•1 like•146 views

Report

Share

Download to read offline

"Future Contingents" and "The Multiverse". Combining Two Perspectives

- 1. “Future Contingents” and “The Multiverse”: Combining Two Perspectives Antoine Suarez © Center for Quantum Philosophy (Fondation du Leman), Zürich and Geneva www.quantumphil.org IIS2018 Netherhall House, London Can Science And Technology Shape A New Humanity? Trinity College, Cambridge, January 4, 2018
- 2. Chapter 2 Beyond Space and Time: The Quantum Realm A cosmos in the lab Andreas Albrecht ponders a study of the physicists who grapple with the origins of the Universe. Andreas Albrecht is a theoretical physicist at the University of California, Davis. e-mail: ajalbrecht@ucdavis.edu Ernst Specker: Quantum contextuality Nature 542 (2017) 164
- 3. “Suarez …found a new way to fit a deity into the picture, by identifying the “many worlds” proposed by US physicist Hugh Everett with thoughts in the “mind of God”. Andreas Albrecht, Nature 542 (2017) 164 Ernst Specker: Quantum contextuality
- 4. Abstract: Many-Worlds is a parable of «Divine Omniscience» arXiv:1712.06448 © A. Suarez: All Possible Worlds
- 5. Quantum contextuality: E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, Vol. 14, pp. 239-246, 1960. Simon Kochen and Ernst Specker, The Problem of Hidden Variables in Quantum Mechanics, Journal of Mathematics and Mechanics, Vol. 17 (1967) 59-87 © A. Suarez: All Possible Worlds
- 6. Ernst Specker with his son Adrian and Simon Kochen Walking at Rigiblick, January 1963, Zürich Courtesy of Suzanne Specker © A. Suarez: All Possible Worlds
- 7. 50 Years Quantum Contextuality: Workshop, ETHZ, 22-23 June 2017 Simon Kochen, Suzanne Specker, Antoine Suarez
- 8. A C A B C “Classical-like” prediction (“properties” exist in space-time before mesurement): x1,0, y1,0 P (x, y x y) 2/3 P (x, y x y) 1/3 whatever pair of boxes is opened “Quantum-like” prediction P (x, y x y) 1 P (x, y x y) 0 whatever pair of boxes is opened. A B C 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 The Assyrian prophet contest© A. Suarez: All Possible Worlds B E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, Vol. 14, pp. 239––246, 1960.
- 9. b1 b2 b3 b4 b5 b6 b7 b8 b9 v1j A 1 (1,0,0,0) A 1 (1,0,0,0) B 1 (1,0,-1,0) C 1 (1,-1,0,0) C 1 (1,-1,0,0) D 1 (1,0,0,1) D 1 (1,0,0,1) B 1 (1,0,-1,0) E ? (1,0,1,0) v2j F 0 (0,1,0,0) G 0 (0,0,0,1) F 0 (0,1,0,0) H 0 (0,0,1,1) I 0 (0,0,1,-1) J 0 (0,1,1,0) K 0 (0,1,-1,0) L 0 (0,1,0,-1) M ? (1,1,-1,1) v3j H 0 (0,0,1,1) J 0 (0,1,1,0) E 0 (1,0,1,0) M 0 (1,1,-1,1) N 0 (1,1,-1,-1) O 0 (1,-1,1,-1) P 0 (1,1,1,-1) Q 0 (1,1,1,1) R ? (-1,1,1,1) v4j I 0 (0,0,1,-1) K 0 (0,1,-1,0) G 0 (0,0,0,1) P 0 (1,1,1,-1) Q 0 (1,1,1,1) N 0 (1,1,-1,-1) R 0 (-1,1,1,1) O 0 (1,-1,1,-1) L ? (0,1,0,-1) © A. Suarez: All Possible Worlds Kochen and Specker (K&S) Theorem, 1967 (Proof by A. Cabello, J. M. Estebaranz, and G. García Alcaine, 1996) 18 unitary vectors vij i 1,...4, j 1,...9 (boxes: A, B, C,...,P, Q, R) 9 different orthonormal bases bj , j 1,...9 (9 choices of 4 boxes). 𝑃𝑖𝑗 = 0 𝑜𝑟 1 𝑖=1 4 𝑃𝑖𝑗 = 1 If two orthogonal projectors are measured on the same system, both measurements cannot give the result 1. If 4 pairwise orthogonal projectors are measured on the same system, then one of the measurements gives 1. Projector operator onto vij : Phys. Lett. A 212, 4, 183-187 (1996); DOI: 10.1016/0375-9601(96)00134-X; quant-ph/9706009.
- 10. Ernst Specker: Genius of science and inspired theologian © A. Suarez: All Possible Worlds Ernst Specker in a Colloquium in Prague in 2002 http://www.math.harvard.edu/~knill/various/specker/
- 11. «Ich stelle mir vor, dass das Schreiben für meinen Mann eine meditative Wirkung hatte. Sie können die Bücher, die ich, wie gesagt, erst nach dem Tod meines Mannes entdeckt habe, gerne einmal besichtigen.» Courtesy of Suzanne Specker © A. Suarez: All Possible Worlds Full Greek text of the Gospels according to Mathiew and Mark hand-written by Ernst Specker with beautiful calligraphy, who let bind the trancript in leather and engrave the titel in gold.
- 12. “In einem gewissen Sinne gehören aber auch die scholastischen Spekulationen über die Infuturabilien hieher, das heisst die Frage, ob sich die göttliche Allwissenheit auch auf Ereignisse erstrecke, die eingetreten wären, falls etwas geschehen wäre, was nicht geschehen ist. (Vgl. hiezu etwa [3], Bd.3, S.363)” [3] Solana M., Historia de la filosofía española (Asociación Española para el Progreso de las Ciencias, Madrid 1941) E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, Vol. 14, pp. 239––246, 1960. «Quanten infuturabilien» © A. Suarez: All Possible Worlds
- 13. “In a certain sense the scholastic speculations about the «Infuturabilien» [To be translated as something like ‘future contingencies’] also belong here, that is, the question whether the omniscience of God also extends to events that would have occurred in case something would have happened that did not happen. (cf. e.g. [3], Vol. 3, p. 363.)” [3] Solana M., Historia de la filosofía española (Asociación Española para el Progreso de las Ciencias, Madrid 1941) E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, Vol. 14, pp. 239––246, 1960. https://arxiv.org/abs/1103.4537 «Quanten infuturabilien» © A. Suarez: All Possible Worlds
- 14. Ernst Specker Academic year 1949-50 at the Institute for Advanced Study at Princeton Here he attended lectures by Church, Siegel and discus sed problems on recursive analysis with Gödel. And here Specker may have read the book of M. Solana quoted in his seminal article in Dialectica 1960. © A. Suarez: All Possible Worlds
- 15. https://archive.org/stream/historiadelafilo03sola#page/345/mode/1up The scholastic speculations about “the omniscience of God and Human Free-Will” [3] Solana M., Historia de la filosofía española, Vol. 3, S. 363, Madrid 1941) Pedro da Fonseca Portuguese Jesuit philosopher and theologian (1528-1599) God’s “ciencia media puramente condicional” https://diariodigitalcastelobranco.pt/detalhe.php?id=36237 © A. Suarez: All Possible Worlds
- 16. Luis de Molina September 1535 – 12 October 1600 “Concordia liberi arbitrii cum gratiae donis, divina praescientia, providentia, praedestinatione et reprobatione”. http://freethinkingministries.com/an-unfortunate-appraisal-of-molinism-a-response-to-carm-orgs-what-is-molinism/ The omniscient God, by means of His scientia media knows future contingent events: He foresees which choices we can freely make and what will happen thereafter. But our will remains free to make this choice or another. Solana M., Historia de la filosofía española, Vol. 3, p. 416, Madrid 1941 © A. Suarez: All Possible Worlds
- 17. Jules Lequyer 30 January 1814 – 11 February 1862 Lequyer wrote in favor of dynamic divine omniscience, wherein God's knowledge of the future is one of possibilities rather than actualities. Omniscience, under this view, is the knowledge of necessary facts as necessary, and contingent facts as contingent. Since the future does not yet exist as anything more than a realm of abstract possibilities, it is no impugning of divine omniscience to claim that God does not know the future as a fixed and unalterable state of affairs: that he does not know what is not there to be known. https://en.wikipedia.org/wiki/Jules_Lequier http://www.iep.utm.edu/lequyer/ © A. Suarez: All Possible Worlds
- 18. A B C Superdeterminism The prophet knows which pair of boxes the suitor will choose, for instance BC or AB A B C © A. Suarez: All Possible Worlds
- 19. A B C Copenhagen The prophet let the diamant appear just at the moment the suitor open the pair of boxes he chooses, for instance © A. Suarez: All Possible Worlds
- 20. Copenhagen The prophet let the diamant appear just at the moment the suitor open the pair of boxes he chooses, for instance A B C © A. Suarez: All Possible Worlds
- 21. Manyworlds At any choice (for instance AB) the world and the suitor split in 4 parallell worlds, so that all possible outcomes become realised although in different parallel worlds, which are experimentally inaccessible to each other. A B A B A B A B Suitor 11 10 Suitor 12 01 Suitor 13 11 Suitor 14 00 Suitor 21 01 Suitor 22 10 Suitor 23 11 Suitor 24 00 And similarly for choices: A C and B C © A. Suarez: All Possible Worlds Hugh Everett III (1930-1982)
- 22. The Solvay Congress: Brussels 23-27.10.1927 [first row] (1) I. Langmuir, (2) M. Planck, (3) M. Curie, (4) H.A. Lorentz, (5) A. Einstein, (6) P. Langevin, (7) C.E. Guye, (8) C.T.R. Wilson, (9) O.W. Richardson [second row] (1) P. Debye, (2) M. Knudsen, (3) W.L. Bragg, (4) H.A. Kramers, (5) P.A.M. Dirac, (6) A.H. Compton, (7) L.V. de Broglie, (8) M. Born, (9) N. Bohr [third row] (1) A. Piccard, (2) E. Henriot, (3) P. Ehrenfest, (4) E. Herzen, (5) Th. de Donder, (6) E. Schroedinger, (7) E. Verschaffelt, (8) W. Pauli, (9) W. Heisenberg, (10) R.H. Fowler, (11) L. Brillouin. 1. Nonlocality at detection This version of the classic photo has been "embellished" by PhysLINK's creator: Anton Skorucak.
- 23. Light going trough a slit reaches a screen. Deciding at which point the detection happens requires nonlocal coordination between all the detection units. Nonlocality at detection provoked Einstein in the Solvay Congress 1927, and led thereafter to the EPR controversy 1935. 1. Nonlocality at detection Einstein realized that the question “at what time the ‘wave’ hits the detector” matters in quantum physics!
- 24. Alice ? BS Bob 1. Nonlocality at detection Decision at detection (Collapse of the wave function) implies coordination at a distance between detectors Welcome the Qubit! Alice 1 0 1 0 Bob 0 1 1 0
- 25. Single-photon space-like antibunching Thiago Guerreiro a, Bruno Sanguinetti a, Hugo Zbinden a, Nicolas Gisin a, Antoine Suarez b,∗ a Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland b Center for Quantum Philosophy, P.O. Box 304, 8044 Zurich, Switzerland 376 (2012) 2174–2177 Nonlocality at detection, or the standard quantum «collapse» 1. Nonlocality at detection
- 27. Nonlocality at detection Single-photon space-like antibunching T. Guerreiro, B. Sanguinetti, H. Zbinden, N.Gisin and A. Suarez (2012) 𝑃 𝑇𝐿 (1,1)=𝑃 𝑇𝐿 (0,0)=0 𝑃 𝑇𝐿(1,0)=𝑃 𝑇𝐿(0,1)=0.5 𝑃 𝐴 𝑇𝐿=𝑃 𝐵 𝑇𝐿=0.5 𝑃 𝑆𝐿(1,1)= 𝑃 𝑆𝐿(0,0)=𝑃 𝑆𝐿(1,0)=𝑃 𝑆𝐿(0,1)=0.25 𝑃 𝐴 𝑆𝐿=𝑃 𝐵 𝑆𝐿=0.5 𝑷 𝑺𝑳(1,1)=𝑷 𝑨 𝑺𝑳 ∙ 𝑷 𝑩 𝑺𝑳=0.25 1. Nonlocality at detection
- 30. Stern-Gerlach experiment using Spin 1 particles (Qutrit) https://www.st-andrews.ac.uk/physics/quvis/simulations_twolev/IOP%20-%20Spin- 1%20Particles%20in%20Successive%20Stern-Gerlach%20Experiments%20V5%20REV.html
- 31. Schrödinger Cat in a Stern-Gerlach experiment using Spin 1 particles (Qutrit)
- 32. Schrödinger Cat in a Stern-Gerlach experiment using Spin 1 particles (Qutrit)
- 33. Schrödinger Cat in a Stern-Gerlach experiment using Spin 1 particles (Qutrit)
- 34. http://www.cropcirclesandmore.com/geometries/201101lss.html “Some 100 yards away from the centre of Stonehenge stands the so called Heelstone. It is a single large block of Sarsen stone. On the day of the summer solstice, usually 21 June, you can, while standing in Stonehenge, see the sun rise exactly above the Heelstone. It is a truly magical moment.” Classical Determinism
- 35. Crowds gather at the ancient stone circles of Stonehenge and Avebury in Wiltshire to celebrate sunrise on the longest day of the year and the beginning of summer.
- 36. To my knowledge there are no bookmakers accepting bets on whether the sun appears at the left, middle, or right arc! Schrödinger’s Sun?
- 37. Interference The counting rate depends on the path-length-difference Mobile mirror BS1 BS2 D(+) D() Screw L 20% 80% T R Φ ΦΦ= ω l− s c : Phase shift because of the length difference
- 38. Quantum determinism! There can be quantum sharp measurements P(D(+) counts)=1 BS1 BS2 D(+) D() 50% R T L 100 % 0 % Notice: The nonlocal qubit and the quantum sharp measurements is what makes quantum computing possible!
- 39. Copenhagen (Bohr’s Orthodoxy) • Classical determinism (the measuring devices have to be classical; there are no Bohr’s Cats!). • Quantum randomness (but determinism allowed for so called “sharp measurements”). © A. Suarez: All Possible Worlds
- 40. Manyworlds: Determinism at any level! At any choice (for instance AB) the world and the suitor split in 4 parallell worlds, so that all possible outcomes become realised although in different parallel worlds, which are experimentally inaccessible to each other. A B A B A B A B Suitor 11 10 Suitor 12 01 Suitor 13 11 Suitor 14 00 Suitor 21 01 Suitor 22 10 Suitor 23 11 Suitor 24 00 And similarly for choices: A C and B C © A. Suarez: All Possible Worlds Hugh Everett III (1930-1982)
- 41. Jeremy’s Butterfield’s perspective on the Multiverse: Invokes the Eddington fishing-net metaphor (Philosophy of Physical Science, 1938): Let us suppose that an ichthyologist is exploring the life of the ocean. He casts a net into the water and brings up a fishy assortment. Surveying his catch, he proceeds in the usual manner of a scientist to systematize what it reveals. He arrives at two generalizations: (1) No sea creature is less than two inches long. (2) All sea creatures have gills. These are both true of his catch, and he assumes tentatively that they will remain true however often he repeats it.
- 42. In applying this analogy, the catch stands for the body of knowledge which constitutes physical science, and the net for the sensory and intellectual equipment which we use in obtaining it. The casting of the net corresponds to observation; for knowledge which has not been or could not be obtained by observation is not admitted into physical science. An onlooker may object that the first generalization is wrong. "There are plenty of sea-creatures under two inches long, only your net is not adapted to catch them." The icthyologist dismisses this objection contemptuously. "Anything uncatchable by my net is ipso facto outside the scope of icthyological knowledge. In short, "what my net can't catch isn't fish."
- 43. Or — to translate the analogy — "If you are not simply guessing, you are claiming a knowledge of the physical universe discovered in some other way than by the methods of physical science, and admittedly unverifiable by such methods. You are a metaphysician. Bah!" Manyworlds is Metaphysics after all!
- 44. Leibniz’ Principle “If there is no possible perceptible difference between two objects, then these objects are the same, not superficially, but fundamentally“. If Alice in our world can never be able to see the other Alice* in a parallel world, then one should conclude that Alice* does not belong to our physical reality at all: Things that cannot in principle be perceived by the senses do not exist within space-time. And if the existence of Alice* can be inferred by reasoning but cannot in principle be perceived by the senses, this means that Alice* exists outside space-time.
- 45. Many-Worlds completed MW (consistently) requires that at any choice (for instance AB) the other possible choices (AC, BC) happen as well in 3 parallell worlds And additionnally for each outcome the world and each Suitor splits in 4 other paralell worlds: In total 12 paralell worlds! © A. Suarez: All Possible Worlds A B A C B C Suitor 1AB 10 Suitor 1AC 01 Suitor 1BC 10 Suitor 2AB 01 Suitor 2AC 10 Suitor 2BC 10 Manyworlds completed
- 46. Many-Worlds razored ! MW (consistently) requires that at any choice (for instance AB) the other possible choices (AC, BC) happen as well in 3 parallell worlds And additionnally for each outcome the world and each Cand splits in 4 other paralell worlds: In total 12 paralell worlds! © A. Suarez: All Possible Worlds A B A C B C Suitor 1AB 10 Suitor 1AC 01 Suitor 1BC 10 Suitor 2AB 01 Suitor 2AC 10 Suitor 2BC 10
- 47. All Possible Worlds: Many-Worlds & Quantum (nonlocal) Contextuality The "prophet" has in his mind an outcome choice for each of the three possible choices a suitor can do The suitor is free to make the choice he wishes. The prophet let then appear the outcome (10) or (01). © A. Suarez: All Possible Worlds Suitor N A B B C A C Choice 1 10 10 10 Choice 2 10 10 01 Choice 3 10 01 10 Choice 4 10 01 01 Choice 5 01 10 10 Choice 6 01 10 01 Choice 7 01 01 10 Choice 8 01 01 01
- 48. All Possible Worlds and Born’s rule The "prophet" has in his mind an outcome choice for each of the three possible choices a suitor can do The prophet let then appear the outcome (10) or (01)... © A. Suarez: All Possible Worlds Suitor N A B B C A C Choice 1 10 10 10 Choice 2 10 10 01 Choice 3 10 01 10 Choice 4 10 01 01 Choice 5 01 10 10 Choice 6 01 10 01 Choice 7 01 01 10 Choice 8 01 01 01 distributed according to the quantun mechanical predictions (Born’s rule).
- 49. All Possible Worlds and QBism: Born’s rule with Bayesian probabilities © A. Suarez: All Possible Worlds All rules we use to predict nature do not exhaust the whole physical reality (all the outcomes assignments the “omniscient mind” and other assistant minds may have done), and in this sense can be considered to express a “subjective belief” on our part and are intrinsically incomplete: • The Born rule in quantum mechanics is about the decision-making behavior any individual agent should strive for to avoid being Dutch- booked; • The deterministic equations of GR express our subjective belief: We are not ready to pay anything to entering a bet with payoff 1 if the sun rises by the left or right arc at Stonehenge and no payoff if it rises by the middle arc. GR does not forbid nature to let the sun rise by the left or right arc.
- 50. All Possible Worlds and QBism: Born’s rule with Bayesian probabilities © A. Suarez: All Possible Worlds On the other hand these rules fit well a highly significant part of physical reality: the subset of outcomes shaping the regularities we are used to. Thereby they make it possible for us to predict, develop technologies, and live, and in this sense can be considered “objective” and highly useful!
- 51. Jeremy Butterfield: A Philosopher’s Perspective on Multiverse Proposals https://arxiv.org/abs/1406.4348 “It all turns on the simple but crucial distinction between the "is" of identity and the "is" of instantiation. I am happy to concede that the world we live in instantiates a mathematical structure, but I deny that it is a mathematical structure.” Reality must have an utterly objective description: The physical multiverse instantiates a pure mathematical structure. But the physical multiverse is NOT a pure mathematical structure.
- 52. The invisible quantum realm is in fact a huge mental ensemble of possible outcomes which lies outside space-time in God’s mind, and contains as an essential ingredient all possible experiments humans of all times can perform. By freely choosing the settings of the apparatus here and now the experimenter actualizes one of the possible outcome worlds and makes it to become visible. Conclusion 1 © A. Suarez: All Possible Worlds The Multiverse is a parable of Divine Omniscience!
- 53. Jeremy Butterfield: A Philosopher’s Perspective on Multiverse Proposals Each possibility is of course non-actual: but real, in some wider sense than ‘actual’. What EXACTLY does such a possibility consist of? This is generally agreed to be a harder question than e.g. the mind-body problem! Leibniz’s possible worlds, revived in modern modal metaphysics: David Lewis’s realism. Or Ernst Specker’s future contigents and divine omniscience. A harder question! The question may stimulate theological research!
- 54. • There is no “law” forbidding nature to produce phenomena which deviate from the usual regularities we observe, e.g.: the sun spins in the sky, a dead resurrects. Such phenomena would not violate any “law of nature”. • Schrödinger’s cat is a scientific narrative of “miracles”. • We cannot oblige nature to make such “miracles” as much as we want: Quantum physics does not support paranormal phenomena. Conclusion 2 © A. Suarez: All Possible Worlds
- 55. Nature (“the omniscient mind”) is kind to us and ordinarily shapes the phenomena according to regularities we can grasp with mathematical equations and the Born rule. This make it possible for us to predict, develop technologies, and live. Conclusion 2 (continued) © A. Suarez: All Possible Worlds The “big wonder” of ordinary daily life!
- 56. Omniscience implies a finite number of choices. (Omniscience does not imply a finite number of mathematical theorems i.e.:necessary truths). Consequences: a) The discreteness of space-time. (“ ‘Real numbers’ aren’t real at all” [Nicolas Gisin]). b) Upper bound for signaling (v c) c) The heat death of the universe (“second law” as formulated by Lord Kelvin). Conclusion 3 © A. Suarez: All Possible Worlds
- 57. The “laws of physics” actually arise from the maximal number of experiments the humans of all times can in principle perform: What is and is not possible is not determined by physical “laws” but the other way around, it is these “laws” which actually arise from what is and is not possible. Conclusion 4 © A. Suarez: All Possible Worlds
- 58. David Deutsch: We and the physical reality © A. Suarez: All Possible Worlds “The universal quantum computer, in a sense contains within itself all the diversity in nature. No other system does, except perhaps systems that are capable of constructing a universal quantum computer. Certainly we find ourselves unavoidably playing a role at the deepest level of the structure of physical reality.” David Deutsch, Lecture 4: The Schrödinger picture, Video 34:48 http://www.quiprocone.org/Protected/DD_lectures.htm
- 59. The “hidden assumption” behind “Many Worlds” is that the physical reality is defined by “the free choices human observers can in principle perform”. Is the Big Bang here? “I can imagine that we will someday have to answer your question with a ‘yes’ ” (John A. Wheeler). Without “human free choices”, no physical reality! Conclusion 5 © A. Suarez: All Possible Worlds
- 60. “Future Contingents” and “The Multiverse”: Combining Two Perspectives Antoine Suarez © Center for Quantum Philosophy (Fondation du Leman) www.quantumphil.org IIS2018 Netherhall House Can Science And Technology Shape A New Humanity? Trinity College, Cambridge, January 4, 2018 The End