Nyquist

7,003 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
7,003
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
235
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Nyquist

  1. 1. CRITERIO DE ESTABILIDAD DE NYQUIST<br />ANTONIO COLMENAREZ<br />MARIA CAROLINA ESCALONA<br />JOHANA ALEJO<br />
  2. 2. INTRODUCCION<br />A TRAVES DE ESTA EXPOSICION ESTUDIAREMOS UN CRITERIO QUE TIENE EL MISMO OBJETIVO QUE EL DE ROUTH-HURWITZ, ES DECIR, LA ESTABILIDAD DEL SISTEMA QUE SE ESTUDIA. EL CRITERIO DE ROUTH-HURWITZ SE RELACIONABA DIRECTAMENTE CON LAS RAÍCES DE LA ECUACIÓN CARACTERÍSTICA DEL SISTEMA. EN EL CRITERIO DE NYQUIST SE EMPLEA UN PLANTEAMIENTO DISTINTO AL UTILIZAR LOS CONCEPTOS DEL ESTADO PERMANENTE CENO EN TAL CORRESPONDIENTES A ESTE ESTUDIO. ORIGINALMENTE LO FORMULÓ EN 1932 HARRY NYQUIST. ES IMPORTANTE OBSERVAR QUE SU UTILIDAD EN LA PRÁCTICA SE RELACIONA CON EL HECHO DE QUE SE PUEDE APLICAR A TRAVÉS DE MEDICIONES SENOIDALES DE RUTINA QUE ES POSIBLE EFECTUAR EN EL LABORATORIO.<br />
  3. 3. CRITERIO DE ESTABILIDAD DE NYQUIST<br />ESTE CRITERIO DE ESTABILIDAD, OBTENIDO POR H. NYQUIST, ES ÚTIL EN LA INGENIERÍA DE CONTROL, DEBIDO A QUE PERMITE DETERMINAR GRÁFICAMENTE LA ESTABILIDAD ABSOLUTA DEL SISTEMA EN LAZO CERRADO A PARTIR DE LAS CURVAS DE RESPUESTA EN FRECUENCIA EN LAZO ABIERTO, SIN QUE SEA NECESARIO DETERMINAR LOS POLOS EN LAZO CERRADO.<br />
  4. 4. CRITERIO DE ESTABILIDAD DE NYQUIST<br />EL CRITERIO DE ESTABILIDAD DE NYQUIST RELACIONA LA RESPUESTA EN FRECUENCIA EN LAZO ABIERTO G(JΩ)H(JΩ) CON EL NÚMERO DE CEROS Y POLOS DE 1+ G(S)H(S) QUE SE ENCUENTRAN EN EL SEMIPLANO DERECHO DEL PLANO “S”.<br />EL CRITERIO DE NYQUIST SE BASA EN UN TEOREMA DE LA TEORÍA DE LA<br />VARIABLE COMPLEJA.<br />
  5. 5. EJEMPLO<br />SUPONDREMOS QUE LA FUNCIÓN DE TRANSFERENCIA EN LAZO ABIERTO <br />G(S)H(S) <br />SE REPRESENTA COMO UN COCIENTE DE POLINOMIOS EN“S”.<br />PARA UN SISTEMA QUE PUEDE MATERIALIZARSE, EL GRADO DEL POLINOMIO DEL DENOMINADOR DE LA FUNCIÓN DE TRANSFERENCIA EN LAZO CERRADO, DEBE SER MAYOR O IGUAL QUE EL DEL POLINOMIO DEL<br />NUMERADOR. POR LO TANTO<br />LIM G(S)H(S)=0<br />UNA CONSTANTE PARA CUALQUIER SISTEMA QUE<br />PUEDA MATERIALIZARSE.<br />
  6. 6. CRITERIO DE ESTABILIDAD DE NYQUIST<br />CRITERIO DE ESTABILIDAD DE NYQUIST PARA UNA TRAYECTORIA CERRADA CONTINUA DETERMINADA EN EL PLANO “S” QUE NO PASA POR NINGÚN PUNTO SINGULAR, LE CORRESPONDE UNA CURVA CERRADA EN EL PLANO F(S), DONDE LA DIRECCIÓN Y EL NÚMERO DE ENCIERROS DEL ORIGEN DEL PLANO F(S) PARA LA CURVA CERRADA ESTA RELACIONADO CON LA ESTABILIDAD DEL SISTEMA.<br />SIF(S)=1+G(S)H(S)=0<br />
  7. 7. CRITERIO DE ESTABILIDAD DE NYQUIST<br />EN EL CRITERIO DE ESTABILIDAD DE NYQUIST PARA ANÁLISIS DE ESTABILIDAD, SI LA TRAYECTORIA DE NYQUIST EN EL PLANO “S” ENCIERRA Z CEROS Y P POLOS DE 1+G(S)H(S) Y NO ATRAVIESA POLOS NI CEROS DE 1+G(S)H(S) CUANDO UN PUNTO REPRESENTATIVO “S” SE DESPLAZA EN SENTIDO HORARIO A LO LARGO DE LA TRAYECTORIA DE NYQUIST, ENTONCES LA TRAYECTORIA CORRESPONDIENTE EN EL PLANO G(S)H(S) RODEA AL PUNTO -1+J0, N=Z-PVECES EN SENTIDO HORARIO. <br />(VALORES NEGATIVOSDE N IMPLICAN RODEOS ANTIHORARIOS).<br />
  8. 8. CRITERIO DE ESTABILIDAD DE NYQUIST<br />AL EXAMINAR LA ESTABILIDAD DE LOS SITEMAS DE CONTROL<br />LINEALES UTILIZANDO EL CRITERIO DE ESTABILIDAD DE NYQUIST, SE PUEDEN PRESENTAR TRES POSIBILIDADES:<br />1.NO HAY RODEO DEL PUNTO -1+J0. ESTO IMPLICA QUE EL SISTEMA ES ESTABLE SI NO HAY POLOS DE G(S)H(S) EN EL SEMIPLANO DERECHO DEL PLANO “S”; EN CASO CONTRARIO, EL SISTEMA ES INESTABLE.<br />2.HAY UN RODEO EN EL SENTIDO ANTIHORARIO O RODEOS DEL PUNTO -1+J0. EN ESTE CASO EL SISTEMA ES ESTABLE SI LA CANTIDAD DE RODEOS ANTIHORARIOS ES LA MISMA QUE LA CANTIDAD DE POLOS DE G(S)H(S)EN EL SEMIPLANO DERECHO DEL PLANO S; EN CASO CONTRARIO EL SISTEMA ES INESTABLE.<br />3.HAY UN RODEO O RODEOS DEL PUNTO -1+J0 EN SENTIDO HORARIO. EN ESTECASO, EL SISTEMA ES INESTABLE.<br />
  9. 9. ASIGNACION<br />CRITERIO DE NYQUIST<br />DADO EL SIGUIENTE PLANTEAMIENTO, DETERMINE LA ESTABILIDAD DEL SISTEMA DE CONTROL UTILIZANDO EL DIAGRAMA DE NYQUIST<br /> EXPLIQUE EN FUNCIÓN DE QUE O COMO SE DETERMINA SI EL SISTEMA ES ESTABLE.<br />CONSIDERE EL SISTEMA DE CONTROL DIGITAL QUE SE MUESTRA EN LA FIGURA. DETERMINE LA ESTABILIDAD POR EL CRITERIO DE NYQUIST CONSIDERANDO K>0.<br />
  10. 10. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Sustituyendo z en la ecuación nos queda:<br />Luego simplificamos: <br />
  11. 11. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Resolviendo los paréntesis nos queda:<br />Cuyos ceros y polos son: <br />ceros<br />En lazo abierto<br />polos<br />
  12. 12. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Sustituimos con w=j v<br />Resolvemos: <br />Multiplicamos el numerador y denominador por: <br />
  13. 13. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Nos queda:<br />Luego resolvemos la resta de v³ y aplicamos factor común en el denominador:<br />Simplificando tenemos:<br />
  14. 14. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Nos queda:<br />Entonces:<br />
  15. 15. UTILIZANDO LA TRANSFORMADA BILINEAL<br />Im<br />LA GRAFICA ES:<br />Re<br />Como no hay polos en el semiplano derecho de 6(jv) -> P=0 -> No debe haber rodeos del punto -1+j0<br />Asi-1,5K > -1<br /> K < 1/1,5 <br />K < 0,67<br />Para que el sistema sea estable<br />
  16. 16. CONCLUSION<br />EL CRITERIO DE ESTABILIDAD DE NYQUIST RELACIONA LA RESPUESTA FRECUENCIAL A LAZO ABIERTO, CON LA ESTABILIDAD A LAZO CERRADO; BASADO EN UN TEOREMA DE LA VARIABLE COMPLEJA QUE SE FUNDAMENTA EN EL MAPEO DE LOS CONTORNOS EN EL PLANO COMPLEJO<br />LA PRINCIPAL VENTAJA DEL CRITERIO DE ESTABILIDAD DE NYQUIST ES QUE EN UNA SOLA GRÁFICA PODEMOS VER LA RESPUESTA EN FRECUENCIA DE UN SISTEMA EN EL RANGO DE FRECUENCIAS COMPLETO<br />SU DESVENTAJA CONSISTE EN QUE LA TRAZA NO INDICA EN FORMA CLARA LA CONTRIBUCIÓN DE TODOS LOS FACTORES INVIDIDUALES DE LA FUNCIÓN DE TRANSFERENCIA.<br />

×