Optical Networking Trends & Evolution


Published on

Published in: Technology, Business
1 Comment
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Optical Networking Trends & Evolution

  1. 1. Optical Networking Trends & Evolution<br />Christoph Glingener<br />March 2011<br />
  2. 2. Optical Networking Trends & EvolutionOutline<br />Technology status and evolution<br />Coding & Modulation<br />Optical Layer<br />Protocols <br /> & multi-layer integration<br />Management & Control<br />Coding&Modulation Optical Layer Protocols / Multi-Layer Management/Control<br />SDO<br />CDCF<br />ROADM<br />H-Amp<br />100G<br />G.709<br />OSS<br />Ethernet<br />MTOSI<br />GMPLS<br />Multi-<br />layer<br />Solution requirements – system/component technologies – costs !<br />
  3. 3. Channel Codingand ModulationCurrentandfuturekeyrequirements<br />Today<br />Mostly 10G OOK<br />40G was a transition step to coherent, DSP-based technologies<br />OOK, DPSK, DQPSK, PM-QPSK<br />Commercial success and further lifetime questionable !<br />PM-QPSK 100G coherent (1st generation) picking up<br />What‘s next ?<br />400G, 1T ?<br />Maximise spectral efficiency vs. reach ?<br />Minimise costs !<br />Get flexibility by Software Defined Optics (SDO)<br />Today<br />RS-FEC<br />Concat.-FEC<br />Turbo S-FEC<br />channelcoding<br />andmodulation<br />?<br />OOK<br />DB<br />DPSK<br />PM-QPSK<br />2.5G<br />10G<br />40G<br />100G<br />
  4. 4. Channel Codingand ModulationRelative COGS oftransponders<br />100G coh<br />normalized on 2011 10G cost<br />needstobe<br />adressed !<br />Cost efficiency of 40G questionable – need low cost 100G option !<br />
  5. 5. Coding<br />Add. NCG smaller vs. increasing OH<br />1 dB add. by soft-in decoding<br />Modulation<br />single pol., SSMF, 100km spans, ideal Raman, no DC, WDM with 5 channels<br />Channel Codingand ModulationWherearethelimits ?<br />14<br />9<br />8<br />13<br />7<br />12<br />6<br />11<br />5<br />10<br />4<br />9<br />3<br />8<br />2<br />7<br />1<br />6<br />0<br />5<br />0<br />5<br />10<br />15<br />1<br />1.1<br />1.2<br />1.3<br />Shannon limit<br />Gaussianch.<br />fibercapacitylimit [1]<br />500km<br />Shannon limit<br />for ideal FEC<br />256QAM<br />Shannon limit<br />soft<br />2000km<br />2 bit<br />hard<br />64QAM<br />8000km<br />Spectral Efficiency (bits/s/Hz)<br />Net CodingGain [dB] for BER=1e-15<br />16QAM<br />100G implementations<br />8PSK<br />QPSK<br />Shannon limit<br />Gaussianchannel<br />G.709<br />BPSK<br />-1.5<br />20<br />25<br />1.4<br />1.5<br />transmission rate<br />SNR/bit (dB)<br />[1] Essiambre, et al., “Capacity Limits of Optical <br /> Fiber Networks,” JLT, vol. 28, no. 4, Feb. 2010.<br />Scale by Superchannel/OFDM & spatial diversity (polarization/fiber)<br />
  6. 6. Channel Coding and ModulationWhat do we need to get there ?<br />High speed DSPs/DACs/ADCs : power limitation !<br />Photonic Integration<br />Photonics are dominating optical transceiver size & cost<br />Options : InP, hybrid, CMOS photonics<br />Adapted from Fujitsu Microelectronics<br />≈1 mm<br />Oclaro : 40 Gb/s InP DQPSK Encoding Chip<br />
  7. 7. Channel Coding and Modulation400G ?<br />480 Gb/s (incl. 15% FEC OH)<br />Nyquist WDM spectral shaping<br />Total BW = #subcarriers x symbol rate<br />Only noise limitations considered<br />Overall power remains constant<br />Channel granularity: 50 GHz<br />PM-64QAM<br />Capacity x reach = const.<br />PM-8QAM<br />PM-QPSK<br />PM-16QAM<br />PS-QPSK<br />100GPM-QPSK<br />
  8. 8. Channel Coding and Modulation1T ?<br />1200 Gb/s (incl. 15% FEC OH)<br />Nyquist WDM spectral shaping<br />Total BW = #subcarriers x symbol rate<br />Only noise limitations considered<br />Overall power remains constant<br />Channel granularity: 50 GHz<br />Capacity x reach = const.<br />PM-16QAM<br />PM-8QAM<br />PS-16QAM<br />PM-QPSK<br />100GPM-QPSK<br />
  9. 9. Channel Codingand ModulationµWave Radio (fixed) Evolution<br />SDR, AMC<br />Adaptive Modulation <br />andCoding<br />1970<br />1980<br />1990<br />2000<br />XPIC<br />Cross Polarization<br />InterferenceCanceller (see PM)<br />Analogue AM/FM<br />0.5/0.2 Bit/s/Hz<br />Req. S/N @ BER 1E - 3[dB]<br />Net Efficiency [Bit/s/Hz]<br />QPSK<br />1/2<br />2<br />QPSK<br />3/4<br />2<br />16QAM<br />3/4<br />4<br />16QAM<br />5/6<br />4<br />QPSK<br />uncoded<br />2<br />16QAM<br />1/2<br />4<br />16QAM<br />uncoded<br />4<br />64QAM<br />1/2<br />6<br />64QAM<br />2/3<br />6<br />64QAM<br />3/4<br />6<br />64QAM<br />5/6<br />6<br />64QAM<br />uncoded<br />6<br />128QAM<br />5/6<br />7<br />256QAM<br />5/6<br />8<br />Code rate<br />Bit/Symbol<br />Note : only convolutional coding considered<br />Source : Detecon<br />
  10. 10. Channel Codingand ModulationµWave Radio – Adaptive Modulation & Coding (AMC)<br />AMC to offer variable link ranges, data rates, availability <br />@ BER 1E-11<br />All overhead considered<br />16-QAM, 25 min non-availability/year <br />VBR<br />CBR<br />64-QAM, 115 min non-availability/year <br />UBR<br />VBR<br />CBR<br />4-QAM, 5 min non-availability/year <br />CBR<br />Hitless switching<br />Between PHY modes<br />FIXED sliced spectrum given<br />Source : Marconi (now Ericsson)<br />Hitless AMC for flexible usage of a FIXED sliced spectrum<br />
  11. 11. Channel Coding and ModulationSoftware-Defined Optics (SDO) ?<br />Reach [km]<br />1100<br />125<br />2500<br />250<br />5000<br />500<br />350<br />Baseband<br />processor:<br />Equalizer,<br />Modem,SD-FEC<br />Baseband<br />processor:<br />Equalizer,<br />Modem,SD-FEC<br />DAC<br />DAC<br />64-QAM<br />Programmable400Gb/slinecard<br />300<br />IQ-Mod x<br />IQ-Mod x<br />32-QAM<br />DAC<br />DAC<br />250<br />49-QAM<br />16-QAM<br />200<br />LO laser<br />LO laser<br />25-QAM<br />DAC<br />DAC<br />8-QAM<br />Data Rate [Gb/s]<br />150<br />400Gb/sIF<br />IF#130 Gbaud15% SD-FEC50-300 Gb/s<br />9-QAM<br />IQ-Mod y<br />IQ-Mod y<br />100<br />DAC<br />DAC<br />4-QAM<br />LO laser<br />LO laser<br />50<br />OTL4.4x3<br />DPSK<br />ADC<br />ADC<br />0<br />IQ-x<br />Coherent<br />RX<br />IQ-y<br />IQ-x<br />Coherent<br />RX<br />IQ-y<br />-5<br />0<br />5<br />10<br />15<br />OSNR Margin [dB]<br />ADC<br />ADC<br />OTNProc. &<br />Mux.<br />ADC<br />ADC<br />QPSK<br />ADC<br />ADC<br />IF#230 Gbaud15% SD-FEC50-300 Gb/s<br />16QAM<br />
  12. 12. Exploitation of excess system margin<br />Increased capacity on shorter paths<br />Better utilization on spectral resources, less interfaces<br />0.25<br />100G<br />150G<br />200G<br />0.2<br />0.15<br />Percentage of Routes<br />0.1<br />0.05<br />0<br />Source : DICONET Project<br />500<br />600<br />700<br />800<br />900<br />1000<br />1100<br />1200<br />1300<br />1400<br />Channel Coding and ModulationReach variation – SDO Example<br />Link Length [km]<br />
  13. 13. Channel Codingand ModulationSummary<br />Software Defined Optics<br />Not fixed at 400G, 1T – fix/slice the spectrum !<br />Adaptive Modulation & Coding (AMC)<br />Universal Core Interface ?<br />Component Needs<br />High Speed integrated ADCs/DSPs/DACs<br />Photonic Integration !<br />… keep questioning the requirements<br />Is maximum spectral efficiency and reach the dominant goal ?<br />Costs ? churn rates ? fiber shortage ?<br />Today<br />RS-FEC<br />Concat.-FEC<br />Turbo S-FEC<br />channelcoding<br />andmodulation<br />SDO<br />OOK<br />DB<br />DPSK<br />PM-QPSK<br />2.5G<br />10G<br />40G<br />100G<br />
  14. 14. Optical Layer – Line SystemCurrentandfuturekeyrequirements<br />Today‘scorelinesystem design targets<br />C-band, 96chs, 100Gb/sPM-QPSK Coherent, 2000+ km<br />Supported by optical amplification<br />Low nonlinear fiber signal degradation<br />Raman booster & pre-amplifier<br />Improved OSNR<br />Hybrid Raman + EDFA pre-amplifier<br />What‘snext ?<br />Reduce losses<br />Improve OSNR performance<br />Increase transient suppression<br />Today<br />opticallayer<br />gain/power control<br />variable gaincontrol<br />?<br />linesystem<br />8 ch<br />96 ch non-DCx<br />160 ch C+L<br />EDFA<br />Raman<br />hybrid<br />
  15. 15. Optical Layer – Line SystemFully integrated EDFA/Raman amplification<br />Performance of different hybrid amplifiers<br />Improved net noise figures by hybrid amplification <br />
  16. 16. Gain controlled<br /> Output power=+21dBm & NF=4.5dB<br /> Transient event =1usec & Add/Drop=16dB<br /> Gain excursion<1.5dB<br />Self saturated<br /> Output power=+21dBm & NF=4.5dB<br /> Transient event =1usec & Add/Drop=19dB<br /> Gain excursion<0.4dB<br />Optical Layer – Line SystemTransient suppression<br />Increased transient suppression by fill lasers or self-saturation<br />
  17. 17. Optical Layer – Line SystemSummary<br />Flexibility, enhanced system margin supported by<br />Reduced losses<br />ROADM design, low loss fiber ?<br />Improved OSNR<br />Hybrid amplification<br />Increase transient suppression<br />Self-saturated EDFAs<br />Fast VOA integrated with EDFAs<br />Component needs :<br />High power pump sources<br />Low relative intensity noise Raman pump sources<br />Today<br />optical layer<br />gain/power control<br />variable gain control<br />Transient immune,<br />hybrid amplification<br />line system<br />8 ch<br />96 ch non-DCx<br />160 ch C+L<br />EDFA<br />Raman<br />hybrid<br />
  18. 18. Optical Layer - SwitchingROADM - Functional Definitions<br />Colorless<br />Directionless<br />Contentionless<br />Flexgrid<br />Colorless<br />Directionless<br />Contentionless<br />Colorless<br />Directionless<br />Directionless<br />Fixed A/D<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />Line<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />WSS<br />A/D<br />WDM<br />WSS<br />WDM<br />WSS<br />WSS<br />TX<br />TX<br />TX<br />TX<br />TX<br /><ul><li>Local channels </li></ul> fixed in color <br /> and direction<br /><ul><li>Any direction
  19. 19. Local channels </li></ul> fixed in color<br /><ul><li>Any direction
  20. 20. Any color
  21. 21. Individual color</li></ul> only per A/D path <br /><ul><li>Any direction
  22. 22. Any color
  23. 23. Color re-use on</li></ul> same A/D path<br /><ul><li>Any direction
  24. 24. Any color
  25. 25. Color re-use on</li></ul> same A/D path<br /><ul><li>Flexible channel </li></ul> Bandwidth<br />1xN WSS, Flexgrid<br />1xN WSS<br />1xN WSS<br />WSS<br />WSS<br />WDM<br />
  26. 26. Optical Layer – SwitchingCurrentandfuturekeyrequirements<br />Functional Requirements<br />8 degrees, scalable<br />Full A/D capacity, scalable<br />Colorless – Directionless - Contentionless<br />Flexgrid – max. 80/96 channels @ 50 GHz<br />No single-point-of-failure (SPOF)<br />Ease-of-use<br />Physical Requirements<br />Minimum loss, SNR degradation, crosstalk<br />Optimum filtershape (cascading)<br />Switching time ?<br />Today<br />optical layer<br />100 Ghz<br />Flexgrid<br />50 Ghz<br />?<br />switching<br />colorless<br />contenionless<br />directionless<br />FOADM<br />2D-ROADM<br />MD-ROADM<br />
  27. 27. …<br />…<br />Optical Layer - SwitchingROADMs … andthisishowitcouldlooklike<br />IL = 9 dB<br />Per degree<br />No single-point-of-failure<br />Scalable in directions and A/D capacity<br />Minimum loss<br />IL = 9 dB<br />…<br />…<br />Here : Twin WSS architecture<br />Could be splitter (check IL and Isolation)<br />1x16 WSS<br />1x16 WSS<br />Line<br />9 ports<br />Up to 96 channels per port<br />… but : all WSS need to <br /> beFlexgrid and are <br /> not available today<br />IL = 6 dB<br />A/D<br />1x4 Comb<br />1x4 Comb<br />…<br />…<br />Scaling to reach full <br />add/drop capacity<br />w/o only 25% A/D capacity<br />(need 768:24 = 32 feeds !)<br />passive fiber<br />arrangement<br />IL = 1 dB<br />…<br />IL = 9 dB<br />8 x24 WSS<br />8 x24 WSS<br />100% add/drop<br />capacity for all degrees<br />(768 ch.)<br />…<br />
  28. 28. Optical Layer - SwitchingROADMs … it‘s all aboutcompromises !<br />IL = 6 dB<br />Restrict to max. 6 degrees …<br />… or scale with couplers<br />On line side or WSS output side<br />Insertion Loss !!!<br />Per degree<br />IL = 6 dB<br />…<br />…<br />…<br />…<br />1x9 WSS<br />1x9 WSS<br />Line<br />4 ports<br />Upto 96 channels per port<br />Many different options (incl. reduction of A/D capacity)<br />Cascading WSSs<br />Combining WSS and multicast switches (PLC)<br />Monolithic switch plus splitter and filters<br />…<br />Insertion Loss : in any case multiple amplifiers included !<br />A/D<br />
  29. 29. Optical Layer – SwitchingExample :MD – CDCF ROADM<br />1x9 Line module<br />A/D 1st stage<br />A/D 8-channel IF<br />EDFA-RAMAN<br />EDFA-RAMAN<br />SHUFFLE<br />
  30. 30. Optical Layer – SwitchingSummary<br />CDCF ROADMs are here today !<br />Ideal components not available today<br />Realization with supporting technologies possible<br />Avoid internal amplification as much as possible<br />Ensure steep passbands, proper isolation<br />Component needs :<br />Line side WSS : 1xN Flexgrid with N as large as possible<br />A/D WSS : NxM with M as large as possible<br />Optical Power Monitoring<br />Must be Flexgrid too<br />Needed on line and add/drop sites<br />Today<br />opticallayer<br />100 Ghz<br />Flexgrid<br />50 Ghz<br />NG-CDCF<br />switching<br />colorless<br />contenionless<br />directionless<br />FOADM<br />2D-ROADM<br />MD-ROADM<br />
  31. 31. Protocols and Multi-Layer IntegrationCurrent and future key requirements<br />G.709 / OTN<br />Scalable wrapping, multiplexing and switching technology <br />Evolved to be more Ethernet friendly<br />ODUflex support channelization of TDM & packet interfaces<br />Hitless resizing provides for in-service channel sizing<br />Need to support future bitrates and transparent timing<br />Ethernet, MPLS-TP, MPLS<br />All evolving and having their play<br />Multi-layer integration is the key challenge<br />Today<br />T-MPLS<br />MPLS-TP<br />?<br />transport<br />packet<br />EFM<br />CFM<br />Y.1731<br />1G<br />10G<br />40G/100G<br />Protocols<br />?<br />SONET<br />SDH<br />TDM<br />G.709v3<br />G.709v1<br />G.709v2<br />
  32. 32. Includesrichprotection, OAM options<br />Plus richandevolvingprotection, OAM, … standards (802.1/2/3,Y.1731,…)<br />Protocolsand Multi-Layer IntegrationOTN+ETH PHY evolution<br />
  33. 33. Protocols and Multi-Layer IntegrationMPLS-TP and Ethernet<br />Both, Ethernet and MPLS extended with Transport Profiles (TP)<br />OAM, protection, traffic engineering, static and dynamic options, …<br />Comparison is difficult<br />MPLS-TP might have benefits in MPLS interworking (but …)<br />Ethernet is the data link layer, always !<br />The clever bit is to ensure seamless interworking<br />MPLS, VPLS<br />Service VLAN<br />MPLS PW<br />Tunnel VLAN<br />Link VLAN<br />MPLS Link<br />Ethernet, GFP<br />ODU switching<br />OTN Framing, FEC, OAM<br />Optical switching and transport<br />Multiple options to achieve the same !<br />
  34. 34. Protocolsand multi-layerintegrationMulti-layer network study - results<br />US, 46 Nodes, 18 Tb/s, 1:1 packet:TDM-> 2:1<br />10GbE (grey)<br />…<br />OTU2 (grey)<br />typicalrange<br />23%savings<br />…<br />Packet<br />Switch(MPLS)<br />OTU2 (grey)<br />…<br />10GbE (grey)<br />…<br />10GbE (grey)<br />…<br />OTU2 (grey)<br />…<br />Hybrid Packet/<br />Circuit Switch <br />(MPLS/ODU)<br />…<br />OTU4<br />(grey)<br />Packet<br />Switch(MPLS)<br />Circuit<br />Switch <br />(ODU)<br />Circuit<br />Switch <br />(ODU)<br />OTU4<br />(colored)<br />…<br />…<br />96 l<br />DWDM<br />96 l<br />DWDM<br />Contentionless<br />MD-ROADM<br />OTU4<br />(colored)<br />OTU4<br />(colored)<br />…<br />…<br />…<br />…<br />96 l<br />DWDM<br />96 l<br />DWDM<br />96 l<br />DWDM<br />96 l<br />DWDM<br />Contentionless<br />MD-ROADM<br />Contentionless<br />MD-ROADM<br />Up to 23% savings with an integrated switch<br />Autenrieth, et.al., “Benefits of Integrated Packet/Circuit/Wavelength Switches <br />in Next-Generation Optical Core Networks”, NFOEC 2011, NMC4 <br />
  35. 35. Protocols and Multi-Layer IntegrationSummary<br />G.709 / OTN<br />Extend to higher (flexible !) datarates<br />Ethernet, MPLS-TP, MPLS<br />Core Networks : MPLS (over OTN)<br />Multi-layer integration<br />Provides significant saving potentials<br />Interaction of the layers needs attention !<br />Today<br />T-MPLS<br />MPLS-TP<br />MPLS/MPLS-TP<br />transport<br />packet<br />EFM<br />CFM<br />Y.1731<br />IEEE 802.1/2/3<br />1G<br />10G<br />40G/100G<br />400G/1T<br />Protocols<br />Integrate<br />SONET<br />SDH<br />400G/1T ?<br />TDM<br />G.709v3<br />G.709v1<br />G.709v2<br />
  36. 36. Management andControlCurrentandfuturekeyrequirements<br />Private, TDM and lambda services<br />Packet services<br />MPLS / Ethernet<br />ODU switching<br />OTN Framing, FEC, OAM<br />Optical switching and transport<br />Today<br />OSS Integration<br />?<br />management<br />andcontrol<br />Corba<br />TL-1<br />XML/MTOSI<br />SNMP<br />Q<br />ASON<br />GMPLS<br />
  37. 37. Management andControlKey enabler : multi-x control plane<br />Multi-Degree<br />Auto-discovery of topology (OSPF-TE)<br />Constraint-aware path computation<br />Automated signaling (RSVP-TE)<br />Mesh networking, agile endpoint selection, tunable origination and regeneration<br />Multi-Region<br />Transport networks growing in size and complexity<br />Formerly islands, regional networks are linking up<br />Multi-Layer<br />Flexible, agile WDM transport layer, integrated Ethernet/MPLS layer, integrated OTN TDM layer<br />Multi-Service<br />Automated Restoration<br />Fault detection/reporting, dynamic channel re-route<br />Embedded Intelligence in Every Element<br />Multi-Vendor<br />Protocol standardization, proven Interoperability<br />GMPLS core, OIF & ASON compatibility<br />
  38. 38. Management and ControlOne Tool to handle the complexity : PCE Architecture<br />Separate where computation is needed from where it’s performed<br />Path Computation Client (PCC)<br />Requesting path computation services (can be NE, NMS, Tool, PCE)<br />Path Computation Element (PCE)<br />Performs path computations on behalf of PCCs or other PCEs<br />Standardized toolbox approach<br />Distributed, centralized, hybrid approaches<br />Sees nodes <E,F,G,H><br />Sees nodes <A,B,C,D,E><br />“compute A to H”<br />“compute E to H”<br />Sees self<br />PCE<br />PCE<br />PCC<br />“E->F->G->H”<br />“A->B->C->D -> E->F->G->H”<br />Addressing the complexity in a standardized way <br />
  39. 39. Management andControlSummary<br />Interoperable network automation by standardized architecture<br />IETF: Routing Area, multiple working groups e.g. PCE<br />OIF: User-to-Network / Network-to-Network IAs (UNI/E-NNI)<br />ITU-T: Automatically Switched Optical Network (ASON)<br />TMF : Management frameworks and interfaces (e.g. MTOSI)<br />Future needs are endless ! <br />Multi-layer definitions/interactions<br />resource sharing, provisioning, protection, restoration, OAM interaction, …<br />OTN extensions<br />Optical constraints (wavelength, path, OSNR,…)<br />… many more !<br />Today<br />OSS Integration<br />Automated<br />top down<br />multi-layercontrol<br />management<br />andcontrol<br />Corba<br />TL-1<br />XML/MTOSI<br />SNMP<br />Q<br />ASON<br />GMPLS<br />
  40. 40. SummaryThe programmable & automated optical network<br />Today<br />OSS Integration<br />Automated <br />top down<br />multi-layer control<br />management <br />and control<br />Corba<br />TL-1<br />XML/MTOSI<br />SNMP<br />Q<br />ASON<br />GMPLS<br />T-MPLS<br />MPLS-TP<br />MPLS/MPLS-TP<br />transport<br />packet<br />EFM<br />CFM<br />Y.1731<br />IEEE 802.1/2/3<br />1G<br />10G<br />40G/100G<br />400G/1T<br />Protocols<br />It won’t get boring !<br />SONET<br />SDH<br />400G/1T ?<br />TDM<br />G.709v3<br />G.709v1<br />G.709v2<br />100 Ghz<br />Flexgrid<br />50 Ghz<br />NG-CDCF<br />switching<br />colorless<br />contenionless<br />directionless<br />FOADM<br />2D-ROADM<br />MD-ROADM<br />optical layer<br />gain/power control<br />variable gain control<br />Transient imune,<br />hybrid amplification<br />line system<br />8 ch<br />96 ch non-DCx<br />160 ch C+L<br />EDFA<br />Raman<br />hybrid<br />Integrate<br />RS-FEC<br />Concat.-FEC<br />Turbo S-FEC<br />channel coding<br />and modulation<br />SDO<br />OOK<br />DB<br />DPSK<br />PM-QPSK<br />2.5G<br />10G<br />40G<br />100G<br />
  41. 41. Thank you !<br />Specialthanksto :<br />Finisar, Fujitsu Microelectronic, JDSU, Oclaro, Juniper & ADVA<br />cglingener@advaoptical.com<br />IMPORTANT NOTICE<br />The content of this presentation is strictly confidential. ADVA Optical Networking is the exclusive owner or licensee of the content, material, and information in this presentation. Any reproduction, publication or reprint, in whole or in part, is strictly prohibited. <br />The information in this presentation may not be accurate, complete or up to date, and is provided without warranties or representations of any kind, either express or implied. ADVA Optical Networking shall not be responsible for and disclaims any liability for any loss or damages, including without limitation, direct, indirect, incidental, consequential and special damages, alleged to have been caused by or in connection with using and/or relying on the information contained in this presentation.<br />Copyright © for the entire content of this presentation: ADVA Optical Networking.<br />