Universidad de Guadalajara

                                 Centro Universitario de los Valles
                          ...
DIRECTORIO




Dr. Víctor Manuel González Romero.
Rector General de la Universidad de Guadalajara.

Dr. Misael Gradilla Da...
Universidad de Guadalajara


                                 Centro Universitario de los Valles
                         ...
Unidad 1
Conjuntos y Desigualdades                   5

Unidad 2
Lógica Proposicional                        9

Unidad 3
M...
Bienvenido al curso de Lógica y Conjuntos, la presente guía fue diseñada con el fin de
llevarte de la mano en tu autoapren...
si los juicios emitidos por éstos se pueden obtener como consecuencia lógica de sus
       premisas.

          Lo que se ...
OBJETIVO: Resolverás desigualdades representando el conjunto solución como
intervalo o unión de intervalos.


Actividad pr...
I.4.3 Diferencia
       I.4.4 Complemento

Te recomiendo la lectura 3

Actividad de aprendizaje 2

Actividad integradora 1...
OBJETIVOS:

• Probarás la validez o invalidez de argumentos valiéndote de las tablas de verdad.
• Diferenciarás una tautol...
Actividad de aprendizaje 6

TEMA :
II.5 Prueba informal de validez

Te recomiendo la lectura 9

Actividad de aprendizaje 7...
OBJETIVO: Demostrarás la validez o invalidez de argumentos sin cuantificadores
basándote en las reglas de la deducción pro...
TEMA :
III.4 Demostración indirecta

Te recomiendo la lectura 15

Actividad de aprendizaje 13

Actividad integradora 4



...
OBJETIVO: Comprobarás la validez de razonamientos que contienen cuantificadores
usando las leyes de deducción lógica.


Ac...
5
                               Actividades
                              Preliminares.
ACTIVIDAD PRELIMINAR 1


        ...
Imagina que en un evento internacional tu tienes que solicitar un salón para congregar a
un cierto número de personas que ...
p
              ∴q

      ¿De cuántos renglones fue tu tabla?
      Si un argumento tuviera 7 enunciados diferentes, ¿cuán...
Libro 2, pp.1-16

LECTURA 3

      Libro 1, pp.17-20

LECTURA 4

      Libro 3, pp.98-107

LECTURA 5

      Libro 3, pp.10...
LECTURA 14

      Libro 4, pp.72-74

LECTURA 15

      Libro 4, pp.75-77

LECTURA 16

      Libro 4, pp.89-94

LECTURA 17
...
ACTIVIDAD DE APRENDIZAJE 1

    Resuelve los siguientes ejercicios.

    1.          Una persona tiene tres monedas, cada ...
e)               M = el conjunto de todos los números naturales superiores a 90
            trillones

       f)          ...
3.           Dibujar un diagrama de Venn similar a la figura para cada ejercicio
    y sombrear sólo el área que represent...
2.         Teniendo los conjuntos

     A={x∈R/ 1≤ x ≤8}

     B = { x ∈ R / -5 < x ≤ 5 }

     C = { x ∈ R / -7 ≤ x < 2 }...
6.         Las calificaciones de un estudiante fueron 85, 57 y 78 en los tres
           primeros exámenes parciales, ¿qué...
De las páginas 47 y 48 resuelve los números pares de las secciones I y II.




NOTA.- En las siguientes actividades de apr...
ACTIVIDAD DE APRENDIZAJE 13

     Resuelve un ejercicio de la página 78.


ACTIVIDAD DE APRENDIZAJE 14

     Resuelve diez...
⇒ Con las actividades integradoras irás formando poco a poco un manual del
           curso.
         ⇒ Las entregarán por...
k) Diagrama de Venn. Ejemplos

      l) Operaciones con conjuntos (unión, intersección, diferencia, y complemento


I.    ...
revistas A y C; 10% leen las tres revistas. ¿Qué porcentaje de personas, leen
         las revistas A o C?


    6.       ...
c)              Tres individuos cuentan el número de piezas que por minuto
                 fabrica una máquina. El primer...
2.         Anota las reglas de inferencia y escribe dos ejercicios y un problema
         con su solución.

    3.        ...
a)            el asunto de referencia y sus respectivas respuestas de acuerdo
              a cada una de las actividades ...
EXAMENES PARCIALES                                         20%

                              FECHAS DE ENTREGA

Sesión 1 ...
Porfírio Gutiérrez González y coautores.
       Sima editores
       México, 1999

III.          ÁLGEBRA, TRIGONOMETRÍA Y ...
Upcoming SlideShare
Loading in …5
×

Logica Conjuntos

7,102 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
7,102
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
76
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Logica Conjuntos

  1. 1. Universidad de Guadalajara Centro Universitario de los Valles Campus Ameca CURSO: “LOGICA Y CONJUNTOS” Coordinación General del Sistema INNOVACIÓN PARA EL APRENDIZAJE para la Innovación del Aprendizaje Guía UNIVERSIDAD DE GUADALAJARA 2000 1
  2. 2. DIRECTORIO Dr. Víctor Manuel González Romero. Rector General de la Universidad de Guadalajara. Dr. Misael Gradilla Damy Vicerrector Ejecutivo de la Universidad de Guadalajara. Mtro. José Trinidad Padilla López Secretario General de la Universidad de Guadalajara. Dr. Adolfo Espinoza de los Monteros Cárdenas Coordinador Ejecutivo del Centro Universitario de los Valles Dr. Víctor Manuel Rosario Muñoz Secretario Académico del Centro Universitario de los Valles Dr. Juan Manuel de Santos Ávila Coordinador General del Sistema para la Innovación del Aprendizaje Mtro. Manuel Moreno Castañeda Coordinador de Diseño Instruccional y Ambientes de Aprendizaje 2
  3. 3. Universidad de Guadalajara Centro Universitario de los Valles Campus Ameca Contenidos: Mat. Laura Verónica Mendoza CURSO: Sánchez. “LOGICA Y Supervisión : CONJUNTOS” Adriana Tiburcio. J.Guadalupe Pérez Mares. Edición: Ileana Martínez Castillo Corrección de estilo. Jaime Larios K. Coordinación General del Sistema INNOVACIÓN PARA EL APRENDIZAJE para la Innovación del Aprendizaje UNIVERSIDAD DE GUADALAJARA Guía 2000 Contenido 3
  4. 4. Unidad 1 Conjuntos y Desigualdades 5 Unidad 2 Lógica Proposicional 9 Unidad 3 Método Deductivo 11 Unidad 4 Lógica de Predicados 13 Unidad 5 Actividades Preliminares 15 Unidad 6 Actividades de aprendizaje 19 Unidad 7 Actividades Integradoras 26 Presentación 4
  5. 5. Bienvenido al curso de Lógica y Conjuntos, la presente guía fue diseñada con el fin de llevarte de la mano en tu autoaprendizaje de esta materia. No estarás completamente sólo pues contarás con un asesor, al cual prodrás consultar en los días que han sido asignados para ello y un asesor titular que verás un día a la semana para afinar todos aquellos detalles que hayan quedado sin aclarar (esperamos sean los menos). Para tener éxito no sólo en el logro de los objetivos de este curso si no en cualquier ámbito se requiere de constancia, organiza lo mejor posible tus actividades, date un tiempo para cada una de ellas. Tú eres responsable de ti mismo por lo que de ti depende completar cada una de las actividades encomendadas en esta guía y el decir completarlas abarca mucho más allá de sólo tenerlas hechas, se refiere a comprenderlas, a llevarlas a cabo de una manera individual cuando así te sea requerido. Ésta guía consta de: 1. Actividades preliminares. Fueron diseñadas para darte una pequeña introducción de cada uno de los temas del curso y que valores los contenidos de los mismos. Para que las identifiques se usará este icono 2. Lecturas sugeridas. Te llevarán paso a paso por los temas de este curso, pero debes complementarlas. Revisa la bibliografía al final de la guía. El icono con el cual identificarás esta sección será . 3. Actividades de aprendizaje. Las actividades de aprendizaje tienen como finalidad reforzar los conocimientos adquiridos y constan de ejercicios claves para el logro de este objetivo. El icono correspondiente a esta sección es . 4. Actividades integradoras. Se refieren a las secciones de las cuales va a constar un manual del curso que tu deberás diseñar conteniendo los puntos que en cada una se te solicita. Con el fin de que las ubiques, se representan con el icono . 5. Actividad integradora final. Es la recolección y depuración de las actividades integradoras dándole un formato de presentación tipo manual. 6. Criterios de evaluación y fechas de entrega. 7. Bibliografía sugerida. Es un compendio de textos que cubren el material de estudio del curso de Lógica y Conjuntos. Recuerda que si no te son suficientes puedes complementarlos. El Objetivo General de éste curso es el adquirir la capacidad de demuestrar la validez o invalidez de razonamientos, representándolos en forma simbólica, comprobando 5
  6. 6. si los juicios emitidos por éstos se pueden obtener como consecuencia lógica de sus premisas. Lo que se espera de tí al finalizar el curso es que utilices un lenguaje formal mediante una ordenación lógica de tus ideas. La lógica es el estudio del razonamiento. Mediante su uso podemos determinar cómo un hecho puede resultar de otro. Existen dos tipos importantes de razonamiento que el hombre encuentra consistentemente útiles: • El razonamiento inductivo y • El razonamiento deductivo. El razonamiento inductivo es el medio por el cual una persona, en base de sus experiencias específicas, decide aceptar como válido un principio general. El razonamiento deductivo es, en cambio, el medio según el cual esa persona utiliza el principio general aceptado previamente para decidir sobre la validez de una idea, que a su vez habrá de determinar el curso de su acción. En nuestro estudio de lógica, no nos concierne el razonamiento inductivo, en su lugar, analizaremos algunas ideas importantes contenidas en el razonamiento deductivo, que es la forma en que la matemática se desarrolla como una estructura coherente y útil. Conjuntos y desigualdades 6 1 U
  7. 7. OBJETIVO: Resolverás desigualdades representando el conjunto solución como intervalo o unión de intervalos. Actividad preliminar 1 TEMA : I.1 Conjuntos SUBTEMAS : I.1.1 Conjuntos finitos e infinitos I.1.2 Conjunto vacío I.1.3 Conjunto universal I.1.4 Conjunto potencia TEMA : I.2 Subconjuntos SUBTEMAS : I.2.1 Subconjunto Propio TEMA : I.3 Diagramas de Venn o Venn-Euler Te recomiendo la lectura 1 y 2 Actividad de aprendizaje 1 TEMA : I.4 Operaciones fundamentales con conjuntos SUBTEMAS : I.4.1 Unión I.4.2 Intersección 7
  8. 8. I.4.3 Diferencia I.4.4 Complemento Te recomiendo la lectura 3 Actividad de aprendizaje 2 Actividad integradora 1 Actividad preliminar 2 TEMA : I.5 Desigualdades SUBTEMAS : I.5.1 Intervalos I.5.2 Desigualdades lineales I.5.3 Desigualdades con valor absoluto Te recomiendo la lectura 4 Actividad de aprendizaje 3 SUBTEMA : I.5.4 Desigualdades cuadráticas Te recomiendo la lectura 5 Actividad de aprendizaje 4 Actividad integradora 2 Lógica proposicional 2 Unidad 8
  9. 9. OBJETIVOS: • Probarás la validez o invalidez de argumentos valiéndote de las tablas de verdad. • Diferenciarás una tautología de una contradicción y una contingencia. • Verificarás equivalencias con tablas de verdad. Actividad preliminar 3 TEMAS : II.1 Definición de lógica II.2 Definición de lógica proposicional II.3 Proposiciones SUBTEMAS : II.3.1 Simples II.3.2 Compuestas Te recomiendo la lectura 7 Actividad de aprendizaje 5 TEMA : II.4 Conectivos lógicos y tablas de verdad SUBTEMAS : II.4.1 Negación II.4.2 Conjunción II.4.3 Disyunción Te recomiendo la lectura 7 Actividad de aprendizaje 5 SUBTEMA : II.4.4 Condicional Te recomiendo la lectura 8 9
  10. 10. Actividad de aprendizaje 6 TEMA : II.5 Prueba informal de validez Te recomiendo la lectura 9 Actividad de aprendizaje 7 TEMA : II.6 Formas sentenciales SUBTEMAS : II.6.1 Tautología II.6.2 Contradicción II.6.3 Contingencia II.6.4 Equivalencia Te recomiendo la lectura 10 Actividad de aprendizaje 8 Actividad integradora 3 Método Deductivo 3 Unidad 10
  11. 11. OBJETIVO: Demostrarás la validez o invalidez de argumentos sin cuantificadores basándote en las reglas de la deducción proposicional. Actividad preliminar 4 TEMA : III.1 Prueba formal de validez SUBTEMA : III.1.1 Reglas de inferencia Te recomiendo la lectura 11 Actividad de aprendizaje 9 SUBTEMA : III.1.2 Reglas de reemplazo Te recomiendo la lectura 12 Actividad de aprendizaje 10 TEMA : III.2 Demostración de la invalidez Te recomiendo la lectura 13 Actividad de aprendizaje 11 TEMA : III.3 Demostración condicional Te recomiendo la lectura 14 Actividad de aprendizaje 12 11
  12. 12. TEMA : III.4 Demostración indirecta Te recomiendo la lectura 15 Actividad de aprendizaje 13 Actividad integradora 4 Lógica de predicados 4 Unidad 12
  13. 13. OBJETIVO: Comprobarás la validez de razonamientos que contienen cuantificadores usando las leyes de deducción lógica. Actividad preliminar 5 TEMA : IV.1 Cuantificadores SUBTEMAS : IV.1.1 Universal IV.1.2 Existencial TEMA : IV.2 Clasificación de proposiciones en lógica de predicados Te recomiendo la lectura 16 Actividad de aprendizaje 14 TEMA : IV.3 Demostración de validez SUBTEMA : IV.3.1 Reglas preliminares de cuantificación Te recomiendo la lectura 17 Actividad de aprendizaje 15 TEMA : IV.4 Demostración de invalidez Te recomiendo la lectura 18 Actividad de aprendizaje 16 Actividad integradora 5 13
  14. 14. 5 Actividades Preliminares. ACTIVIDAD PRELIMINAR 1 14
  15. 15. Imagina que en un evento internacional tu tienes que solicitar un salón para congregar a un cierto número de personas que no hablan ni inglés ni castellano. Tu puesto depende de hacer la solicitud para el número adecuado de personas, y la única información que tienes a la mano es que el 60% de los participantes habla inglés y el 25% habla castellano. El 20% de los que hablan inglés hablan también castellano y son 1200 los que hablan solo inglés. Si pudiste resolver el caso, ¡felicidades! Si tuviste algún problema y te despidieron los temas relacionados con conjuntos te ayudarán. ACTIVIDAD PRELIMINAR 2 Supón que estás ayudando a elaborar una guía de uso de cierto automóvil donde tienes que advertir la velocidad para tener una distancia de frenado de menos de 75 pies. La información con la que cuentas es la siguiente: La distancia de frenado d ( en ft ) de un auto que se desplaza a v ( mph ) está 2 dada por d = v + ( v / 20 ). Este es un problema de desigualdades cuadráticas o sea el siguiente tema. ☺ ACTIVIDAD PRELIMINAR 3 Basándote en la lectura 6 deberás hacer un resumen resaltando las definiciones e ideas más importantes ya que éstas te serán de mucha utilidad en los temas siguientes. ACTIVIDAD PRELIMINAR 4 Prueba la validez del siguiente argumento. (p ⋅ q) ⊃ r (q ⊃ r) ⊃ ~t t∨s 15
  16. 16. p ∴q ¿De cuántos renglones fue tu tabla? Si un argumento tuviera 7 enunciados diferentes, ¿cuántos renglones serían necesarios? La ventaja es que existe la prueba formal que nos facilitará estas demostraciones. ☺ ACTIVIDAD PRELIMINAR 5 Ahora te planteo la siguiente cuestión: Las reglas de inferencia hasta ahora estudiadas, ¿son suficientes para probar todos los argumentos considerados como válidos? Si crees que si, trata de resolver el siguiente argumento: Todos los estudiantes son triunfadores. Todos los informáticos son estudiantes. ∴Todos los informáticos son triunfadores. Cuando nos enfrentamos a este tipo de argumentos es que nos vemos en la necesidad de usar cuantificadores. LECTURAS LECTURA 1 Libro1, pp.1-5 LECTURA 2 16
  17. 17. Libro 2, pp.1-16 LECTURA 3 Libro 1, pp.17-20 LECTURA 4 Libro 3, pp.98-107 LECTURA 5 Libro 3, pp.109-115 LECTURA 6 Libro 4, pp.15-22 LECTURA 7 Libro 4, pp.23-29 LECTURA 8 Libro 4, pp.31-33 LECTURA 9 Libro 4, pp.34-40 LECTURA 10 Libro 4, pp.43-47 LECTURA 11 Libro 4, p.52. Pon especial atención a las reglas de inferencia. Trata de comprenderlas y después memorizarlas. LECTURA 12 Libro 4, pp.56-60. Repasa muy bien las reglas de reemplazo y su uso. LECTURA 13 Libro 4, pp.66-67 17
  18. 18. LECTURA 14 Libro 4, pp.72-74 LECTURA 15 Libro 4, pp.75-77 LECTURA 16 Libro 4, pp.89-94 LECTURA 17 Libro 4, pp.96-100 LECTURA 18 Libro 4, pp.102-106 6 Actividades de aprendizaje. Todas las actividades de aprendizaje serán resueltas de manera individual y entregadas en la fecha señalada para cada una. 18
  19. 19. ACTIVIDAD DE APRENDIZAJE 1 Resuelve los siguientes ejercicios. 1. Una persona tiene tres monedas, cada una de uno o cinco pesos. Escribir los elementos del conjunto de las posibles sumas de capital que puede tener dicha persona. (Por ejemplo, si fuesen tres monedas de un peso, tendría 3 pesos; si fuesen dos de un peso y una de cinco pesos tendría 7 pesos, etc.). 2. Sean A = {1, 2, 3}, B = {1, 2, 3, 4, 5, 6}. Completar las afirmaciones que siguen, poniendo el símbolo adecuado en el espacio correspondiente. a) ∈ o ∉ 2____A A____C 1,2,3,____C 4_____B 0____A b) ⊂ o ⊄ A____C ∅____∅ A____B {2, 3, 1}____A ∅____A B____B B____C B____A 3. Sea H = {1, 2, 3, 4, 5}. a) Escribe todos los subconjuntos de H de cardinalidad uno. Llama C al conjunto de dichos subconjuntos. b) Escribe todos los subconjuntos de H de cardinalidad dos. Llama D al conjunto de dichos subconjuntos. 4. Clasifica los conjuntos siguientes según sean finitos o infinitos. a) N = conjunto de todos los números naturales b) P = conjunto de todos los números pares c) H = conjunto de todos los seres humanos d) G = el conjunto de todos los números naturales inferiores a 90 trillones 19
  20. 20. e) M = el conjunto de todos los números naturales superiores a 90 trillones f) ∅ g) {∅, N} ACTIVIDAD DE APRENDIZAJE 2 1. En los siguientes ejercicios, encuentra la unión o intersección pedidas, en dos formas por comprensión y por extensión. a) {x ∈ N|0< x < 8}∩{x ∈ N|2<x<6} b) { x ∈ N | x < 10 } ∩ { x ∈ N | 9 < x } c) { x ∈ N | x < 10 } ∪ { x ∈ N | 9 < x } d) { x ∈ N | x < 10 } ∪ { x ∈ N | 5 < x < 12 } e) { 2, 4, 5 } ∪ { y ∈ N | 4 < y } 2. Describe la relación entre A y B en cada uno de los casos siguientes: a) A∩B=∅ b) A∩B=B c) A∪B=A 20
  21. 21. 3. Dibujar un diagrama de Venn similar a la figura para cada ejercicio y sombrear sólo el área que represente el conjunto dado. Si el conjunto es el conjunto vacío, decirlo. A B C a) A∪B b) B ∩C c) A∪(B∩C) d) A ∩(B∪C ) e) A ∩(B∩C ) f) A ∪(B∪C ) g) A’ ∩ ( B’ ∪ C ) h) A ∩ ( B ∪ C’ ) ACTIVIDAD DE APRENDIZAJE 3 Resuelve los siguientes ejercicios. 1. Si tienes los intervalos U = (-4,7) A = (3,7) B = [0,6] y C = [-1,6] Determina el intervalo solución de ( A’ ∩ C ) ∩ B’ 21
  22. 22. 2. Teniendo los conjuntos A={x∈R/ 1≤ x ≤8} B = { x ∈ R / -5 < x ≤ 5 } C = { x ∈ R / -7 ≤ x < 2 } Determina el intervalo que indica la intersección de A, B y C. 3. Dados los conjuntos A = { x ∈ R / -5 < x ≤ 4 } B = { x ∈ R / (-7 ≤ x ≤ 5) ∩ (0 < x 8)} C = { x ∈ R / (- < x < -4) ∪ (4 ≤ x < )} Determina A ∩ B ∩ C’. 4. Si tienes los intervalos reales A = (-4,4) B = (-2,2) C = (-3,3] D = [-5,15) E = [-7,7] F = (0, ) Determina: { [ ( A’ ∪ B ) ∩ ( C ∪ D’) ] – ( E’ ∩ F’ ) }’ 5. Resuelve las siguientes desigualdades. a) 4 < (x + 4) / (-3) ≤ 5 b) | 6x – 4 | < 3 c) | x/2 + 10 | ≥ 4 22
  23. 23. 6. Las calificaciones de un estudiante fueron 85, 57 y 78 en los tres primeros exámenes parciales, ¿qué puntuación debe obtener en su próximo examen a fin de obtener una calificación promedio entre 70 y 80. ACTIVIDAD DE APRENDIZAJE 4 1. Resuelve las siguientes desigualdades. 2 a) x + 5x + 6 0 2 b) x – 3x – 4 0 c) (x – 3) / (x + 2) > 0 2 d) (x –5x +6) / (x – 7) 0 2. Una empresa produce discos compactos que vende en $10. El costo de producción de x discos compactos diariamente está dado por la fórmula 2 C = x + 32x – 40. ¿Cuál debe ser la producción diaria a fin de que la empresa obtenga ganancias? NOTA.- A partir de ésta actividad todos los ejercicios y problemas serán del libro 4. ACTIVIDAD DE APRENDIZAJE 5 Resuelve los números pares de la sección I y II de los ejercicios 1 páginas 29 y 30. ACTIVIDAD DE APRENDIZAJE 6 De las páginas 33 y 34 resuelve los ejercicios pares. ACTIVIDAD DE APRENDIZAJE 7 Resuelve los números pares de la sección I y II de las páginas 41 y 42. ACTIVIDAD DE APRENDIZAJE 8 23
  24. 24. De las páginas 47 y 48 resuelve los números pares de las secciones I y II. NOTA.- En las siguientes actividades de aprendizaje se te dan a escoger los ejercicios y problemas a resolver, exceptuando los marcados con ∗ . ACTIVIDAD DE APRENDIZAJE 9 De las páginas 53 a la 55 resuelve 1. Cinco ejercicios de la sección I. 2. Cuatro ejercicios de la sección II. 3. Tres ejercicios de la sección III. 4. Tres ejercicios de la sección IV. ACTIVIDAD DE APRENDIZAJE 10 De las páginas 60 a la 65 resuelve 1. Cinco ejercicios de la sección I. 2. Cuatro ejercicios de la sección II. 3. Seis ejercicios de la sección III. 4. Cuatro ejercicios de la sección IV. ACTIVIDAD DE APRENDIZAJE 11 Resuelve dos ejercicios de la página 67. ACTIVIDAD DE APRENDIZAJE 12 Resuelve sólo un ejercicio de la página 75. 24
  25. 25. ACTIVIDAD DE APRENDIZAJE 13 Resuelve un ejercicio de la página 78. ACTIVIDAD DE APRENDIZAJE 14 Resuelve diez ejercicios de la sección I páginas 94 y 95. ACTIVIDAD DE APRENDIZAJE 15 De las páginas 101 a la 107 resuelve 1. Dos ejercicios de la sección I. 2. Cinco ejercicios de la sección II. ACTIVIDAD DE APRENDIZAJE 16 De las páginas 107 a la 108 resuelve 1. Dos ejercicios de la sección I. 2. Dos ejercicios de la sección II. 7 Actividades Integradoras INSTRUCCIONES GENERALES PARA ESTAS ACTIVIDADES : 25
  26. 26. ⇒ Con las actividades integradoras irás formando poco a poco un manual del curso. ⇒ Las entregarán por escrito en las fechas señaladas. ⇒ Deberán ser realizadas por equipo (máximo 5 integrantes) ⇒ Cuando se indique “Ejemplos”, y no se especifique la cantidad de ellos, desarrollen al menos uno por integrante del equipo. ⇒ Conforme las vayas entregando, deja un respaldo para ti, donde después puedas hacer las correcciones pertinentes. ⇒ A lo largo de la guía de estudio se les recomiendan unas lecturas en las cuales se pueden basar, pero deben documentarse un poco más, así que anoten la bibliografía que usaron para complementar el contenido de cada actividad integradora. ACTIVIDAD INTEGRADORA 1 La primera parte del manual debe contener : I. Una pequeña introducción donde mencionen quién introdujo por primera vez la palabra conjunto y en qué año. II. El concepto y ejemplos originales (por lo menos dos en cada punto) de cada una de las siguientes secciones. a) Concepto de conjunto. Ejemplos. b) Notación usada en conjuntos. Ejemplos. c) Conjuntos por comprensión y extensión. Ejemplos. d) Cardinalidad. Ejemplos. e) Conjuntos finitos e infinitos. Ejemplos. f) Igualdad de conjuntos. Ejemplos. g) Conjunto vacío. Ejemplos. h) Subconjuntos i) Subconjunto propio. Ejemplos. j) Conjunto Universal. Ejemplos. 26
  27. 27. k) Diagrama de Venn. Ejemplos l) Operaciones con conjuntos (unión, intersección, diferencia, y complemento I. III.- Representación de las operaciones de conjunto mediante los diagramas de Venn. Ejemplos. II. IV- Agrega la siguiente sección de ejercicios y problemas incluyendo la respuesta. 1. Si A = {2, 4, 6, 8, 10} y B = { {2, 4}, {6, 8}, {10} } ¿cuáles de las siguientes afirmaciones son correctas? a) A ⊂ B b) B ⊂ A c) 10 ∈ A d) 10 ∉ A e) 10 ∈ B f) {10} ∈ B g) {2, 4} ⊂ A h) {2, 4} ⊄ A i) {6, 8} ⊂ B 2. Siendo U = { -2, 0, 2, 4, 6, 8 }, A = { 4, 8 } y B = { -2, 2, 6 }determina a) ( A’ ∩ B ) ∪ ( B’ ∩ A ) b) la cardinalidad de ( A’ ∪ B ) 3. Escribe por extensión la potencia del conjunto A = { 1, 2, 3 } 4. Dibuja el diagrama de Venn correspondiente a la siguiente operación ( A – B )’ ∩ C 5. En una encuesta relacionada con los hábitos de lectura se obtuvo la siguiente información: 60% leen la revista A; 50% leen la revista B; 50% leen la revista C; 30% leen la revista A y B; 20% leen las revistas B y C; 30% las 27
  28. 28. revistas A y C; 10% leen las tres revistas. ¿Qué porcentaje de personas, leen las revistas A o C? 6. El resultado de una encuesta sobre preferencia de jugos de frutas, de manzana, fresa y piña, es el siguiente: 60% gustan de manzana; 50% gustan de fresa; 40% gustan de piña; 30% gustan de manzana y fresa; 20% gustan fresa y piña; 15% gustan manzana y piña, además 5% gustan de los tres. ¿Qué porcentaje de las personas encuestadas no gustaron de los jugos de frutas mencionados? ACTIVIDAD INTEGRADORA 2 La actividad integradora 2 es la continuación de la primera parte para así completar el capítulo I del curso. Esta parte del manual debe contener: 1. Concepto de desigualdad. 2. Equivalencias de expresión para intervalos, desigualdades y gráficas. 3. Propiedades de las desigualdades. Ejemplos 4. Ejemplos de solución de desigualdades lineales. 5. Propiedades de las desigualdades con valor absoluto. Ejemplos. 6. Proceso de solución de ecuaciones cuadráticas y de expresiones racionales. Ejemplos. 7. Sección de ejercicios. Resuelve y expresa la solución como intervalo, desigualdad y gráfica. a) Sean A = (-5, 3] y B = (-5,5), hallar A ∩ B. b) (4x – 1) / 2 + 2 > 5. 28
  29. 29. c) Tres individuos cuentan el número de piezas que por minuto fabrica una máquina. El primero contó la mitad menos tres, el segundo contó la sexta parte mas 7 piezas y el tercero contó la cuarta parte mas 5 piezas. Si el primero contó más piezas que el segundo, pero menos que el tercero. ¿Qué número de ellas arroja la máquina? 8. Anexar dos problemas donde se usen desigualdades (uno lineal y otro cuadrático). ACTIVIDAD INTEGRADORA 3 1. Anexa el resumen de la actividad preliminar 2. 2. Anota la definición de enunciado simple y compuesto con sus respectivos ejemplos. 3. Escribe las tablas de verdad de cada conectivo lógico. 4. Explica la prueba informal de validez y agrega dos ejemplos. 5. Define y anota una ejemplo de a) forma sentencial b) tautología c) contradicción d) equivalencia ACTIVIDAD INTEGRADORA 4 NOTA : Los problemas y ejercicios que a continuación se te piden no deben ser del libro IV. 1. Escribe una pequeña introducción al tema Prueba Formal de Validez. 29
  30. 30. 2. Anota las reglas de inferencia y escribe dos ejercicios y un problema con su solución. 3. Explica para qué sirven las reglas de reemplazo. 4. Escribe las reglas de reemplazo y dos problemas con su solución. 5. Valiéndote de un argumento explica paso a paso cómo se hace una demostración de invalidez. 6. Menciona en qué consiste la regla de demostración condicional. Escribe un ejercicio y un problema incluyendo su solución. 7. Explica la regla de reducción al absurdo y adjúntale un problema resuelto. 8. Anota los datos completos de la bibliografía que utilizaste. Si tienes dudas de cómo citar, revisa la bibliografía de este curso. ACTIVIDAD INTEGRADORA 5 1. Escribe la diferencia entre proposición simple y general. 2. Menciona los dos tipos de cuantificadores, así como su simbología. Ejemplifícalos. 3. Hay cuatro tipos de relación sujeto predicado, anótalas e ilustra cada una con un ejemplo. 4. Para la demostración de validez, se necesita de las reglas preliminares de cuantificación. Escríbelas junto con su expresión correspondiente. 5. Demuestra dos argumentos válidos. 6. Explica el procedimiento a seguir para la demostración de invalidez. Aprovecha un argumento inválido para clarificar el proceso. 7. Anota bibliografía utilizada en esta actividad integradora. ACTIVIDAD INTEGRADORA FINAL 1. Reúne las cinco actividades integradoras para empezar a darle forma al manual del curso. Recuerda las instrucciones generales que se dieron al iniciar la primera actividad integradora. 2. Este manual debe contener: 30
  31. 31. a) el asunto de referencia y sus respectivas respuestas de acuerdo a cada una de las actividades integradoras. b) hoja de presentación c) índice d) bibliografía 3. Anexa una hoja de comentarios que incluya: a) una crítica a la guía del curso de lógica (respecto a su diseño). b) observaciones al respecto del contenido (lecturas, actividades de aprendizaje, actividades integradoras, etc.). c) en general cualquier sugerencia para la mejora de este curso y su aprovechamiento. CRITERIOS DE EVALUACIÓN ACTIVIDADES PRELIMINARES 5% ACTIVIDADES DE APRENDIZAJE 20% ACTIVIDADES INTEGRADORAS 45% ACTIVIDAD INTEGRADORA FINAL 10% 31
  32. 32. EXAMENES PARCIALES 20% FECHAS DE ENTREGA Sesión 1 SESIÓN 2 Sesión 3 Sesión 4 Sesión 5 Actividad Actividad de Presentación Actividad de Integradora 1 aprendizaje 4 Examen (cap. I) Fecha: aprendizaje 1 y Actividad de Actividad Actividad de 2 aprendizaje 3 integradora 2 aprendizaje 5 y Fecha: Fecha: Fecha: 6 Fecha: Sesión 6 Sesión 7 Sesión 8 Sesión 9 Sesión 10 Examen (cap. Actividad de Actividad II) Actividad de Actividad de aprendizaje 7 y Integradora 3 Actividad aprendizaje 10 aprendizaje 11 y 8 Fecha: preliminar 4 Fecha: 12 Fecha: Actividad de Fecha: aprendizaje 9 Fecha: Sesión 11 Sesión 12 Sesión 13 Sesión 14 Sesión 15 Actividad de Examen (cap. aprendizaje 13 III) Actividad de Actividad Examen 4 Actividad Actividad de aprendizaje 16 integradora 5 (cap. IV) integradora 4 aprendizaje 14 y Fecha: Fecha: Fecha: 15 Fecha: Sesión 16 Sesión 17 Sesión 18 Sesión 19 Sesión 20 Actividad Entrega de Asesoría para Examen Entrega de integradora final notas examen Extraordinario notas de Fecha: Aclaraciones extraordinario Fecha: examen Fecha: Fecha: extraordinario Fecha: BIBLIOGRAFÍA I. TEORÍA DE CONJUNTOS Seymour Lipschutz McGraw-Hill Colombia,1970 II. LÓGICA Y CONJUNTOS 32
  33. 33. Porfírio Gutiérrez González y coautores. Sima editores México, 1999 III. ÁLGEBRA, TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA Swokowski & Cole Novena edición International Thomson México, 1997 IV. LÓGICA SIMBÓLICA Irving M. Copi Decimatercera reimpresión CECSA México, 1995 V. INTRODUCCIÓN A LA LÓGICA P. Suppes, S. Hill Novena reimpresión Editorial Reverté México, 1991 VI. INICIACIÓN A LA LÓGICA SIMBÓLICA José Antonio Arnaz Séptima reimpresión Editorial Trillas México,1999 33

×