Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
In this talk at AI Frontiers conference, Jeff Dean discusses recent trends and developments in deep learning research. Jeff touches on the significant progress that this research has produced in a number of areas, including computer vision, language understanding, translation, healthcare, and robotics. These advances are driven by both new algorithmic approaches to some of these problems, and by the ability to scale computation for training ever large models on larger datasets. Finally, one of the reasons for the rapid spread of the ideas and techniques of deep learning has been the availability of open source libraries such as TensorFlow. He gives an overview of why these software libraries have an important role in making the benefits of machine learning available throughout the world.
Login to see the comments