed. What is the significance of specific
speed of turbine? [AU, May / June - 2009]
5.105) How is a specific speed of the turbine, defined? [AU, May / June - 2009]
5.106) Write a note on performance curves of turbine. [AU, April / May - 2010]
5.107) Show that the overall efficiency of a hydraulic turbine is the product of
volumetric, hydraulic and mechanical efficiencies. [AU, May / June - 2007]
5.108) Define: Hydraulic efficiency and overall efficiency with respect to turbines.
[AU, Nov / Dec - 2007]
5.109) Explain the different types of the efficiency of a turbine.
[AU, Nov / Dec - 2008]
5.110) Explain the load efficiency characteristics of hydraulic turbines with a diagram.
[AU, Nov / Dec - 2013]
5.111) Mention three to four most striking characteristics of Pelton wheel, Francis
turbine and Kaplan turbine. [AU, April / May - 2015]
5.112) Discuss the performance characteristics of reaction turbine in detail.
[AU, April / May - 2011]
5.113) Discuss briefly the characteristics curves of hydraulic turbines.
[AU, Nov / Dec - 2010]
PROBLEMS
5.114) A turbine develops 9000kW when running at speed of 140rpm and under a head
of 30m. Determine the specific speed of the turbine. Derive the expression used in
above problem. [AU, Nov / Dec - 2008]
5.115) A Pelton wheel is to be designed for the following specifications :
a. Shaft power =11,772 KW ; head = 380 metres; speed = 750 rpm,
b. Overall efficiency=86%. Jet diameter is not to exceed one-sixth of the wheel
diameter. Determine the
i) Wheel diameter ii) Number of jets required
iii) Diameter of the jet. [AU, Nov / Dec - 2012]
5.116) A Pelton wheel is to be designed for a head of 60m when running at 200 rpm.
The Pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets is
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 89
equal to 0.45 times the velocity of the jet. Overall efficiency = 0.85 and co-efficient
of velocity is equal to 0.98.
5.117) A Pelton wheel has to be designed for the following data. Power to be developed
= 6000kW; Net head available = 300m; Speed = 550rpm; Ratio of jet diameter to
wheel diameter = 1/10 and overall efficiency = 85%. Find the no of jets, diameter of
jet, diameter of wheel and quantity of water required. [AU, Nov / Dec - 2006]
5.118) A Pelton wheel is to be designed for the following specifications:
Shaft power = 11,772 kW
Head (H) = 380m
Speed = 750rpm
Overall efficiency (η0) = 86%
Jet diameter > 1/6 wheel diameter.
Determine: The wheel diameter, the number of jets required and diameter of the
jet. [AU, Nov / Dec - 2007]
5.119) A single jet Pelton wheel runs at 300 rpm under a head of 510 m. The jet
diameter is 200 mm and its deflection inside the bucket is 165°. Assuming that its
relative velocity is reduced by 15% due to friction, determine (i) water power (ii)
resultant force on bucket and (iii) overall efficiency.
[AU, May / June - 2007, 2012]
5.120) Determine the rpm, work done per second, power and overall efficiency of a
Pelton wheel from the following data. Head = 150m, Wheel diameter = 0.75m, Jet
diameter =4cm, Deflection angle of buckets = 172º, Cv of nozzle = 0.98, Speed ratio
= 0.42 and surface roughness factor of vanes = 0.97. [AU, April / May - 2015]
5.121) A Pelton wheel supplied water from reservoir under a gross head of 112m and
the friction losses in pen stock amounts to 20m of head. The water from pen stock is
discharged through a single nozzle of diameter of 100mm at the rate of 0.30m3
/s.
Mechanical losses due to friction amounts to 4.3kW of power and the shaft power
available is 208kW. Determine velocity of jet, water power at inlet to runner, power
losses in nozzles, power lost in runner due to hydraulic resistance.
[AU, May / June - 2007]
5.122) A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1000
rpm. The net head on the Pelton wheel is 700 m. If the side clearance angle is 15°and
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 90
the discharge through the nozzle is 0.1m3
/sec, find the i) power available at the
nozzle and ii) hydraulic efficiency of the turbine. Take CV=1.
[AU, Nov / Dec - 2007]
5.123) A Pelton wheel has a mean bucket speed of 12 m/s and supplied with water at
the rate of 0.7 m3
/s under a head of 300 m. If the buckets deflect the jet through an
angle of 160°, find the power developed and hydraulic efficiency of the turbine.
[AU, April / May - 2008]
5.124) A Pelton wheel has a mean bucket speed of 10m/s with a jet of water flowing at
the rate of0.7 m3
/s under a head of 30m. The buckets deflect the jet through an angle
of 160°. Calculate the power given by the water to the runner and the hydraulic
efficiency of the turbine. Assuming the coefficient of velocity as 0.98
[AU, April / May - 2004, Nov / Dec - 2005, 2010, 2012, May / June - 2009]
5.125) A Pelton wheel which is receiving water from a penstock with a gross head of
510m. One - third of Gross head is lost in the penstock. The rate of flow through the
nozzle fitted at the end of the penstock is 2.2 m3
/sec. The angle of deflection of the
jet is 165°. Determine (1) The power given by the water to the runner (2) Hydraulic
efficiency of the Pelton wheel. Take Cv=1 and speed ratio =0.45
[AU, May / June - 2014]
5.126) A Pelton turbine is required to develop 9000 kW when working under a head of
300m the impeller may rotate at 500 rpm. Assuming a jet ratio of 10 and overall
efficiency of 85% calculate [AU, Nov / Dec - 2003]
(i) Quantity of water required
(ii) Diameter of the wheel
(iii) Number of jets
(iv) Number and size of the bucket vanes on the runner
5.127) The nozzle of a Pelton wheel gives a jet of 9cm diameter and velocity 75m/s.
Coefficient of velocity is 0.978. The pitch circle diameter is 1.5m and the deflection
angle of the buckets is 170°. The wheel velocity is 0.46 times the jet velocity.
Estimate the speed of the Pelton wheel turbine in rpm, theoretical power developed
and also the efficiency of the turbine. [AU, April / May - 2005, Nov / Dec - 2009]
5.128) A Pelton turbine having 1.6m bucket diameter develops a power of 3600kW at
400rpm, under a net head of 275m. If the overall efficiency is 88%, and the
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 91
coefficient of velocity is 0.97, find speed ratio, discharge, diameter of the nozzle and
specific speed. [AU, May / June - 2007]
5.129) A Pelton wheel has a mean bucket speed of 12m/s and supplied with water at
the rate of 0.7m3/s under a head of 300m. If the buckets deflect the jet through an
angle of 160° find the power developed and hydraulic efficiency of the turbine.
[AU, April / May - 2008]
5.130) A Pelton turbine is to produce 18MW under a head of 450 m when running at
480 rpm. If D/d ratio is 10, determine the number of jets required.
[AU, Nov / Dec - 2011]
5.131) Consider an impulse wheel with a pitch diameter of 2.75m and a bucket angle
of 170°. If the velocity is 58m/s, the jet diameter is 100mm, and the rotational speed
is 320rpm, find the force on the buckets, the torque on the runner, and the power
transferred to the runner. Assume v2 = 0.9v1. [AU, April / May - 2011]
5.132) A gas turbine operates between 1000k and 650 k temperature limits taking in air
20 kg/s at 125 m/s and discharging at 300 m3/s. Estimate the power developed by
the turbine. Given Cp=995 J / Kg.K. [AU, April / May - 2011]
5.133) A reaction turbine at 450rpm, head 120m, diameter at inlet 120cm flow area
0.4m2 has angles made by absolute and relative velocities at inlet 20° and 60°
respectively. Find volume flow rate, H.P and efficiency. [AU, Nov / Dec - 2009]
5.134) An inward flow reaction turbine has internal and external diameter as 0.85m and
1m respectively. The hydraulic efficiency of turbine is 0.92 under a head of 60m.
The velocity of flow at outlet is 3m/s and discharge at outlet is radial. The vane angle
at the outlet is 18° and width of the wheel is 75mm. Calculate the guide blade angle,
turbine speed, vane angle at inlet and power developed by the turbine.
[AU, April / May - 2011]
5.135) An inward flow reaction turbine has external and internal diameters as 0.9m and
0.45m respectively. The turbine is running at 200 rpm and width of the turbine at
inlet is 200mm. The velocity of flow through the runner is constant and is equal to
1.8m/sec. The guide blades make an angle of 10° to the tangent of the wheel and the
discharge at the outlet of the turbine is radial. Determine the
i) Absolute velocity of water at inlet of runner
ii) Velocity of whirl at inlet
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 92
iii) Relative velocity at inlet
iv) Runner blade angles
v) Width of the runner at outlet
vi) Mass of water flowing through the runner per second
vii) Head at the inlet of the turbine
viii)Power developed and hydraulic efficiency of the turbine.
5.136) An inward flow reaction turbine having an overall efficiency of 80% is required
to deliver 136 kW. The head H is 16 m and the peripheral velocity is 3.3 √H. The
radial velocity of flow at inlet is 1.1√H. The runner rotates at 120 rpm. The hydraulic
losses in the turbine are 15% of the flow available energy. Determine (i) diameter of
the runner, (ii) guide vane angle, (iii) the runner blade angle at inlet and (iv) the
discharge through the turbine. [AU, Nov / Dec - 2010]
5.137) In an outward flow reaction turbine, the internal and external diameters are 2m
and 2.7m respectively. The turbine speed is 275rpm and the water flow rate is
5.5m3
/s. The width of the runner is constant at the inlet and outlet and equal to
250mm. The head acting on the turbine is 160m. The vanes have negligible thickness
and the discharge at the outlet is radial. Determine the vane angles and velocity of
the flow at inlet and outlet. [AU, Nov / Dec - 2012]
5.138) In a hydroelectric station, water is available at the rate of 175m3/s under head of
18m. The turbine run at a speed of 150 rpm, with overall efficiency of 82%. Find the
number of turbines required, if they have the maximum specific speed of 460.
[AU, Nov / Dec - 2005]
5.139) A radial flow impeller has a diameter 25 cm and width 7.5 cm at exit. It delivers
120 liters of water per second against a head of 24 m at 1440 rpm. Assuming the
vanes block the flow area by 5% and hydraulic efficiency 0.8, estimate the vane
angle at exit. Also calculate the torque exerted on the driving shaft in the mechanical
efficiency is 95% [AU, Nov / Dec - 2003]
5.140) A 50m/s velocity jet of water strikes without shock, a series of vanes moving at
15m/s. The jet is inclined at an angle of 20° to the direction of motion of vanes. The
relative velocity of jet at outlet is 0.9 times of the values at inlet and the absolute
velocity of water exit is to be normal to the motion of vanes. Determine the vane
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 93
angle at entrance and exit. Also determine work done on vanes per second N of water
supplied by the jet. [AU, April / May - 2005]
5.141) In an inward radial flow turbine, water enters at an angle of 22° to the wheel
tangent to the outer rim and leaves at 3 m/s. The flow velocity is constant through
the runner. The inner and outer diameters are 300 mm and 600 mm respectively.
The speed of the runner is 300 rpm. The discharge through the runner is radial. Find
the
(i)Inlet and outlet blade angles.
(ii) Taking inlet width as 150 mm and neglecting the thickness of the blades,
find the power developed by the turbine. [AU, April / May - 2010]
5.142) The velocity of the whirl at the inlet to the runner of an inward flow reaction
turbine is 3.15√H m/s and the velocity of flow at inlet is 1.05√H m/s. The velocity
of whirl at exist is 0.22√H m/s in the same direction as at inlet and the flow at exist
is 0.83√H m/s, where H is head of water 30m. The inner diameter of the runner is
0.6 times the outer diameter. Assuming hydraulic efficiency of 80%. Compute angles
of the runner vanes at inlet and exist. [AU, April / May – 2003, 2010]
5.143) Design a Francis Turbine runner with the following data: Net head = 70m speed
N = 800 rpm. Output power 400 Kw Hydraulic efficiency = 95% Overall efficiency
= 85% Flow ratio = 0.2 Breadth ratio = 0.1 Inner diameter is 1/3 outer diameter.
Assume 6% circumferential area of the runner to be occupied by the thickness of the
vanes. The flow is radial at exit and remains constant throughout.
[AU Nov / Dec - 2008]
5.144) A Francis turbine developing 16120 kW under a head of 260 m runs at 600 rpm.
The runner outside diameter is 1500 mm and the width is 135 mm. The flow rate is
7 m3
/s. The exit velocity at the draft tube outlet is 16 m/s. Assuming zero whirl
velocity at exit and neglecting blade thickness determine the overall and hydraulic
efficiency and rotor blade angle at inlet. Also find the guide vane outlet angle.
[AU, Nov / Dec - 2014]
5.145) Calculate guide blade angles, vane angles, runner diameters at inlet and outlet
and width of the wheel at outlet for a Francis turbine with the following data: Net
head: 70 m; Speed: 720 rpm; Shaft Power: 310 kW; Overall efficiency: 0.85;
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 94
Hydraulic efficiency: 0.9; Flow ratio: 0.2; Breadth ratio: 0.1; OD/ID ratio: 1.8; The
thickness of vanes occupy 7.5% of circumferential area of runner velocity of flow is
Constant and discharge is radial at outlet. [AU, Nov / Dec - 2014]
5.146) The following data is given for a Francis Turbine Net head = 60m speed N =
700 rpm. Shaft power 294.3 kW Hydraulic efficiency = 93% Overall efficiency =
84% Flow ratio = 0.2 Breadth ratio = 0.1 Inner diameter is 1/2 outer diameter.
Assume 5% circumferential area of the runner to be occupied by the thickness of the
vanes. Velocity of flow is constant at inlet and outlet and discharge is radial outlet.
Determine [AU, Nov / Dec - 2012]
 Guide blade angle
 Runner vane angle at inlet and outlet
 Diameter of the runner at inlet and outlet
 Width of the wheel at inlet
5.147) The inner and outer diameters of an inward flow reaction turbine are 50 cm and
100 cm respectively. The vanes are radial at inlet and discharge is also radial. The
inlet guide vanes angle is 10°. Assuming the velocity of flow as constant and equal
to 3 m/s, find the speed of the runner and the vane angle at the outlet.
[AU, April / May - 2008]
5.148) A reaction turbine works at 450rpm under a head of 120metres. Its diameter at
inlet is 120cm and the flow area is 0.4m2
. The angles made by absolute and relative
velocities at inlet are 20° and 60° respectively with the tangential velocity.
Determine the
 Volume flow rate
 Power developed
 Hydraulic efficiency. [AU, Nov / Dec - 2007]
5.149) A turbine is to operate under a head of 25m at 200rpm. The discharge is 9cumec.
If the efficiency is 90%, determine the
i) Specific speed of the turbine
ii) Power generated
iii) Type of turbine
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 95
5.150) A Francis turbine with overall efficiency of 75% is required to produce
149.26kN. It is working against a head of 7.62m. The peripheral velocity is
0.26√(2gH) and the radial velocity of flow at inlet is 0.96√(2gH). The wheel runs at
150rpm and the hydraulic losses in the turbine account for 22% of the available
energy. Assume radial discharge; determine the guide blade angle, the wheel vane
angle at inlet, diameter of the wheel at inlet and width of the wheel at inlet.
[AU, May / June – 2009, 2013]
5.151) A Francis turbine with overall efficiency of 76% and hydraulic efficiency of
80% is required to produce 150kW. It is working against a head of 8m. The
peripheral velocity is 0.25√(2gH) and the radial velocity of flow at inlet is
0.95√(2gH). The wheel runs at 150rpm. Assume radial discharge; determine the
guide blade angle, the wheel vane angle at inlet, diameter of the wheel at inlet and
width of the wheel at inlet. [AU, Nov / Dec – 2009, April / May - 2010]
5.152) A dam on a river is being sited for a hydraulic turbine. The flow rate is 1600
m3
/h, the available head is 25 m, and the turbine speed is to be 460 rpm. Discuss the
estimated turbine size and feasibility for a Francis turbine; and a Pelton wheel.
[AU, Nov / Dec - 2011]
5.153) A turbine is to operate under a head of 25m at 200rpm. The discharge is 9 cumec.
If the efficiency is 90%, determine the performance of the turbine under a head of
20 meters. [AU, Nov / Dec - 2007]
5.154) A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet
is 120 cm and the flow area is 0.4 m2
. The angles made by the absolute and relative
velocity at inlet are 20° and 60° respectively, with the tangential velocity. Determine
the volume flow rate, the power developed and the hydraulic efficiency.
[AU, Nov / Dec - 2007]
5.155) Calculate the diameter and speed of the runner of a Kaplan turbine
developing6000 kW under an effective head of 5 m. Overall efficiency of the turbine
is 90% and the diameter of the boss is 0.4 times the external diameter of the runner.
The turbine speed ratiois 2.0. And flow ratio is 0.6. [AU, Nov / Dec - 2006]
5.156) A Kaplan turbine runner is to be designed to develop 7357.5kW shaft power.
The net available head is 5.50m. Assume that the speed ratio is 2.09 and flow ratio
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015
CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 96
is 0.68, and the overall efficiency is 60%. The diameter of the boss is 1/3rd
of the
diameter of the runner, its specific speed. [AU, May / June - 2009]
5.157) A Kaplan turbine runner is to be designed to develop 7360kW. The net available
head is 5.5m. Assuming the speed ratio is 2.09 and the flow ratio is 0.68 and the
overall efficiency is 60%. The diameter of the boss is one third of the diameter of the
runner. Find the diameter of the runner, its speed and its specific speed.
[AU, Nov / Dec - 2009]
5.158) A Kaplan turbine working under a head of 20 m develops 15 MV brake power.
The hub diameter and runner diameter of the turbine are 1.5 m and 4 m respectively.
The guide blade angle at the inlet is 30°. The discharge is radial. Find the runner
vane angles and turbine speed. Take hydraulic and overall efficiency as 90% and 80
% [AU, April / May - 2010, Nov / Dec - 2011]
5.159) A Kaplan turbine is to be designed to develop 9100kW. The net available head
is 5.6m/ If the speed ratio is 2 and flow ratio is 0.68, overall efficiency 86% and the
diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the runner,
its speed and specific speed of turbine. [AU, April / May - 2011]
5.160) A Kaplan turbine delivers 10 MW under a head of 25 m. The hub and tip
diameters are 1.2 m and 3 m. Hydraulic and overall efficiencies are 0.90 and 0.85. If
both velocity triangles are right angled triangles, determine the speed, guide blade-
outlet angle and blade outlet angle. [AU, Nov / Dec – 2013, 2014]
5.161) The hub diameter of a Kaplan turbine working under a head of 12m, is 0.35
times the diameter of the runner. The turbine is running at 100 rpm. If the vane angle
of the extreme edge of the runner at outlet is 15º and the flow ratio is 0.6, find the
diameter of the runner, diameter of the boss and the discharge through the runner.
The velocity at the whirl at outlet is given as zero. [AU, April / May - 2015]

More Related Content

What's hot

Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2Satish Taji
 
Governing of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsGoverning of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsSatish Taji
 
4 pump 03 reciprocating pump
4 pump 03 reciprocating pump4 pump 03 reciprocating pump
4 pump 03 reciprocating pumpRefee Lubong
 
Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)abdul ahad noohani
 
Reciprocating pump ppt
Reciprocating pump ppt Reciprocating pump ppt
Reciprocating pump ppt Sourav Jana
 
Applications of bernoulli equation.
Applications of bernoulli equation.Applications of bernoulli equation.
Applications of bernoulli equation.Iqbal Gem
 
Some thing about piston design using ansys
Some thing about piston design using ansysSome thing about piston design using ansys
Some thing about piston design using ansysSattar200
 
Formula of IC Engine
Formula of IC EngineFormula of IC Engine
Formula of IC Enginedmshah0009
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESASHOK KUMAR RAJENDRAN
 
Design and Fabrication of Runner Blades of Cross Flow Turbine
Design and Fabrication of Runner Blades of Cross Flow TurbineDesign and Fabrication of Runner Blades of Cross Flow Turbine
Design and Fabrication of Runner Blades of Cross Flow Turbineijtsrd
 

What's hot (20)

Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2
 
Hydraulic ram
Hydraulic ramHydraulic ram
Hydraulic ram
 
Governing of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsGoverning of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid Mechanics
 
4 pump 03 reciprocating pump
4 pump 03 reciprocating pump4 pump 03 reciprocating pump
4 pump 03 reciprocating pump
 
Hydraulic pumps performance and Characteristics
Hydraulic pumps performance and CharacteristicsHydraulic pumps performance and Characteristics
Hydraulic pumps performance and Characteristics
 
Thermodynamic cycles
Thermodynamic cycles Thermodynamic cycles
Thermodynamic cycles
 
Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)
 
Diesel power plant
Diesel power plantDiesel power plant
Diesel power plant
 
Turbine.ppt
Turbine.pptTurbine.ppt
Turbine.ppt
 
Reciprocating pump ppt
Reciprocating pump ppt Reciprocating pump ppt
Reciprocating pump ppt
 
Applications of bernoulli equation.
Applications of bernoulli equation.Applications of bernoulli equation.
Applications of bernoulli equation.
 
Some thing about piston design using ansys
Some thing about piston design using ansysSome thing about piston design using ansys
Some thing about piston design using ansys
 
Formula of IC Engine
Formula of IC EngineFormula of IC Engine
Formula of IC Engine
 
centrifugal pump ppt
centrifugal pump pptcentrifugal pump ppt
centrifugal pump ppt
 
Thin and thick cylinders
Thin and thick cylindersThin and thick cylinders
Thin and thick cylinders
 
Hydro turbines
Hydro turbinesHydro turbines
Hydro turbines
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
 
Nozzle
NozzleNozzle
Nozzle
 
Pelton turbine
Pelton turbinePelton turbine
Pelton turbine
 
Design and Fabrication of Runner Blades of Cross Flow Turbine
Design and Fabrication of Runner Blades of Cross Flow TurbineDesign and Fabrication of Runner Blades of Cross Flow Turbine
Design and Fabrication of Runner Blades of Cross Flow Turbine
 

Similar to CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES

CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES ASHOK KUMAR RAJENDRAN
 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES ASHOK KUMAR RAJENDRAN
 
H&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdfH&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdfAnoopYadhav
 
Welty solutions-manual-1
Welty solutions-manual-1Welty solutions-manual-1
Welty solutions-manual-1ErIka Morales
 
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...vados ji
 
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...JesseDaisy12
 
Catatan kuliah fitokimia i akhir 9293
Catatan kuliah fitokimia i akhir 9293Catatan kuliah fitokimia i akhir 9293
Catatan kuliah fitokimia i akhir 9293Usmar
 
INTEGRATED WRD &M - 2002
INTEGRATED WRD &M - 2002INTEGRATED WRD &M - 2002
INTEGRATED WRD &M - 2002IWRS Society
 
Automobile Engg- 4th Year D N Srivastava
Automobile Engg- 4th Year  D N SrivastavaAutomobile Engg- 4th Year  D N Srivastava
Automobile Engg- 4th Year D N SrivastavaGaganjeet Singh
 
Asme sec-ix shorts notes by Dlamini mokati pdfpdf
Asme sec-ix shorts notes by Dlamini mokati pdfpdfAsme sec-ix shorts notes by Dlamini mokati pdfpdf
Asme sec-ix shorts notes by Dlamini mokati pdfpdfSkhaloMokati
 
2 script 08 january 2017
2 script 08 january 20172 script 08 january 2017
2 script 08 january 2017Bala Krishna
 
WATER RESOURCES DEVELOPMENT ON INDIA 1998
WATER RESOURCES DEVELOPMENT ON INDIA 1998WATER RESOURCES DEVELOPMENT ON INDIA 1998
WATER RESOURCES DEVELOPMENT ON INDIA 1998IWRS Society
 
Salt Analysis in Bangla MANIK
Salt Analysis in Bangla MANIKSalt Analysis in Bangla MANIK
Salt Analysis in Bangla MANIKImran Nur Manik
 
Molecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry PracticalMolecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry PracticalOm Prakash
 
Some important differences from Pharmaceutical analysis Manik
Some important differences from Pharmaceutical analysis ManikSome important differences from Pharmaceutical analysis Manik
Some important differences from Pharmaceutical analysis ManikImran Nur Manik
 

Similar to CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES (20)

CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
 
H&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdfH&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdf
 
Welty solutions-manual-1
Welty solutions-manual-1Welty solutions-manual-1
Welty solutions-manual-1
 
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
 
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
Solutions Manual Digital & Analog Communication Systems (8th Edition) – Answe...
 
Anil PoemsColor
Anil PoemsColorAnil PoemsColor
Anil PoemsColor
 
Catatan kuliah fitokimia i akhir 9293
Catatan kuliah fitokimia i akhir 9293Catatan kuliah fitokimia i akhir 9293
Catatan kuliah fitokimia i akhir 9293
 
Comint part g
Comint part gComint part g
Comint part g
 
Comint part h
Comint part hComint part h
Comint part h
 
INTEGRATED WRD &M - 2002
INTEGRATED WRD &M - 2002INTEGRATED WRD &M - 2002
INTEGRATED WRD &M - 2002
 
Automobile Engg- 4th Year D N Srivastava
Automobile Engg- 4th Year  D N SrivastavaAutomobile Engg- 4th Year  D N Srivastava
Automobile Engg- 4th Year D N Srivastava
 
Opening
OpeningOpening
Opening
 
Asme sec-ix shorts notes by Dlamini mokati pdfpdf
Asme sec-ix shorts notes by Dlamini mokati pdfpdfAsme sec-ix shorts notes by Dlamini mokati pdfpdf
Asme sec-ix shorts notes by Dlamini mokati pdfpdf
 
2 script 08 january 2017
2 script 08 january 20172 script 08 january 2017
2 script 08 january 2017
 
Comint part b
Comint part bComint part b
Comint part b
 
WATER RESOURCES DEVELOPMENT ON INDIA 1998
WATER RESOURCES DEVELOPMENT ON INDIA 1998WATER RESOURCES DEVELOPMENT ON INDIA 1998
WATER RESOURCES DEVELOPMENT ON INDIA 1998
 
Salt Analysis in Bangla MANIK
Salt Analysis in Bangla MANIKSalt Analysis in Bangla MANIK
Salt Analysis in Bangla MANIK
 
Molecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry PracticalMolecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry Practical
 
Some important differences from Pharmaceutical analysis Manik
Some important differences from Pharmaceutical analysis ManikSome important differences from Pharmaceutical analysis Manik
Some important differences from Pharmaceutical analysis Manik
 

More from ASHOK KUMAR RAJENDRAN

ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS ASHOK KUMAR RAJENDRAN
 
COMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUALCOMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUALASHOK KUMAR RAJENDRAN
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESASHOK KUMAR RAJENDRAN
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESASHOK KUMAR RAJENDRAN
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTESASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK ASHOK KUMAR RAJENDRAN
 
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANKDESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANKASHOK KUMAR RAJENDRAN
 
FLUID MECHANICS AND MACHINERY FORMULA BOOK
FLUID MECHANICS AND MACHINERY FORMULA BOOK FLUID MECHANICS AND MACHINERY FORMULA BOOK
FLUID MECHANICS AND MACHINERY FORMULA BOOK ASHOK KUMAR RAJENDRAN
 
CE6451 - FLUID MECHANICS AND MACHINERY NOTES
CE6451 - FLUID MECHANICS AND MACHINERY NOTES CE6451 - FLUID MECHANICS AND MACHINERY NOTES
CE6451 - FLUID MECHANICS AND MACHINERY NOTES ASHOK KUMAR RAJENDRAN
 
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE ASHOK KUMAR RAJENDRAN
 
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOK
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOKCE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOK
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOKASHOK KUMAR RAJENDRAN
 
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS ASHOK KUMAR RAJENDRAN
 

More from ASHOK KUMAR RAJENDRAN (20)

ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
 
COMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUALCOMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUAL
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
 
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
 
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANKDESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
 
FLUID MECHANICS AND MACHINERY FORMULA BOOK
FLUID MECHANICS AND MACHINERY FORMULA BOOK FLUID MECHANICS AND MACHINERY FORMULA BOOK
FLUID MECHANICS AND MACHINERY FORMULA BOOK
 
CE6451 - FLUID MECHANICS AND MACHINERY NOTES
CE6451 - FLUID MECHANICS AND MACHINERY NOTES CE6451 - FLUID MECHANICS AND MACHINERY NOTES
CE6451 - FLUID MECHANICS AND MACHINERY NOTES
 
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
 
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOK
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOKCE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOK
CE6451 - FLUID MECHANICS AND MACHINERY FORMULA BOOK
 
DESIGN OF MACHINE ELEMENTS NOTES
DESIGN OF MACHINE ELEMENTS NOTESDESIGN OF MACHINE ELEMENTS NOTES
DESIGN OF MACHINE ELEMENTS NOTES
 
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS
ME6503 - DESIGN OF MACHINE ELEMENTS TWO MARKS QUESTIONS WITH ANSWERS
 

Recently uploaded

THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESNarmatha D
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsDILIPKUMARMONDAL6
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 

Recently uploaded (20)

THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIES
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teams
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 

CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES

  • 1. A Un~t -5 r--}1 k,.ll ::VI ftbs-cu..~ velct~~ o.1· ~CIet a.od OLLtlet · u., OJ)d u'l. - +Q.()crf~nJ vel~t~~ o.t inlet a.nd Otiliet ou.Het V1 1 a.nd V"f 2.. _ .JLS>J o..hJe vect~~ o.t net ono out lei::. }F2 - VelDt~~ est' ~low o..t ou.ttet. s.
  • 2. cp ::. i~ -ho ::::. &0° cJ ==-a.9& :::::. tJ .98 x. ~ ~X9 .<6 X~tJ Lv, "&3.11 "'I~ l ~3.11 j v"(1 "" t3.,, ms:) F'lbm 0 u.::let veDti~ l"fiQ()at~ dlo.._J'1ClCY CM ~ :: U.2. t}w'L v.'l. ~"(, ~ v..'l. :: ~.'111'1)s
  • 3. cos ~(J _ lo +/w'l- 1~.'11 hlcr-rK done 9 0 Jet pen seco{)d == I'~ [ /w1 t/w~ Ll :oc tn~D X 0.1 [~3-11 t ~.q~ X1 1l u ==- u.1 ~u1 :::. &.M}s ~ == o.'l rn~! s N()te : b'Yo.W veoti+:J T"lCJ.n~e d?~l'{o.I'C)
  • 4. ::: l t;.~~ NlS: r"n>f'{) 1~oth_j Try~a.rJh~ d.~o.3C'(a.m we ~C)IJW Tho.t. I v ~ /w, ) ~ u.., T V'"'fI 1 S .BS -::: ~ t J'Y, F"fnrn ou.t:i~:- veloti~ T"f~o.(0e <lfD-j"fa.N Co~4 - U.'l.t-/w'l. Jry'2.. Vrrl '==- Jry'l. ~ h~. ~ S rn)s. c~ s. CX.t> - I~ t Jw'l.. b~.1gs } Vw2- " ltnlMs J ~ c..o.(~c_ ~c~e()c 0 ~'._~ "' ~ [vwl+lw'>-Ju. V'2.. I i! 'I' II H t'·
  • 5. S.lc; I I I I! I I p :::. t. 4-1 Xto~ W I I~ven: I I I~ velot~hj oF 'J€t _I D b V1 ~ Cv X J2-3H .::. ().9gx ~~x~.fS x3~ [v1 ==- 84-.b&I'C)s. /elatl~ o~ whe.e. U ~ ku.. JI)_5H
  • 6. J'< I Ii lL ~ (:).4s x ~ ax~.%. x ~g-.o ~ L. == 3l.Ssc;roJs. Ll :::. ITDN be ~g.~ss - 3.4-XDX lt;D - bt:~ l b~ Cl.9B't ('{)J Jet c:Ha.Me~ (_at'i)OOZ~~~~ Do.m~~ d ~_!_tJ b d -::::. () .9% x.L I b J d "'- o.tbt.p"'] OVeJ'lo.. ~Clel)c.a 'V( 0 ~ ~ha.J:t ~ow~ f3 E;?H I ..... 11'11~ Xb3. CL&-o Di.sc.hC/)~ Of) <i Jeb 1_ ::: AV, ::.:. ..!I_ X d~ '>< V1 4- ~ ~ X. D.6'1-"- ~ S 4- .-b&.
  • 7. 0 S.11 &.,ven : I d I_ .... _ [) -' lt> ~o ~p,so/() ~let~~ DF 0er V ::: c_J ~-- 2-31 = CL~% X~~><~·8"-1 X3()-b /elot~~ oF- w~e. u~t<LL~~<jH
  • 8. ::: tJ.4-<; X J~X9.~PX ~Q() u. ::o. 34- .s~4- ~'~"~I" J D~a.rne~ D~ Whw I u_ ~ ffDN bo 34--.t;& 4- ~ 3.4-~D xsso be d~_!_xD ID ~Tt;-xl·t~9 [ d ~ 0.119f'il] OVe.J1~l ~c..tell(d rio ::: S.~Oft pew~ PS~H c.gc; ..,__ ~D<J()Xto1 iD{)D X1.~ 'X~ X10't) ( {1) "' ~•:S't f'()?,is l Di.sc_hMr- tJ() o.. Jet 't ':: 11 v, 9.- ~ 1L d1 xv, 4-
  • 9. [ 9_ ~ o.1>4- m 3 / s J NllN)b~ aF 1er S.~~- Cn~ver'l:t ::: ~ ~ - &·3~ 0 ·~4- - ~.ss ~hc1i=-t pow~ ~ 90 oo Xlt)~ W 1l ~ Sa0'1~ro Via ~ ~S c/o JL ~10 d Jeoc.~~ DF- :Jet 1 ~ C.v X~ 2.5- =:::- t).9~ X ~ d. X~ .<6 X~(.)~ I vi ==- ls. I&~ m<:. Ve.(oc.i~ o~ Whe.52. ll !::: <ll. ~ 2 ~i-· _________________......__
  • 10. [ ll ~ 34 .sa N)l~ J b~a.rnet~ o~ w h~ I U ~{1DN b1:1 34-·S~ _ 3.4- XtJ ox.soo be [ D -"'l·31m ] .s:hQ~ [- ioWE:l ~b ~ ----~--~~----- D.8t; -- rj ~H 9aoo XtD:l
  • 11. t t:.. Jl X D.l~l'l. X 15.~c; 4- l 't =--- .ot rt-?is Numh~ o~ j€1- ~ Q--9.. 3.S9 l ·c I ..... 3·S ~ 4- Jet Numb~ oF bl.t<ets I :L =:: ts +~ ~~ ~ ==- ts+ t. ~'------'-- ~)({).1~ ::::. 4-·S XD.l~ [ 8 == o.sgro 1 Rn.dr~J len0~ L ~ ~.c;d L ~ &·s Xt ·~ .._ o.9~ m s.
  • 12. s. & . Cr,~v en: h5 ~l~fY) hF- ::: ~DN d ~a.rn 9. ==- o.3, rn~Js Sha.ft (Jt>W€n ::: ~Cl8 XI~') W l1echo.nic.a. lDS:s. ::: 4-• ~ Xlt~ W I velt>tl':1 o~ Jet }I~ Cv J~CJ; T()ta. h£>CJ.d H ~ hg -hf i H ~9~ro l v, ~ o.qg J&x1.&1 x...9~ I VI.::: 4-l.b~M]s. "~lf)~~1-:1 ot- wheel Ll :::: ku. J~3 H
  • 13. I ., . ·f. [ LL "'- 19-llm~ J PDw€h deJ~oped +itTh9.bo.~e. q: Nc~~€ .:::: ~1D.1 XlD~ W Note: [ ll "'"L sfnal~ l)(}~~le fs use~ :: _.l_ 0' vl 'l.. ~ :::: ~ xf>.f1.v.v1 Q.. "= +X IDOO X 0.?, l( 4-.-!,~0) - ~'5~.9 )(log W .lnput (p{)Wfu ..... k~feh. ~o~(Y:J -t- powE:.b o~~ in ())~~le () ci.lt). '1 Xl D3 ::._ ~59.' Xtt? t pc~~ los~ o ()~ '2.czh~.
  • 14. () ~() I I! I I I! l I1 ~ l II l I .1npu.tpow€]) ,._ ~1D .1 Xtt 3 ~ S~Oft(JbWE?h -tpolN~os.s ~n oo~~~ 't"pDW~ os.~ f{) Ru..n"e/ t-Mec.~o.n?c<l loss. . ~ 3 tID.% X.lt!3 t- 4- ·~X h> ~D&XltJ ! 0 S.I~R-1 ~IVejt ·. l l I I I ! I I Veloc.~t:1 cF J~t V1 t::. Cv. JfL.JH. :=:.. D.en X J ~~q .~ 'X..~1S [ v, o=.1.~s""Js
  • 15. ===- 3. 4- X. b X 4-CC ba ! tt "' 93.51 rnj.: } · speo.d k?uJfooF pet too 1-unb~ ()e Lt ::: ku. J 2._3H tl btsc.hOJ)~· I rtb =:::. ShQ~t powe.t rc:1 ~ H IDt)t> X~·~ X~ X~1<; [ q> ~ I.5I m~/~J Sinte Oumb~ Of Jets noc cr/eo. rr~~U.('(e s~od~ Je: 9.~ fi/1 J_ :::. lL xd')_ xvt 4- l·S ==- JI.xJ~x1.~S . 4- f cl :co c.lbro j · s.
  • 16. . ·. pow€!) shllu.d b~ 8ub~fhd"£ in KLO c&1~ JSft.t- . i l i I N~ .::. ~ .4-~ ;l s.t~s !Cniven: t I hQ !:::. 51Dm I ..J . ~ ~ t ~ ~.~rJ>Js 4 ~ ~ -16s I) ~ lS Cv !::.I ku.. ~ D .4:-S We know Thai h~ - ~- 3 ,...._ 5D 3 .-- 1o rY) ~to.t hSJ_Qd H~ h3 -hF
  • 17. ..... Sta-lD - 34-C rn ve.cc.~~ ~~ jet v1~ tv·~· 2-<Ji .::::_')(~-~X.<).RX14-D [ V1 c::: ~.b1 mjr,. ] Vw-1 "::.8.1:,1 m)~ l we. knl)J.N ffi ol ll :::: ktt. ~ 2.~ H u. ~ D -4-5 X~ ~X9-~ t( 34-b [ LL ::: 3b .1t; m)~ J we know ffia.t v, c: u_, ;-1"( &.61 ~3b.lS t-Jry, lv'Y, '::. l.j-4-~1 mls. J ~Dm cu.tl~t ve.ltJt.l+j Try~o.nde a~a~r-tom /ry, .::}~1...
  • 18. C..es t;~ ,__ '2> ~ •1 5 +]VJ 1- 4-t;-.~ [ Jw'l "' u.,s m 1s. J w~'l < dtJne. {5~ 0e.t p~ SettH)d lt:)"f) t) p 0 w~ crv(?_() Q~ tM. L.JG..~ h tM l<u({~ I :::. ~~ ( Vw, -t-Jw2 ) LL ~ looo x ~..~ ( 2-1.61 t-t:,.b'~s) X3b~c; ~ 1'.~9XobW ~ h ~ ot cvl;J,t-lw,_l u. v,"l.. .... & [ e.b, +h. b~ ~l x~b.1s ~ () ,q13 ~'11.~0/C) A e l r------+--•-·-·-..£~ t - - - - - - t - - - - - 1 u, Vy1 Vwl c~ V
  • 19. j t -r ~ I I I VetDt.l~ Df: 1er "1 ~ ev · J~jH ~ t X ~-.2..X9·<61 X 10 0 ['v, ::::. l t:l-19 rn (s. J LL ~ tit> N bo -::::_ 3.14- X. t )( IDOO ho [ LL. == s~.?.~ l'rl}s J ~m velac.?~ T"f~o.odl~ d~o.3 "fo. M V1 ~Vw 1 Vw1 ~l1.t9.rnh "I ~ u. I +Icy, l1.9:: s~.31 +/"(, [ )-rI "' b4:- .~r; f'r8
  • 20. r...-nm CvJtle.t ve..loc.l~ TIYlQO~te_ d~Q-.~C"l'O.('( v~ ~v'Y'l. t.t)s cp !::. u.':L +}w '")_ v"'('2. 1 C..C~lt; ..... 5~.~~ t-J'w'l)_ blt. %S [ Vw,_ ::ID-~1 mEJ pow~ nvo.loble o..t Tho. nu12~le :::. f~ [ Vw, +Vw2-J KLL I - b.b1Xb~W h.~d<¥c..l?t ~c.leo t~ 'v1 h :: ~ [ Vw1 +Vw2.] xu. v,':l. - .g) [rn.19 +1D."11] xs~.i3.
  • 21. j, ii 5.114-- · Cn~ven: eA lr----,-----.SJ~~ r--cs--~~r--V~y~~~J I I I V~-;I '::. )-1 I Speti~ct Sp€..Qd N.s,~ NJQ M3/cr Ns ~ NJ P HS/4- - 14-D J9ootJ >(ln~ (_g l))Sftt- ..... '4-D ~~ qooa 5.1
  • 22. 5. ~0. _!L !::.0 a Ve_Dc.lt-:1 DF 'Jet v1 ~ Cv ).).2_~H .::. D-92 X J2..'X~. ~I X4--So [ VI " 9&.l)§m /sJ l a L l Venc:11)1 Of: wnee U. ::. Ku. ~-2-9 H U ~ 0·4-S ~ ~X~.%X 4-t;D / Ll " 4~.&.!<rnIs b~o.metenof- wheel Ll:: IT{) N bo 4&.~~ ::;. 3.4- X DX' 4-%D be l D =- I .b& rn J
  • 23. .b<;S .:::d J Dist.hM(Y or: n~!:!.rz..e I, 9.."' IWI .::: li xof2- X V1 I 4- , ~ JI_ XD.h2'l X <f~.o~ I 4- [ [ <t == &.o4-rn 3 h J I I I l I I (O:J C:V H 18 X lt1btJ ,g .:::. ----- l {) OD X <j.~ X ~ X 4-c; 0 [ (o/ "' s.o6 rn3 }s J Numb~ o~ ']ec .::: _Q_ ~ ::::. S .D,b ~·04- ~ ~.4-9 ~ 3 Jet. S.ll
  • 24. s .19 . ~~ve(): '' !i l I I I I'~ Il I ' N ::. ~~a t'fpro H ::: Sloro a ~D.~{'() ~ '=-9..- cp ::._ ~-be; 0 =:.t; I vetoc.l~ ~F- Jet I ::::- o .9g X ~ 2_X9.~ XSia rv, ::: 9a.o31Yljs Veloc.~t:J D~ whe~l Ll ::: ku. ~ ~~1- ~ D.4-S Jt}_X9.~ XSI~ [ LL ""- 't'>·Oiml~ J b~.sthOf(f 9_~Av 1 =: rr xd'l xv, 4- :: 1T x: o.~~ >< qa. ~3 4- = 3. ~1 {'()'11 ~
  • 25. I ~ i'.1 l ~esuttn'lt-. ~C"fte tlC) f$lltket F ~ P~ [vw1 -VwJ ~ lh Vw,_ i I V1 r::: 'Jw , Vw -:: 9<a .t:)3 m }s. VI =:: LL, +/ryl ~ %·D3 ~ 4S. a +J"ft [ J"fl "'- 53. tl I rn/s. J F"()m au.t-e.t- v~lC~<:.~~ T"(~n'JI~ d_,t)a.5cro.n Co~¢ :=. U'L+Vw '2.. Jy2.. C0S l~ ~ lt-S.D t Vw?... S~. Si )ry2 '[_V_w_l.._:::_-t~.4-_R_C'f_l-~
  • 26. I I l Cos l'S 0 _ U:L. - Vw'l.. }"( 2. ... 4S.at -Vw"l.. ~{'}_ n&~~cy rou.Q ~s. ~ IMo )( 3.01 ["!:l.c'$ -I ·4-~ Vw,- Vw,_ Jio ~ _<;_h~_t-_p_nLJJ_€V)_ __ f<] ~H S hcs..f?. t pow ~ =: ~trllT bD U ~ TTDN bO 4S.0 l -:: 3. 4- X D ~ 3t>u bo r-[-D-!::.-~-.-gb-m---.]
  • 27. • i ' i 'l Ij I il i l Il l l 1 l '; ·I !! T -:::: ~'lb. 4-3. Xi~~ "1.. ~ .&6 ~ T ::::: 4 ~ j .~ N -m Xt IJ~ ::::: 4-~3.<~ X IJ~ N M ShClFt powen :::. &O'NI bn ...... eX)(3·J 4-- X~n{) 'X. it-~3.q Xt? be - 13.~ x1o 6 w rv{6 - l3.3XInb IDOO X 9 -~ X~-01 XS!o I !:::'- 8b.1 D/a Wo..~ powen c::. f3 ~ i ~ taoaX<t .g. 'X 3.a1 x 5 o =IS.3r; X. lob W l 0 5.13 . Ien,Ve () : j I I I i I I I II l
  • 28. veot~1:3 a~ ]et- I v~ SBM~ ~.DS :=.. l.f-b. DSf<) Is S~ -:::. b .9g ~ ..2X q.~ X- [ fi"' I1'5.S&rn l v, ::_ llf/'1" S% ::. 46.oc; +f'Y [ ]"r "' ti . 9s rnJc,. J
  • 29. :::::. o.~ x. .qs [ V'Y,_ ::: In.1<; rnjs J Wh€.n weknaw Tha}· '1..!:::: AV1 ~JI.dlx.vl 4- :::. lL X. ~DoXl() 3 )'l. X s~ 4- [ 9.. ::: o.lj.<; s3 rn' J~ l t'YCm nu.tel: vecc.~t:i Tt-t~a.n 0e da.~ C'for<l tos ¢ - ll'l.. +'-Jw2 v...,'l- costa - 4-b.oc; -- Jw'l. 0. <; [ Vw2.. "' -?,<;. '--b N I~ 1 F'"Ttl('() veoc.~-:j T..ia.nae. d~D.~'1aM Cl.C ou.tet TfuL tfQd~c.l velacli-rj Jrr'l- le~s. ~o.r1 11.Q (CS tp ~ li":L-Jw'l. Jl'L (tl~ o - 4-b.os -lw~ ID~S
  • 30. I I ovena.ll ~c.lent~ I Y{~ ~ ShD.~t pa~€A P:J~ l- Sho..~t pcwe,., ::: ~n-N.T. bD U.. ~ t1DN bo T ~ F- X~ ~ ==- .~cl X0~ '/.... ~.5 ~ T ::: ·l.- XIJ4- NrO So.~t poweA ~ CQlNT ~a .._ 6) X3.4- X3~ D 'X. -4-- 'X 104- bo - ~:1~6 X10 5 hl. Y1b - 4- .1~6 xtb 5 DanXq.'6 Xb-4-t;S~ X l19-S~ ~ 0 .:::. S9 ·~1 io
  • 31. Ii I I f Wu.ten ~ow€.1 =- P3~ 1:1 ~noD~ 9·~ X D.4S ~j X 18 .c;~ S · I~1 .· (n~Vef) : I d~o.oq m /1 ::. lSO')~ b = I~Sm cp .::::. ?o - n0 :::::.. toll U,::: o.'tbv, ~ ==--0.4-b v, k4. ::::.0 ·4-b Velot~t:-J of: Jt:t V1 ~ CvJ 2.~H IS ~ 0 .91.8 ~ 2-X~.~I )(-, I.____ _ _ _ ____J ·! 1 velatit"j oF whee : Ll :::: Ku J2-3H ::::. 0.4-b ~~ 2.X 9.~ X ~91.14- 1U. ==. 3S.~1MS
  • 32. spe.ed U. ~ lTtYN bo 3S. ctl -:: 3.4-X.l .s 'XN bo I N =44-'1.01 "I'"' I l l11eD.i~ ht~ ~DWell I I P-tt. ~ f'~ ( /w1-tVw.,_) Ll I~ro veat~~ T'1CIO.n(1e dla..a('{o.ro a.( llel: l Il I l Ij I I I l we knew n;oJ I I C.os~ = Ll2tJw2. lry'l... 8S. ci1 +Jw~ 3~.1~ [ Vt.J'L = 3.ss mhJ t !) .L t) NufrbE11 D~ ']e Is. fD crve.C) J.s sll""'e s?n8e sel
  • 33. ll. ~ .lL X 0.D9 X 1 S 4- lteo!i ~tcl1 powe.J) P~ -= f~ ( Vw, +/ll-11.,) 3s. ~l 5". 1~ o Cnive o: q ~ 0 .b.t-N'I =-l.olox 0.4-1 x 0s+3.gs) '3s.~n Sh<tft pow~ f3~ 1 - .'3XQ,b ------------------ IDOo X.~-% X 1:).4-1 X ~9q .1 c? =~~ 1& .::8°
  • 34. veocl~ aF ']et v, ~ Cv. ~ 2-3- [ J1 = s~.lbmls] velat~t:J OF whe~ I l.l. ~ '{ l1. J~5- .:::. n. 4-cl. ~ .2 ~ <1 -~ Xt;o , [ u ::: &1:).1Rmh J. U. ~ ITDN ~ bo &_~.1~::: 3-l4- Xt>.'1S N to ) N == SRo .so 'YfHYl J } Vw1:o. S3.J, m}i 1 V1 +u1 ~ Jry, S~.l 6 =:: U., +Vry 1
  • 35. t~m velotihj T'"'f~ctn~~ dfCl.-3"1 o..ro ((:)S ~ =::. ll':l.-t/lJJ"l.. l'Y'"l- v~2. :::..C~.91 v~1 ::: 0 .91 X 3o .~ ~ [ V'Y2. , ~'I 4-bml £J Cos 8 - ~~ .1g -t Vwl.. &~ .4-6 l Jl. X Q'l 'I.V 1 4- ,__ ..II.. X '0 .o'+'L xs~.l b It - o. Obbl m~Js Wcryk dnoe p€r1 setnnd :::: f~ (vw,+Vwl.JLl ==- ltJoo XD.Dbbl ( S~./6 +b.4-c1) ~~.18- .::::. 9o. b x 1o3 w - lOCO X.9.!S ') O.Ob6l.X lr;o 5'. j
  • 36. ~clencd ~ Sho.r: paw~ I f<jQ1 qo.bxtJ <fow ~a.c~cfl tu'"lb~nes / N :.:: ~IH)Clp<'v'l 8l '::. ().~M u.')_ -----i
  • 37. 0 tX '= D U. 1 ·== fTD 11J be ::::. 3.1 4-- X o.q X: ~ oo bo ='l. 4-~ rnl~ u2 :=. rm2.N be I - TT X 0 ·4-S )( ~ Q G 6c = 4-·ltmls 1Qsou.l-t- v~lClt~i-J Qt inet ~~m Veatf:j T'TfQnale c:Wo.3"f0-M aJ·t"'et- Sfn D( -- Vr:-, v, sir) It> ,... ~.~ v, V1 :: Jo.3bs ('()1~ t~h fu. I velot~~ oJ In et ta.n o{ :::_ /t:-1 vv..q
  • 38. J C:os a ::::: Vw, ~ tD .~om)~ ReoJ~v~ velot.~t-:-1 a.b ?ne: ~m velac~~ T~~c."0!e ciih3C'fo.('() o.t inte: V-yl "' J /~~ + (Vw1 -u,)"- ,. j(t.l)'L t (t~.:.c-'1-42)"- Vr-r, ==- L9t.t m ~ Ruf)n en ~I a.Ae a_{) 0e Qt ioer I ~m ~~ac_~~ T'Y~Q.(cr e dl~~Q ~ sine ~ Vf, v"r, 8 .:::: b'r. ~~ 0 f'ufO en Qo.de Q_{)ae o.t OtAt-le.t · fo.ncV "- VF2 Ll'l. cp ' !:o. ...( (- I ·I< . - n 4-·1 )
  • 39. Mas~ bF wa.~ .Jtow~ ocr Tt'YOuof' p~re Cf- ((>u.Joe.n N1 ::: f.A./ M :::: P.Q I - 3.4-X o.q X o.~ X·~ m = P.~ ::: IOOa X.0l - 1. on>< to 1 k3 ~ Heo.d Qt ~ n e1:- D~ 1u.'""bI()e .~ + VF,'L H- ::::: __ . v w I • Li 1 3 ~3 'l.. t. <6 X Io. cl.o X 9 .1~'4- -- - - paw€.rl dev~ loped 5.1
  • 40. ::: (Doo 'X.. 'l.~ X .o.1 X 9 .9'3 ::::. '1·9&t Xlo'+ w VF2 '::: 3N)Is. cp :: lgo ID.&G X 9 -4-~ 9.8 X 9 .9 5 . - 0. 984 ~ ~ 9Qc ( cra.d?o. ) ~"Y''M veoc.i~ T"'~aJ)(]e q~~t'fo.M aJ- otiler 1-a.n~ ::: 1F2. u'l. t D.() Us :::::. _3---. ll~ ll.~ == 9·~~mjs. !::: DOQX .Oil XI c .aox9·4-~ - 9.11 X 10~ W I I <J·~, I
  • 41. . . g,14- X tl.9S X N 6a N = ~~1. 3!S"'6'pl'o lo.n~n h 0 oJ vel{)~~~ o.t Inlet I h~d"'Ca.l ?t - 3.1q_x t x D1a1·~~ 6a - (c).~s rnJ~- ~c~e()t 0 Qt ~etd bcm Yf h ~ ~ Vw Ut ''jH 0.9& - Vw 1 xto.<as 't. 8 X bo Vwl::::: 4-9·9oroJs. S.l
  • 42. I l VF' ~ vf'l- Q ':::::. TlD 1 B1 VF, o.~~== rtxxB, x~ l s t 0 j nm ve cc.,~ rrya_()dte d?o.JC'((ffi o.t 7net +a.() D( ::: V+-, I i !! l I II~ l I I i I I Ill ! I lI I I 6 Ir o S. 3 . i.fIV~&l: l 1 l l l I l j I j 1 Jw1 +-l ( ~. c{ -:::: nr, 49.~c) D( :::. ;s.1+4-0 +o.n e :::. ·_J_F_:._,- - Vw 1 .__.u., e ::: +o.n~' ( ~ . ' l 4-C?.qo -1 o.ec; ) :::. IDoox c.6b x ·4-9.9ox· ro.~t; H ::: lbfY'I
  • 43. I ii.. I i N ~ Ic'i) a "l'pM h~d~a.l~c. loss ::. r;aJ, · 1 Ta.ncr-nha~l. Velol?~ o..t in-el:- u., ~· 3, .~ JH .:::;_ 3.j .Jb u., ::: l~.r5lmj~ J-ow Jeo t?~ o..:- f'le.r I vF,~r.tJH !::.I.~ ~ +teQd ~t-lolet - hea.d os~ ,I h'j ::: - - - - - - - - - b~a.ene~ -ot- R~no€b llr ~ TT D11 bo ~.~:::: 3.t~+-Xt 1 Xt~o bo t, ~ ~. It~ I rn hlhfY~l Jelot~t:1 oJ:- f)et 'Vi Vw, Ll '1h !:::: I
  • 44. _ Jw 1 x3.~ 9·8 X b Vw1 :::: Lo. mJ~ ~u~d~ 11la.de o..nae t 'j I 1 VO.nf! l It ~ I l I I; ~ F~(Y) vdat~t:1 Tryfo.flale dfo.jr>[o.m a.t- inlet +a.() D( ::::. VFI Vw 1 D( :::: TOO~ ( 4·~ l ~·I ) o(. ::::._ cl.~. r; '+0 Q( 0le o..t- ~C)et +o..nS - VF, ---Vw,-u., [-·. S'lnte U.1 ~Vw 1] 0 :: I~ -e- 0 .:::: ~ - r;4- .~?. Drsc_hOJ~ "' I~t;.16o .t'----Vw-,-----1~ ~ 0 -:::. &ho.~- pnw e., ~3~t 0. ~ - l~b X t ~) o( looux ~. <5 X~ )(lb·:--l_-'-__1 w~---_-____-;..L-.._u_1....:...__~--~ I .It
  • 45. s-.14-1 ~~ven: I VF, ~ Vf2 !:: 3ms. ~ ::.9()0 iF & ~ 9 a"' [J:()ler 'Yo.d~QI j I e ~~co I 1, u 1c:::Vw1 V--r1 ::: VF, LL 1 ~ Vw 1 U! i jJt.J I ~'Y'Cm veac}t~ T~~o.nd~ dictJ"fa.m o1 rnlet- to..f) o( ::: VF I u., •l ::::::. rrc,Nu., b~ 11.0 - 3.~XXN b() 5
  • 46. l'Qn~oh'oJ velt ci~ o..t t)u.t-et ll2.. '= frD2. N ba - g.I4- X' c. <; X ~ ~ 4- ,q4- bD - ~-'5o 'Y)s FcroNJ ve.oc_~t:J T'Y~Q.I)ae d?(3L"'{o.r<, a.t- ~u.t-c+ +Cncp :: VF':L. u~ I 5. 14- ' Cn~ven: c(:::: ~~ ~ /F2 ~ 3mj s u =:. rro,N bu cp ~ tctr)l (_ 3 & ·Sa ) ::::: g.14-X a.b><:~tra bD Vr;, I
  • 47. I 3.14-X o .~x ?,oo 6c II u2. ::. 4- .1, m ~ ' I I rrcom v~IDt~hj l'l"~O.n8e dlc.3C'fam Qt inet- 1 I -to.()<>< == Jr., Vw 1 +no ~~ :::: '3 Vw, }w ::. '1 .4-~ m S. K>u.nnen ~l~d~ Anate Qt- ~"et a.()d I +a.n (t ~ - e_) ~ f%n-e Sb.3cl 0 -- ouHet & ,.._ I~- Sb.~~o e - ~~~.b~l) +oncp ...._ JF:L. u.'l.. cp~ 3~).4-&-i.) s
  • 48. ] =IT X a. 6 X D .lS ~ '3. ::::. ().<64-1 ~ N)31 ~ p ~ fDoo X G .g 4-1~ X i·4-~ X 'l· ~ D 1 ~(.~rn A ::. a .l}.N'l.. :::_ 3.14-X I·~ X 4-Sn bo _ ~a. ~1rnf ~ ~'Yllm Velot?~ hi M~le d~o.31'fo.ro a.t:-1"et- VF, Vw1 Vt:1 :::: Vw1 +o.n ~o
  • 49. 1: I vw1 -~g-~1 :::: o.~bVw 1 fa.'l bo 0.19~ 1 Vw1 ~~e. cil Vw1 ~ 3S. bS m!s vl=, ~ Q.'3bx3~.6~ IVolu.me op ~ow na.re cy ::. v~, x: A ==- l~. 2-4-N) Is ::::. r~. 94- x tJ. '-- ~ :: s.?:. mgls l pow& p ::. P~ Vw1 • 1, I I ::::. ooc xc;.3.X 9s.bgX ~&·&1 == S.iS Xo~ w
  • 50. +t1ccyo.u.~c. ~Clc.eCc.~ )b~ .::. . Vw1·Ut S.l~. ~iv~n: Vw1 ~ 3.~Jl= IF :::. l .0 5J= I 'Vw2.. ::: c.~~ JH VF2 ::: t .g3 ~ H =3(:)m D2 ~ (). bD 1 l1h ~ ~tJ 1o Frroffi vel ot~'hj Ctt i Cet- and ou.et VF1 ~ I.Dt;~ =:::...oc;~ .:::: s.1s {"Y)ls VF.2. :::: 0 .~3 ~ ~ 4-· ~4-6 ~ s: Whrr~ll v~l cc_~t:J a.l: !"tel:- O.r)cl ouH~r Vw -==- ~.IS~
  • 51. ::: 1.~S ~ rnJs Vw2 :::: b .~~ JH ~ Q.~~~Q = .~D4-ml s. rrrt)m ve.lot~~ T<J~Qf)oe d~cts~QMOf i~er +Q() c( - VFI- Vw1 D{ :ctcu)' (S·1S Jll·d-S'?> D{ ~ ~ I c;s. ~~ I "'1h~ - Vw1 • l. 1 3H 'O.<a - ll.~t;j X~, too e :::. VF1 -~- Vw,-llt
  • 52. +a-(~ ~ Jf2. /w 'l. ~ da.01 ( 4-·~4-b t ,~tiLt- ~ 1:1 I ~ lS.6s we_ Know 'ffio.b D2.. ~o.bD 1 ll.l :::. f1D 1N be U2. !:::- nD'l.-N be ll2_ ~O.blll I ll2- ==- 0. bX 1~. b4-6· u_2.. ::. @.1~1 b we. knl)w ThQt- Iu_2. ~ ITD2N ba g. ~1b ..._ n X D2.Xtl bo N ..._ IS b. 4-S ll2.;. rrD2 N ba b:L 8- .t&1b - ~. 4- X D'l. X .bu ) UL_ lVw~ I Vw, j
  • 53. We.. K()ow I +a.(r-. ~ If2. /w "l. ~ do.r1 ( lt- ·~4-b l .~t)Lt- ~ t) I =:.lS.6t; "ffio.l- I N -- IS b. 4-S b2... ) UL.. I~w~ 2:>. 4- X Dl. X tSl::. .4-S Dl- I
  • 54. VF~::. ~-~9 rnl~ F"'mm veloc.l~ Tr-r~c..('~e d~o.3c-to.M ou.t-let I .. Fr-ro0() vetb c.fj to.f) ct =- VF')_. ·' Lll_ D.err; -:::. Vw 1 x ~~.19 9-81 xt6o /wl :::: s·19 N ~ T"'f ~a.l'late .olr()..3"' cdY ;oJ ·,~nltt +a.f o( ::. JF1 Jw, 0/..::. +o.r ( 3·S )S.1~
  • 55. ta.n e ::. vVJ,-u~ L - 0 ~!O.f (- 3·S S[.19 - &9.191 D, lt~ "f<1.h beh..ue..eo w?dth +o d~ome~ T't C) .Jcroro +n 0.4-VOJ1e~ o.t~- 'I I I I f=-low So.h 0 o ::: h:l t J&~ H [va.n7e~ ~om 0. 1'5 to o.'3o] Spee~ 'Yo..h()o.:::: Ll, ---- J ~3H [ V<ll~e' ~om o. 1, -/, o -~ J }1 h~ :;:. Cf'; r:./o Y1C1 :::. lfS 0/o
  • 56. - c.~ :::. a. [)2 ::. -k-D 1 1t~t k fess. :::.. ·~ 'io tfrcc.u.~~Ch 11 o. Ol.Q.Q. ~ch.~.~d DVeJ)a.ll I ~trenty ~ 0 ~ sha.(:t pcwe.J . P<J~ H o.~s = 4-oo XlD~ ltH~OX9.RI X~X1o D~SC..hOJ.~ ~ ~ rrD1 el vF-, VFI =0.& ~ ~5H "h :: t) .~x J~X~.~ Xlo
  • 57. VF, = 1-4-1 mj~ VF2 =1-4-1 ro}s ~ :::: 0 .9.4-X 11 XD1 X 0 .l[) 1 ~ 1 ·4- I 'D.b8S:::. 0-94-- Xfl Xt) 1 xn.D, X.1·4- b I :::. 0. SS'9 ro b2 ~ +D1 e, p, ::::::.. _!_xt,.S"S'f 3 -=- '0. eI ~ 0. X 0. ss~ fS2. :::..O.Ib&-m Tao~n~n.l Ve.loc.~t:J OJ..t- i(ler Qod ou.t!et u, .::::. ffD,N bt~ - ~.14-X O-SS9 X.g.oo bo
  • 58. ~ 3.~xo.t~-x.%Co bo .::. '1 -i 8 ens. , ~d«)'uuJft ~0 defC~ 'Vf Vw 1 LL, • h ~ a .9!; .=: Vw1 X ~3-4l 9.<iS 'X 1a, Vw1 ::: &1-~ c-nJs. ~"nlm rllet- vetoeS~ rt'{?o.~e d~5C'(Q('v) (n LL?de ~la.d e Q.n8'fe inlet I +a.J) 6 :::. _v_F,__ rrrt~ro OLLttet Veac~~ Tr-t?tin~(l. dfQjt'(~ t"vl '2unJ)ei ~I ade on~e oJ- ot.ttfef: to.n cP :::. VF'2.. Ll'l.
  • 59. S".ILJ.t; ~~veo : H- -:::.1 Cit') N !:::. 1~ ccypC1 &~o.~t- pow~ :::. 31 b KW - (j.~ ~ a. l ob b~ 0 cv~Clll ~c,en:i ~ Cl ~ ~h a.J=f:- pcwe.., r ~~t+ o.&-s -
  • 60. b bt 'c..hOJ(f- ~ fY ~ ITD 18 1 VF- 1 VF-, ::: ~-~ ~5H VF, ::. o·~ X J ~X 9 -~1 X(-c vF, !::-_ 1.4-1<6 rnk VF2 ~1·4-I&N'l/~ D1 ~1.% D1.. 6 ·4-~b ~ 1·8 D2 f$, ~ o. I- Bl ::::: 0 -I X 0 ·4-~b 8, ~t~.04-'b~ D.S'31 ~ 0 -9~~ X~ .14- X 0 ·~1 ~ X ~'l. X 'l· 4-l& B2... ~o.oS9bm
  • 61. u 1 ~ rrc,N be ,.._ 3.14-X D.4-9b X. l&a bo tt 1:: ISl·bRI'Y)J_s U.2 .... rrD2-N be - 3.14-Xo.~1r%-X1g)D bo - fa.39 N)Js_ · ·. ~ d~ alAlrt ~(r€()c:J. Cnu~de Y1 h .::. Jw, u., <JH 0.9 _ Vw 1 X l8.bfS 9·8 X1D v~l ac_~~ rty~o..nctf~ d~o.J"fClN) gln.d e f.)~)ate ;(eb +ctn rX .:::. Vr:., Vw, ( 1·LH2 ol. ~ hn" 1 ~~.a!~ )
  • 62. Ru.~neJ ~I a.de ~01e. fn/E:?t --Qo e- :=. VF-t ---- Vw,-U, e ~ to.o-l (-v__F-,___ Vw 1 - u, Blo..de O..{)~e o.t ou.tlet. ton¢ ~ ~ I u~ ~ ~ t-a_n-t (1·4-1< ID-~9 'Yiov~ ::.. -fb ~a l-t:::R-f'O pe.rJpheho..l velad~ u.1 ~ o.as ~- ~3H- :, . ' )
  • 63. Ii U I ~ D ·&c; J"~<J H ~Q.~S s~x~.%X& =:6 .f3~ mls ==- 3. ~~~ mls VF 1 ==- o .Cfc; JD) 3 » :: o .~c; J&X9.Sl-1 X2. ~h~ - Vw1 xu,· I 5H 0.~ ~ /w 1 X 3 ·I~~ 9 .<3 )(~ I Vw 1 ~ .~o .04-~ N~lr I ICr.u.?de Blo..de o..nale o..~ lo le~ I I tc.n r~_ -- VFr
  • 64. • <:) 0- ~ 3t;; l~ We.kfOW Tho..t .. T~n~C)~o..l velotfh.:i . 0V€J)c:d I I S.lSo Gtveo : U. ~ nD 1N be 3.1~&_ ~ ~.14-XDI X~o bb Y'J 0 !::: Sha.~t pow€.1-. P:}.~H 0.16 ~ _rs_t:~_x_r_a3 _ _ loon 'X9.~1 X.~ X~ 1::. l·b~fY'l p~~~~C1. v~lod ~ u.1::: 0 .016 J~5H
  • 65. >1 h~d~Y~C - IOo -&~ ,.._ 18oto u 1 ::: ().~{, Jd.:JH :::_ 0 ·~ b ~~ ~ X 1·%1 X 1. bcS) :::_ 3.19 ro Js ~F- 1 r::-c.96 ~~<jH I ~ 0.96 J ~X~-~ X 1-b~ D.1~ ~ Vw1 X 3.119 9 .&1 X1-b2. VVJI ::::. 19 .34- N) l.s.
  • 66. Runn~ Bnde ()j')aJe. o.t- t()l~r +~n ~ ~ _v_F..,._t- - Vw, -ll + - ( tt.1'.3~ (9 ~ O.t) ) 18-·~4- -3.119 we t-<l'low Th a.l: I To..n~ht~QI Ve!Dtf~ ll ~ ITD 1N be .3.1'19 ~ 3·.14- XD; X !So be bl ~ ~. &b('Y') bl ~D. 4D4-M Y1o ~ S ho..~ bp~w~ f«j ~ H 0.1S:::: l~9·ct-6Xto?. l DDo X~.% I 'X ~ )( 1· b'2. ~ ::.. nD, 8 1Vf:1 ~ .t6 ~ rt '>< t ·lt--D4- X f.S, X I .1'-s & I . I
  • 67. 5.14-4-· ~~ven: 3 Sha.~l: pt)weJ) :::: lbl~o X ltl 'W p1 ~t.c;ro e1 :::. O.t9.SM ~ ~,ro~ls v,_ ::-16 ('1l ~ oven a.II ~c.i enc.~ Y1 0 == Sha.r:t p~:~w& p~ <:¥ H ::: lbl&.c Xto 3 lDCic X9.%1 XlX~6o :::: 9c-~R 0 /~ ~ c)ryctul~~ ~t.ceoCJj }... C)_ "VV H- "" 'lh :::. D1s H - 0.94-99 Ib1), ~X9.&1 _ 94-.99 ~/o
  • 68. I I 1a.n~nh~ Jelt~c.~~ a.t- ~ne( Llt ~ nl),N 6o ,..._ ~-14-X'·S X bDo bo I ~~II :::::: lt1. ~ms I I Ij i ' r-{h ~ Vw, u, 3H o .94-99 ':;.. Vw 1 X 4-1.1& ~-~ x~bc I JF, == ll . oc~M s. ~u.~d€ a.note at ihtec +a.n ~ ::::. Vr:, Vw, t " (ll.oo~ c/. ~ Qf) Sl·'+-1'1· )
  • 69. .t. - ( n.c)tg ) B =:::.I d.() S. 4-l - 4-1. ld_ "YJoV~o.. .::. 90 ()/o u., ::Cl.b u.. :::: d. ~- ~3H u., ~ & j &x9.8 x r; ll, .::: 11 .81Jml~ ~ lnw velac~~ Qt if.et- }F-1 :::. 1l . b ~... ~3H VFI ':::. 0. b ~ ~ )(~ .~'1.. s
  • 70. OVeJ)o.. ~c.fent~ I 1ic ~ ShQ~t ~cw~ P9~H Q::. A. JF, '13S.9 :::. lT CD: . ~] - -J)b 4 JFJ 1~5-9 - tl l b; - (o.Lf.D~)'LJVF- 1-4- 1315.9 " ~ [o.&4Db'LJ x s.~~ De, :::: o ·4-Dt~ ~ D-4- xs.~~
  • 71. b S'naJ:t poW& ::: IS Xlt~ w D(:::... 3otl. ~ ~ 9o~ ( "fQd~o.) 1 Vw2. :o l J/~~11 ~t~cfeo :J ~ "Ylo ::: shOf'b pow~ P8~H D.~::::.. l~Xtob I looox9.l}p(~X~ol:1 1 j ~ :::. Cf s. ~6 ro~l~ l 0 bl~t)OJ)(pL I ! I ~ :::. ~ [ IJ~'l.. - f)b'L] · VF,
  • 72. rr-rocY velat.~~ T<') ~<H3e d~a.<Jryo.m o.t- inet- to.n o< ~ VF-, Vw 1 ta.n~~.::: 8·!!!S Vw, Vw1:::. IS.~Ns. %dry o.u.l~c ~0 tlel}c.~ rfh ::: Vw1 u, 3H a.9 ,... lS.~I xu, cr.~t ><~o I I ..... rrDc N ......1- - - - be li.S3 ~ 3.14-X4-X.N bo Va.ne a_()aes f:-l'io~ inlet Ve[oc_i~ rty~af~le dio...~C'iQM fa.n6 =- _V_f"-!1__ Vw1-u.,
  • 73. S. bo . Cn~ven : H ::. &5 l"tt U.l ~ UL. VF, ::: VFL. cp ::. to.n' (-e.~c; .c;~ -) T1 o = as D/ o Y1h :::: 9D 0 / 0 i I I !
  • 74. "'· 1 Dv'€1o. ~cient~ n.Bs - Doc X 9.% X~ X ciS 0 DIS c.h oJ)~ t? ::: Jl. [Do!).. -~'l.J ·lf., 4 41.::l1 ~ _!!_ [l-1.~~] .. Vf:, '+ vi=, ~ &.M3 M/~· H:Jd"f clLJ~t ~0 cie()~ 'Vf _ Vw1 u, , Ih - jH Vw 1 == LL 1 ~~en velcc.~t:t Trr~o.nae d~Q3"{o.rn ~peed Yf~ - LL,(L jH '2.. 'D.1o = · u..,' 9·gl X~t; u.,.::. 14-.ar;m~ Ll, - f1DbN to !4:-.cg 5 - 3.Itt X'3 XN bD .· ·. Vw1 :::.U1
  • 75. g. 1';6. ! 1l ==- 9 4- .r; ~ repM Va.ne o.o01e a.t- .ou.lret 1-aJ) cP VM.:::: ___ u.,:: u'l. l0iven : I . 5ha.t.t I u., == &.ott ~ ~31-t 1 F1 o.bR- ~- ~3-i u, ~ ~3H U.r :::. ~.oq ~ ~'X~-~1 X S-St u 1 ~ ~l.ll mj ~ow velDt~~ al i"et
  • 76. Y} 0 ::: Shu~[ pCJw~: ~3 c:tH D. b :::::. 1~S). t; X lc? rODCJ xq .~ xlSfX' s.t;() (::) D1 st.h()J) au I ~~JI. [ '2. J4- Do -· Dg'L V t:1 g,,n~1"' : [ [)~ _ (-P·)')_] ><l·bb~ 0)~1- cl.l ~ ~ [ Do'L - n.l1 r:,.;J 'X1· cl,~ 3~ .111 - 0 · b~l o& Do'L De .::: Do ,3 ...._ b.1qt,.- 3 ;::: ~.~b4-lY
  • 77. s. ~S1. Cniven: I Speed Lt. 1 ===- IT DoN bo ~1.11 ~ S.I4--X ~·194- XN bt:. speed . Ns!::: NfP H t:f tr ,_ bl· bS9 ~ 1~Sl· ~ Cs.r;) r;./4- Ns ~ be}I. 91~ H~ s.sm Llt J ~<jf-t u_I .::- ~· 0 9~ ~ X 9.~I ')( S·r;
  • 78. ~()W v~loc.~ ~ · Vf:, ::::. (). ~~ I {~31- I vF, ~ a.6& ~&x9.<a1 xc;.t;II I :::1.tlk~ N 1s.' I OV~oJ ~c..ieot~ l'1c~ sho.~~p~w~ fl~~ H a.b - 1~bt XIC'l- IDt:lD ')(9 -R ')('~ xs.s I Dlsd~M~ Il !I 1 I! ! II! l! l l I I .l ! j l j I1 lI j l '· { i SpeJ>.ci l Dn 0o ~-1'1MJ Dg ~ Do 3 .-- ~·~bm
  • 79. ..... bi·09 ~i~bn l S·SJS/4- 1Ft ---- =().bg D() ~fDa To..o(ff)){Q ve1Dt7t:J a.f: ~nler u, u 1 :::: & ~ ~ x<=t .~ x s.b u.1 :::- ~0 .qb m(s
  • 80. !::::. 1. 1~1 Ml.s. tlV~o.l} ~~c.f~()t_~ rvfo :::. shof:t pow~ ~ p~~~ ! I ~ / a.~~ _9_1_~_c_x_'~------- l l{j b a 'X q.~ X G( X s. b . l j ~ ~ lq~ .bI f'n~Is.. D~£ch OJ)}Q I ~ t: f [Du')_ -Dr?-] vF, lc:r~ .b I ~ _!C_ rJJc'L - -L~'LJ X 1·1~'l 4- lj . 9 . &l.b!:)!:; .."' ~ [D.&&St>o2.] d. 1. a dS ::::. D · b91 Do'l.. b[)2 .:J€ -ll ~ ~h.&&b1'0 LL 1 ~ ITDt:~N be &D .C)b r:::: 3 .14- 'X b·ct ~ b XN bD spec~~ 0 C. Spe,Qcl N~ ~ N lf HS/4- ''
  • 81. S.lbl ::: btt· 3~ ~ 9f oc 9 C_s ob )sf4- Ns :: 11& 0 &4- H ::. ~ {'() J:)B .:: D.3S Dt~ cp :::. c;~ v~, ~-~~H To.n~ ~oJ veloc~~ ~t- ?0tet LL1~ rT DoN bo J='low vel cc..if) a.t- ?nl et- 0 VF-r ~ D1<j H Vf:-1 c::. D 0 6J& X~ o~l XI~ T"Y~o.n 3te d1bo. 5Yo. m to.ncP ·-== VF'l. u'l. ~ q.~b6 {a.o ~ et~ oliffet -0. /F-1 ~ VF"l.. Ll'L -::: 34-.~c;!ml.s.
  • 82. f! · To.n(F'hl'.a. velbd f:j u_ " ffDDN ~---- I be 34-.'3S1 ::::: 3·14-Dc~N be e, 4-.~ r; l :;: 3 ·l 4- X De 'X I0 0 -be De, ~ o·~c;Dc ~ ~ .d.9 {'() ~ ::= JL [Dc'l. -DB.~] X/F-1 4- 0:. ~ [!:,.sbc?- -.':). ~q2.}x: 'Pl.ob - &1 3. 1s rn3 / s. 0 S.Is&. i cntve-n: 5.NO Spec, taftc. -Speed llJ.Jbine I. ID -~l) st()(J-le Jet petbe() whee &. 11- SD I+wt ~et petot) wlteet. I I! ~I J i
  • 83. s. ~4--1o ~UJI Jec p~ltco whee t---·-!---._.,_,______,____________,__,___,_ !----·-~--~---·-----·•-c-~--- 4. 10 -&s-l <h-anc~s. bb()e 1---t------------+--·-·---------··<•·~"· s. s-peed Ns o:::: _N_J_Q_ I H3J4 - 4bDxfu~ ( cl.r;,)?.J4- N5 ~ ~1. ~9 Velotihj Of: 'Jet Vi!::. C.v J1.3H - o.9~ ~&X9.<61 '><cl'S -= ~.1 ms V€lotff:j (jF whee u, ~ l<u. .f&S'H___ - 0.4-S~ ~X1.&X'~S - 'i-9bms --------·-- tn, kQpQ.( iwlbr(e
  • 84. . j A wo..t& 1-ttrtbtne hct~ a. JQlot~hj ~~ gmjs. . o.t- ~ ~ lentt"fo..nc.e Of: d"fo..~r · +u~e o.{)d /elctt~ c~ ~-s mt ia.t ·e~~t . fu ~ichac()o.. · t~ss OJUt c. sro o.nd lt~ +o..nI I IWo..+en ¥~ bm belcw TTuL e.nt'"(ctnce · ctd!"fo..r:t ~bef ! ~ 0 nd ·~ p_M.~s~ he-o.d o..t erd'YQ.t'C€'·. I!CnC)I tV~(): i Po..l :t - - f, - - ::. - 8.44-ro fj ~ Ne~a.h""ve ~f(f ~nd~c Q..l'e.~ Vo..ctu(Y) p.l.9.~~uS.Q.
  • 85. ~. ·1 l A (t~f~c. o.l d"Cct~t 1t.tbe ho.vlnd Inlet o.od cl~o..O'Ie~~ ho.~ J-~ro o.nd 1. &- I.Q.sre~ hlrel~. outlet been d~s.<:har,(f ctt ~c.s.+tet ·w~th velot~~ oF 3cns . 11s. Tctctl leootr-. DF drro.r+ fu.be f's 1·~m c..nc:{ (.4-4-ro o~ fu {en0ffi· OJ! d~o.f:t 1-a.b~ is JfY)ffi~~ed ~0 wo.f€n. .tp_ ~ o.l:-mos;:phe.ti.~·c p.rtQ.Sil.uu heo..d It~. 3('() uod ~ fos5. ~f- hea.d du.e ~~~l<:~o() ~n d~Y~t -h.tb-e i~ o.~ lfn1~~ OJ: vel cc~ ~ hRo.d and ou.tt-re.t c~ dcyo.J:t fu.b-e. J)e+eJHn~oe· n_ 1'rot'r,.,u., h d l ~ ( t d tJI'Ul. 1 ...-.;)~....... U'- E'a a.c roe an ou.let I V2. :::. ar-nJ~ Hs~ :: 1·&ro ~ ~ I. 4-4-Nl rr 'l. '- ~ x:.8 x3 4-
  • 86. Ii I .j, r 'l.. · . ' tc L1s . lf3 +-'1. ~ - 3'1. ~'l.. o.~ + -~ t-e +b·&2_ ~X' .<6 ~X9-RI I•: i-l·,~ =1.3~lm "Y]d - I b.'l ~'l. ~x~.~~ c~.3~.;)-f).4J;" _ O.Qql) ''i '
  • 87. ~0 ctE?n ~ o.NL &~ 'YIS a.nd g.o "'/6 SUtS. pec.HJellj. ~ top OF dc-co.j:t tube. ?.s l·~m below ~ CQfltenlfie. Cf- ~ splc-ra.l ca.sn5 wh~e fu ktl '1ClCe ~s. 3.9 m b~aw fu hp of- fu. d~apt tube. TI.9. d~ome~ oF- dr;Q.J:t t. or; m a.t t"-'-He.t · I D.1..:::: l.osm biL .:::_ 4--8 +-- ~1(1·%'
  • 88. t <Jfef) <:ll ~c.l ei)Oj H-ec.d Io~s ~ c ::::. Shaft pew~ fl<J ty H o.& - shc:q::t pew~ v';)_ :::. ~·4-& rnl~ Head' u_l)l~~ed R~ ~b~f)e - H- hF-t: - ht-d - 54-.b?. -{hr:t +hr:~ H-~d'la.u.l ~t. ~<:_~E'OC.~ Yfh ~ 'H-eo.d LLiflf~ed ~'j -h16r~e 1-teo.cl f"let- 6F ~h~oe o.<J3 :: 5 4-·b~ -~~t + hFdJ 54- .q ~ hrr: +h~cl =- 9 .o~N) i ,,~
  • 89. l'Jmec..h c: a.9b~~ ~ ro ec. h ~ sho.~t-· poVJe; ., Runn~ pew~ ..... ~hat=b- powe,...,- r+Pr- o.qb3~ - 90S. ~S XID~ ~os. 3s Xlo 3 +--Pf: [ p~ - !l4-XIo 3 W J
  • 90. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 82 UNIT – V – TURBINES PART - A 5.1) Define turbo machines. 5.2) Define turbine. 5.3) What is a pump turbine? Is it the same as turbine pump? [AU, April / May - 2015] 5.4) Classify fluid machines. [AU, April / May - 2010] 5.5) Give the classification of turbines. 5.6) How are hydraulic turbines classified [AU, May / June - 2009, 2014, Nov / Dec - 2009 April / May - 2011] 5.7) What are high head turbines? Give example. [AU, Nov / Dec - 2009] 5.8) State the principles on which turbo-machines are based. [AU, Nov / Dec - 2010] 5.9) Explain specific speed. [AU, Nov / Dec - 2005] 5.10) Define specific speed. [AU, Nov / Dec - 2009] 5.11) Define specific speed of a turbine. [AU, Nov / Dec – 2003, 2008, 2009, May / June–2007, 2009, April / May –2010, 2011] 5.12) Define specific speed of a turbine. What is its usefulness? [AU, Nov / Dec - 2007] 5.13) How is specific speed of a turbine defined? [AU, May / June - 2006] 5.14) What is meant by specific speed of a turbine? [AU, April / May - 2010] 5.15) Why not the specific speed of a hydraulic turbine is calculated using watts, instead of metric horse power? [AU, April / May - 2015] 5.16) Write the equation for specific speed for pumps and also for turbine. [AU, Nov / Dec - 2012] 5.17) Define specific speed and unit speed of a turbine. [AU, April / May - 2015] 5.18) List the range of head for various turbines. [AU, April / May - 2015] 5.19) What is hydraulic turbine? [AU, May / June - 2006] 5.20) State and concise on Euler turbine equation. [AU, Nov / Dec - 2014] 5.21) Classify turbines according to flow. [AU, Nov / Dec - 2005] 5.22) Define impulse turbine and give examples. 5.23) Explain the working of impulse turbine. [AU, April / May - 2011] 5.24) Define reaction turbine and give examples. 5.25) What is reaction turbine? Give examples [AU, April / May - 2003]
  • 91. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 83 5.26) Differentiate between reaction turbine and impulse turbine. [AU, Nov / Dec - 2003, April / May - 2008, 2015, May / June - 2012] 5.27) What is a ‘breaking jet’ in Pelton wheel/turbine? [AU, May / June - 2007, Nov / Dec – 2007, 2012] 5.28) Draw velocity triangle diagram for Pelton wheel turbine. [AU, Nov / Dec - 2008, 2014] 5.29) Define tangential flow turbine. 5.30) Define radial flow - turbine. 5.31) Define axial flow turbine. 5.32) Define mixed flow turbine. 5.33) Define the flow ratio of reaction radial flow turbine. [AU, Nov / Dec - 2012] 5.34) Draw a sketch of a Francis turbine and name its components. [AU, April / May - 2005] 5.35) List the main parts of Kaplan turbine. [AU, Nov / Dec - 2012] 5.36) What is draft tube? [AU, Nov / Dec - 2012] 5.37) What is a draft tube? Explain why it is necessary in reaction turbine. 5.38) What is draft tube? In which type of turbine is mostly used? [AU, Nov / Dec - 2003] 5.39) Write the function of draft tube in turbine outlet? [AU, April / May - 2005, 2008, Nov / Dec - 2011] 5.40) What is the function of draft tube? [AU, May / June– 2007, Nov / Dec - 2009] 5.41) What are the different types of draft tubes? [AU, Nov / Dec - 2009] 5.42) Why does a Pelton wheel not possess any draft tube? [AU, May / June - 2012] 5.43) Mention the importance of Euler turbine equation. [AU, Nov / Dec - 2011] 5.44) What are the different efficiencies of turbine to determine the characteristics of turbine? [AU, May / June – 2012] 5.45) Define hydraulic efficiency of turbine 5.46) Define hydraulic efficiency and jet ratio of a Pelton wheel. [AU, Nov / Dec - 2010] 5.47) Define hydraulic efficiency and axial thrust of a roto-dynamic hydraulic machine. [AU, May / June - 2013]
  • 92. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 84 5.48) What is meant by hydraulic efficiency of turbine? [AU, Nov / Dec – 2012, 2013] 5.49) Define hydraulic efficiency and overall efficiency of a turbine. [AU, Nov / Dec - 2012] 5.50) Define -volumetric efficiency of turbine. [AU, Nov / Dec - 2014] 5.51) What are the different efficiencies of turbine to determine the characteristics of turbine? [AU, Nov / Dec - 2006] 5.52) Define overall efficiency and plant efficiency of turbines. [AU, May / June– 2007, 2012] 5.53) Draw the characteristics curves of a turbine with head variation. [AU, April / May - 2005] 5.54) What is the difference between a turbine and a pump? [AU, Nov / Dec – 2010, May / June - 2012] 5.55) Differentiate between pumps and turbines. [AU, May / June, Nov / Dec – 2007, 2008] 5.56) A shaft transmits 150 Kw at 600 rpm. What is the torque in Newton –meters? [AU, April / May - 2011] 5.57) The mean velocity of the buckets of the Pelton wheel is 10 m/s. The jet supplies water at 0.7 m3 /s at a head of 30 m. The jet is deflected through an angle of 160° by the bucket. Find the hydraulic efficiency. Take CV = 0.98. [AU, April / May - 2010] 5.58) A water turbine has a velocity of 8.5m/s at the entrance of draft tube and velocity of 2.2m/s at exit. The frictional loss is 0.15m and the tail race water is 4m below the entrance of draft tube. Calculate the pressure head at entrance. [AU, April / May - 2011] PART – B 5.59) Derive the general equation of turbo machines and draw the inlet and outlet triangles. [AU, April / May - 2011] 5.60) How will you classify the turbines? [AU, Nov / Dec - 2008] 5.61) Enumerate the differences between an impulse turbine and reaction turbine. [AU, April / May - 2015]
  • 93. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 85 5.62) Describe briefly the function of the various main components of a Pelton wheel turbine with neat sketches. 5.63) Describe briefly the functions of various components of Pelton turbine with neat sketches. [AU, Nov / Dec - 2008] 5.64) Explain the component parts and working of a Pelton wheel turbine. [AU, April / May - 2010] 5.65) Define and derive an expression for specific speed of a turbine. 5.66) Explain the terms unit power, unit speed and unit discharge with reference to a turbine. 5.67) Explain the hydraulic efficiency of a turbine. [AU, Nov / Dec - 2009] 5.68) Sketch the velocity triangles at inlet and outlet of a Pelton wheel. 5.69) Draw inlet and outlet velocity triangles for a Pelton turbine and indicate the direction of various velocity components. Also obtain the expression for the work done per second by water on the runner of the Pelton wheel. [AU, April / May - 2015] 5.70) What is breaking jet in Pelton wheel turbine? [AU, April / May – 2004, Nov / Dec - 2005, May / June– 2012] 5.71) Differentiate Pelton wheel turbine with Francis turbine. [AU, April / May - 2005] 5.72) Distinguish between reaction turbine and impulse turbine. [AU, May / June - 2013] 5.73) Give the comparison between impulse and reaction turbine. [AU, Nov / Dec - 2005] 5.74) With the help of neat diagram explain the construction and working of a Pelton wheel turbine. [AU, Nov / Dec - 2005] 5.75) With a neat sketch, explain the working of a Pelton wheel. [AU, April / May - 2008] 5.76) With a neat sketch, explain the working of a Pelton wheel. Also obtain the expression of the work done. [AU, Nov / Dec - 2012] 5.77) Obtain an expression for power developed in a reaction turbine. [AU, Nov / Dec - 2011] 5.78) What is the condition for hydraulic efficiency of a Pelton wheel to be maximum? [AU, Nov / Dec - 2005]
  • 94. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 86 5.79) Explain the construction and working of the following turbines with neat sketches. (i) Pelton wheel turbine (ii) Francis turbine (iii) Kaplan turbine 5.80) Compare radial flow and axial flow turbo machines. 5.81) Draw the inlet and outlet velocity triangles for an inward flow reaction turbine indicating the various components. [AU, Nov / Dec - 2009] 5.82) Derive an expression for the maximum hydraulic efficiency of an impulse turbine. 5.83) Obtain an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression for maximum efficiency of the Pelton wheel giving the relationship between the jet speed and bucket speed. [AU, Nov / Dec - 2007] 5.84) Obtain the expression for the work done per second by water on the runner of a Pelton wheel and draw inlet and outlet velocity triangles for a Pelton turbine and indicates the direction of various velocities. [AU, May / June - 2009] 5.85) Derive the velocity triangle for Pelton wheel and obtain the expression for the work done. [AU, Nov / Dec - 2010, April / May - 2011] 5.86) Sketch the velocity triangles at inlet and outlet of Pelton wheel. [AU, Nov / Dec - 2006] 5.87) Derive the expression for efficiency and work done for a Pelton wheel and draw the velocity triangles. [AU, May / June - 2012] 5.88) Explain how the net head on the reaction turbine is increased with the use of draft tube. [AU, April / May - 2008] 5.89) Derive Euler’s equation of motion for turbines and obtain the components of energy transfer with a construction of velocity triangles. [AU, May / June - 2012] 5.90) An inward flow reaction turbine has inlet and outlet vane angles φ and Ф are both equal to 90°. If H = head of the machine, α = guide vane angle and C = ratio of velocity of flow at outlet and inlet, show that the peripheral velocity and hydraulic efficiency are given by [AU, Nov / Dec - 2009]
  • 95. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 87 5.91) Show that the hydraulic efficiency for a Francis turbine having velocity flow through runner as constant given by relation. [AU, April / May - 2011] 5.92) An inward flow reaction turbine discharges radially and the velocity of flow is constant, show that the hydraulic efficiency can be expressed by Where α and θ are the guide and vane angles at inlet. [AU, May / June - 2012] 5.93) Write a short note on Governing of Turbines. [AU, Nov / Dec - 2008] 5.94) Classify hydraulic machines and give one example for each. [AU, Nov / Dec - 2008] 5.95) Explain the working principle of Kaplan turbine and derive the working proportion of its design. [AU, Nov / Dec - 2008] 5.96) Draw a neat sketch of Kaplan turbine, name the parts and briefly explain the working. [AU, May / June - 2007] 5.97) Draw a schematic diagram of a Kaplan turbine and explain its construction and Working. [AU, May / June - 2014] 5.98) Explain with help of a diagram, the essential features of Kaplan turbine. [AU, Nov / Dec - 2009] 5.99) Draw a schematic diagram of a Kaplan turbine and explain briefly its construction and working. Obtain an expression for work done by the runner. [AU, Nov / Dec - 2011] 5.100) Discuss about construction details of Kaplan turbine with a neat sketch. [AU, Nov / Dec - 2014] 5.101) What is function draft tube in Francis turbine? [AU, April / May – 2003, 2010]
  • 96. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 88 5.102) Discuss about draft tube and its types. [AU, Nov / Dec - 2014] 5.103) Derive an expression for the efficiency of draft tube. [AU, Nov / Dec - 2006] 5.104) Derive an expression for specific speed. What is the significance of specific speed of turbine? [AU, May / June - 2009] 5.105) How is a specific speed of the turbine, defined? [AU, May / June - 2009] 5.106) Write a note on performance curves of turbine. [AU, April / May - 2010] 5.107) Show that the overall efficiency of a hydraulic turbine is the product of volumetric, hydraulic and mechanical efficiencies. [AU, May / June - 2007] 5.108) Define: Hydraulic efficiency and overall efficiency with respect to turbines. [AU, Nov / Dec - 2007] 5.109) Explain the different types of the efficiency of a turbine. [AU, Nov / Dec - 2008] 5.110) Explain the load efficiency characteristics of hydraulic turbines with a diagram. [AU, Nov / Dec - 2013] 5.111) Mention three to four most striking characteristics of Pelton wheel, Francis turbine and Kaplan turbine. [AU, April / May - 2015] 5.112) Discuss the performance characteristics of reaction turbine in detail. [AU, April / May - 2011] 5.113) Discuss briefly the characteristics curves of hydraulic turbines. [AU, Nov / Dec - 2010] PROBLEMS 5.114) A turbine develops 9000kW when running at speed of 140rpm and under a head of 30m. Determine the specific speed of the turbine. Derive the expression used in above problem. [AU, Nov / Dec - 2008] 5.115) A Pelton wheel is to be designed for the following specifications : a. Shaft power =11,772 KW ; head = 380 metres; speed = 750 rpm, b. Overall efficiency=86%. Jet diameter is not to exceed one-sixth of the wheel diameter. Determine the i) Wheel diameter ii) Number of jets required iii) Diameter of the jet. [AU, Nov / Dec - 2012] 5.116) A Pelton wheel is to be designed for a head of 60m when running at 200 rpm. The Pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets is
  • 97. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 89 equal to 0.45 times the velocity of the jet. Overall efficiency = 0.85 and co-efficient of velocity is equal to 0.98. 5.117) A Pelton wheel has to be designed for the following data. Power to be developed = 6000kW; Net head available = 300m; Speed = 550rpm; Ratio of jet diameter to wheel diameter = 1/10 and overall efficiency = 85%. Find the no of jets, diameter of jet, diameter of wheel and quantity of water required. [AU, Nov / Dec - 2006] 5.118) A Pelton wheel is to be designed for the following specifications: Shaft power = 11,772 kW Head (H) = 380m Speed = 750rpm Overall efficiency (η0) = 86% Jet diameter > 1/6 wheel diameter. Determine: The wheel diameter, the number of jets required and diameter of the jet. [AU, Nov / Dec - 2007] 5.119) A single jet Pelton wheel runs at 300 rpm under a head of 510 m. The jet diameter is 200 mm and its deflection inside the bucket is 165°. Assuming that its relative velocity is reduced by 15% due to friction, determine (i) water power (ii) resultant force on bucket and (iii) overall efficiency. [AU, May / June - 2007, 2012] 5.120) Determine the rpm, work done per second, power and overall efficiency of a Pelton wheel from the following data. Head = 150m, Wheel diameter = 0.75m, Jet diameter =4cm, Deflection angle of buckets = 172º, Cv of nozzle = 0.98, Speed ratio = 0.42 and surface roughness factor of vanes = 0.97. [AU, April / May - 2015] 5.121) A Pelton wheel supplied water from reservoir under a gross head of 112m and the friction losses in pen stock amounts to 20m of head. The water from pen stock is discharged through a single nozzle of diameter of 100mm at the rate of 0.30m3 /s. Mechanical losses due to friction amounts to 4.3kW of power and the shaft power available is 208kW. Determine velocity of jet, water power at inlet to runner, power losses in nozzles, power lost in runner due to hydraulic resistance. [AU, May / June - 2007] 5.122) A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 rpm. The net head on the Pelton wheel is 700 m. If the side clearance angle is 15°and
  • 98. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 90 the discharge through the nozzle is 0.1m3 /sec, find the i) power available at the nozzle and ii) hydraulic efficiency of the turbine. Take CV=1. [AU, Nov / Dec - 2007] 5.123) A Pelton wheel has a mean bucket speed of 12 m/s and supplied with water at the rate of 0.7 m3 /s under a head of 300 m. If the buckets deflect the jet through an angle of 160°, find the power developed and hydraulic efficiency of the turbine. [AU, April / May - 2008] 5.124) A Pelton wheel has a mean bucket speed of 10m/s with a jet of water flowing at the rate of0.7 m3 /s under a head of 30m. The buckets deflect the jet through an angle of 160°. Calculate the power given by the water to the runner and the hydraulic efficiency of the turbine. Assuming the coefficient of velocity as 0.98 [AU, April / May - 2004, Nov / Dec - 2005, 2010, 2012, May / June - 2009] 5.125) A Pelton wheel which is receiving water from a penstock with a gross head of 510m. One - third of Gross head is lost in the penstock. The rate of flow through the nozzle fitted at the end of the penstock is 2.2 m3 /sec. The angle of deflection of the jet is 165°. Determine (1) The power given by the water to the runner (2) Hydraulic efficiency of the Pelton wheel. Take Cv=1 and speed ratio =0.45 [AU, May / June - 2014] 5.126) A Pelton turbine is required to develop 9000 kW when working under a head of 300m the impeller may rotate at 500 rpm. Assuming a jet ratio of 10 and overall efficiency of 85% calculate [AU, Nov / Dec - 2003] (i) Quantity of water required (ii) Diameter of the wheel (iii) Number of jets (iv) Number and size of the bucket vanes on the runner 5.127) The nozzle of a Pelton wheel gives a jet of 9cm diameter and velocity 75m/s. Coefficient of velocity is 0.978. The pitch circle diameter is 1.5m and the deflection angle of the buckets is 170°. The wheel velocity is 0.46 times the jet velocity. Estimate the speed of the Pelton wheel turbine in rpm, theoretical power developed and also the efficiency of the turbine. [AU, April / May - 2005, Nov / Dec - 2009] 5.128) A Pelton turbine having 1.6m bucket diameter develops a power of 3600kW at 400rpm, under a net head of 275m. If the overall efficiency is 88%, and the
  • 99. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 91 coefficient of velocity is 0.97, find speed ratio, discharge, diameter of the nozzle and specific speed. [AU, May / June - 2007] 5.129) A Pelton wheel has a mean bucket speed of 12m/s and supplied with water at the rate of 0.7m3/s under a head of 300m. If the buckets deflect the jet through an angle of 160° find the power developed and hydraulic efficiency of the turbine. [AU, April / May - 2008] 5.130) A Pelton turbine is to produce 18MW under a head of 450 m when running at 480 rpm. If D/d ratio is 10, determine the number of jets required. [AU, Nov / Dec - 2011] 5.131) Consider an impulse wheel with a pitch diameter of 2.75m and a bucket angle of 170°. If the velocity is 58m/s, the jet diameter is 100mm, and the rotational speed is 320rpm, find the force on the buckets, the torque on the runner, and the power transferred to the runner. Assume v2 = 0.9v1. [AU, April / May - 2011] 5.132) A gas turbine operates between 1000k and 650 k temperature limits taking in air 20 kg/s at 125 m/s and discharging at 300 m3/s. Estimate the power developed by the turbine. Given Cp=995 J / Kg.K. [AU, April / May - 2011] 5.133) A reaction turbine at 450rpm, head 120m, diameter at inlet 120cm flow area 0.4m2 has angles made by absolute and relative velocities at inlet 20° and 60° respectively. Find volume flow rate, H.P and efficiency. [AU, Nov / Dec - 2009] 5.134) An inward flow reaction turbine has internal and external diameter as 0.85m and 1m respectively. The hydraulic efficiency of turbine is 0.92 under a head of 60m. The velocity of flow at outlet is 3m/s and discharge at outlet is radial. The vane angle at the outlet is 18° and width of the wheel is 75mm. Calculate the guide blade angle, turbine speed, vane angle at inlet and power developed by the turbine. [AU, April / May - 2011] 5.135) An inward flow reaction turbine has external and internal diameters as 0.9m and 0.45m respectively. The turbine is running at 200 rpm and width of the turbine at inlet is 200mm. The velocity of flow through the runner is constant and is equal to 1.8m/sec. The guide blades make an angle of 10° to the tangent of the wheel and the discharge at the outlet of the turbine is radial. Determine the i) Absolute velocity of water at inlet of runner ii) Velocity of whirl at inlet
  • 100. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 92 iii) Relative velocity at inlet iv) Runner blade angles v) Width of the runner at outlet vi) Mass of water flowing through the runner per second vii) Head at the inlet of the turbine viii)Power developed and hydraulic efficiency of the turbine. 5.136) An inward flow reaction turbine having an overall efficiency of 80% is required to deliver 136 kW. The head H is 16 m and the peripheral velocity is 3.3 √H. The radial velocity of flow at inlet is 1.1√H. The runner rotates at 120 rpm. The hydraulic losses in the turbine are 15% of the flow available energy. Determine (i) diameter of the runner, (ii) guide vane angle, (iii) the runner blade angle at inlet and (iv) the discharge through the turbine. [AU, Nov / Dec - 2010] 5.137) In an outward flow reaction turbine, the internal and external diameters are 2m and 2.7m respectively. The turbine speed is 275rpm and the water flow rate is 5.5m3 /s. The width of the runner is constant at the inlet and outlet and equal to 250mm. The head acting on the turbine is 160m. The vanes have negligible thickness and the discharge at the outlet is radial. Determine the vane angles and velocity of the flow at inlet and outlet. [AU, Nov / Dec - 2012] 5.138) In a hydroelectric station, water is available at the rate of 175m3/s under head of 18m. The turbine run at a speed of 150 rpm, with overall efficiency of 82%. Find the number of turbines required, if they have the maximum specific speed of 460. [AU, Nov / Dec - 2005] 5.139) A radial flow impeller has a diameter 25 cm and width 7.5 cm at exit. It delivers 120 liters of water per second against a head of 24 m at 1440 rpm. Assuming the vanes block the flow area by 5% and hydraulic efficiency 0.8, estimate the vane angle at exit. Also calculate the torque exerted on the driving shaft in the mechanical efficiency is 95% [AU, Nov / Dec - 2003] 5.140) A 50m/s velocity jet of water strikes without shock, a series of vanes moving at 15m/s. The jet is inclined at an angle of 20° to the direction of motion of vanes. The relative velocity of jet at outlet is 0.9 times of the values at inlet and the absolute velocity of water exit is to be normal to the motion of vanes. Determine the vane
  • 101. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 93 angle at entrance and exit. Also determine work done on vanes per second N of water supplied by the jet. [AU, April / May - 2005] 5.141) In an inward radial flow turbine, water enters at an angle of 22° to the wheel tangent to the outer rim and leaves at 3 m/s. The flow velocity is constant through the runner. The inner and outer diameters are 300 mm and 600 mm respectively. The speed of the runner is 300 rpm. The discharge through the runner is radial. Find the (i)Inlet and outlet blade angles. (ii) Taking inlet width as 150 mm and neglecting the thickness of the blades, find the power developed by the turbine. [AU, April / May - 2010] 5.142) The velocity of the whirl at the inlet to the runner of an inward flow reaction turbine is 3.15√H m/s and the velocity of flow at inlet is 1.05√H m/s. The velocity of whirl at exist is 0.22√H m/s in the same direction as at inlet and the flow at exist is 0.83√H m/s, where H is head of water 30m. The inner diameter of the runner is 0.6 times the outer diameter. Assuming hydraulic efficiency of 80%. Compute angles of the runner vanes at inlet and exist. [AU, April / May – 2003, 2010] 5.143) Design a Francis Turbine runner with the following data: Net head = 70m speed N = 800 rpm. Output power 400 Kw Hydraulic efficiency = 95% Overall efficiency = 85% Flow ratio = 0.2 Breadth ratio = 0.1 Inner diameter is 1/3 outer diameter. Assume 6% circumferential area of the runner to be occupied by the thickness of the vanes. The flow is radial at exit and remains constant throughout. [AU Nov / Dec - 2008] 5.144) A Francis turbine developing 16120 kW under a head of 260 m runs at 600 rpm. The runner outside diameter is 1500 mm and the width is 135 mm. The flow rate is 7 m3 /s. The exit velocity at the draft tube outlet is 16 m/s. Assuming zero whirl velocity at exit and neglecting blade thickness determine the overall and hydraulic efficiency and rotor blade angle at inlet. Also find the guide vane outlet angle. [AU, Nov / Dec - 2014] 5.145) Calculate guide blade angles, vane angles, runner diameters at inlet and outlet and width of the wheel at outlet for a Francis turbine with the following data: Net head: 70 m; Speed: 720 rpm; Shaft Power: 310 kW; Overall efficiency: 0.85;
  • 102. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 94 Hydraulic efficiency: 0.9; Flow ratio: 0.2; Breadth ratio: 0.1; OD/ID ratio: 1.8; The thickness of vanes occupy 7.5% of circumferential area of runner velocity of flow is Constant and discharge is radial at outlet. [AU, Nov / Dec - 2014] 5.146) The following data is given for a Francis Turbine Net head = 60m speed N = 700 rpm. Shaft power 294.3 kW Hydraulic efficiency = 93% Overall efficiency = 84% Flow ratio = 0.2 Breadth ratio = 0.1 Inner diameter is 1/2 outer diameter. Assume 5% circumferential area of the runner to be occupied by the thickness of the vanes. Velocity of flow is constant at inlet and outlet and discharge is radial outlet. Determine [AU, Nov / Dec - 2012]  Guide blade angle  Runner vane angle at inlet and outlet  Diameter of the runner at inlet and outlet  Width of the wheel at inlet 5.147) The inner and outer diameters of an inward flow reaction turbine are 50 cm and 100 cm respectively. The vanes are radial at inlet and discharge is also radial. The inlet guide vanes angle is 10°. Assuming the velocity of flow as constant and equal to 3 m/s, find the speed of the runner and the vane angle at the outlet. [AU, April / May - 2008] 5.148) A reaction turbine works at 450rpm under a head of 120metres. Its diameter at inlet is 120cm and the flow area is 0.4m2 . The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine the  Volume flow rate  Power developed  Hydraulic efficiency. [AU, Nov / Dec - 2007] 5.149) A turbine is to operate under a head of 25m at 200rpm. The discharge is 9cumec. If the efficiency is 90%, determine the i) Specific speed of the turbine ii) Power generated iii) Type of turbine
  • 103. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 95 5.150) A Francis turbine with overall efficiency of 75% is required to produce 149.26kN. It is working against a head of 7.62m. The peripheral velocity is 0.26√(2gH) and the radial velocity of flow at inlet is 0.96√(2gH). The wheel runs at 150rpm and the hydraulic losses in the turbine account for 22% of the available energy. Assume radial discharge; determine the guide blade angle, the wheel vane angle at inlet, diameter of the wheel at inlet and width of the wheel at inlet. [AU, May / June – 2009, 2013] 5.151) A Francis turbine with overall efficiency of 76% and hydraulic efficiency of 80% is required to produce 150kW. It is working against a head of 8m. The peripheral velocity is 0.25√(2gH) and the radial velocity of flow at inlet is 0.95√(2gH). The wheel runs at 150rpm. Assume radial discharge; determine the guide blade angle, the wheel vane angle at inlet, diameter of the wheel at inlet and width of the wheel at inlet. [AU, Nov / Dec – 2009, April / May - 2010] 5.152) A dam on a river is being sited for a hydraulic turbine. The flow rate is 1600 m3 /h, the available head is 25 m, and the turbine speed is to be 460 rpm. Discuss the estimated turbine size and feasibility for a Francis turbine; and a Pelton wheel. [AU, Nov / Dec - 2011] 5.153) A turbine is to operate under a head of 25m at 200rpm. The discharge is 9 cumec. If the efficiency is 90%, determine the performance of the turbine under a head of 20 meters. [AU, Nov / Dec - 2007] 5.154) A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet is 120 cm and the flow area is 0.4 m2 . The angles made by the absolute and relative velocity at inlet are 20° and 60° respectively, with the tangential velocity. Determine the volume flow rate, the power developed and the hydraulic efficiency. [AU, Nov / Dec - 2007] 5.155) Calculate the diameter and speed of the runner of a Kaplan turbine developing6000 kW under an effective head of 5 m. Overall efficiency of the turbine is 90% and the diameter of the boss is 0.4 times the external diameter of the runner. The turbine speed ratiois 2.0. And flow ratio is 0.6. [AU, Nov / Dec - 2006] 5.156) A Kaplan turbine runner is to be designed to develop 7357.5kW shaft power. The net available head is 5.50m. Assume that the speed ratio is 2.09 and flow ratio
  • 104. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2015 – NOV 2015 CE6451 – FLUID MECHANICS AND MACHINERY QUESTION BANK by ASHOK KUMAR.R (AP / Mech) 96 is 0.68, and the overall efficiency is 60%. The diameter of the boss is 1/3rd of the diameter of the runner, its specific speed. [AU, May / June - 2009] 5.157) A Kaplan turbine runner is to be designed to develop 7360kW. The net available head is 5.5m. Assuming the speed ratio is 2.09 and the flow ratio is 0.68 and the overall efficiency is 60%. The diameter of the boss is one third of the diameter of the runner. Find the diameter of the runner, its speed and its specific speed. [AU, Nov / Dec - 2009] 5.158) A Kaplan turbine working under a head of 20 m develops 15 MV brake power. The hub diameter and runner diameter of the turbine are 1.5 m and 4 m respectively. The guide blade angle at the inlet is 30°. The discharge is radial. Find the runner vane angles and turbine speed. Take hydraulic and overall efficiency as 90% and 80 % [AU, April / May - 2010, Nov / Dec - 2011] 5.159) A Kaplan turbine is to be designed to develop 9100kW. The net available head is 5.6m/ If the speed ratio is 2 and flow ratio is 0.68, overall efficiency 86% and the diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and specific speed of turbine. [AU, April / May - 2011] 5.160) A Kaplan turbine delivers 10 MW under a head of 25 m. The hub and tip diameters are 1.2 m and 3 m. Hydraulic and overall efficiencies are 0.90 and 0.85. If both velocity triangles are right angled triangles, determine the speed, guide blade- outlet angle and blade outlet angle. [AU, Nov / Dec – 2013, 2014] 5.161) The hub diameter of a Kaplan turbine working under a head of 12m, is 0.35 times the diameter of the runner. The turbine is running at 100 rpm. If the vane angle of the extreme edge of the runner at outlet is 15º and the flow ratio is 0.6, find the diameter of the runner, diameter of the boss and the discharge through the runner. The velocity at the whirl at outlet is given as zero. [AU, April / May - 2015]