Logaritmos y algoritmos

En el envío anterior, al poner la fórmula de la Relación Periodo
Luminosidad en una estrella cefe...
La función logaritmo se representa como logn, siendo n la base. Existen dos
excepciones a esta nomenclatura. Una es el log...
Kassel, concibió por vez primera los logaritmos. El método de logaritmos naturales fue
propuesto inicialmente en 1614, en ...
Logaritmos
Autora: Silvia Sokolovsky


      Para poder entender este tema empecemos por un simple problema y veamos para ...
En este caso la ecuación matemática a la que responde la división de las bacterias es
diferente a la anterior de los conej...
Ya que trabajamos con potencias vamos a descubrir las cuatro propiedades que
deberemos aplicar de ahora en adelante en log...
base se trata, se toma ( por convención o acuerdo) que la base es diez.

En tu calculadora vas a encontrar una tecla que d...
Los logaritmos son operaciones matemáticas ampliamente usadas, es por eso que los
hallamos en las calculadoras científicas...
Son funciones donde el dominio debe ser mayor que cero, pues no existe el logaritmo
de cero ni de un número negativo, el p...
El dominio de esta función es el conjunto de los números reales, cualquier real puede
    ser potencia. El problema lo enc...
Napier seguramente estudió las sucesiones de las potencias de un número y se
percató que los productos y cocientes de dos ...
Upcoming SlideShare
Loading in …5
×

9 Mayo Logaritmos Y Algoritmos

4,015 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
4,015
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
15
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

9 Mayo Logaritmos Y Algoritmos

  1. 1. Logaritmos y algoritmos En el envío anterior, al poner la fórmula de la Relación Periodo Luminosidad en una estrella cefeida, no especifiqué que la expresión log(P) se refería al logaritmo decimal de P, ni expliqué qué es un logaritmo. Supuse que todo el mundo lo sabría, ya que es algo que se enseña en el colegio (al menos, se enseñaba en mi época), pero visitando el blog Malaprensa (altamente recomendable), veo que dicha suposición tal vez no fuera acertada. Josu comenta una noticia que trata de la detención de unas personas que se dedicaban a falsificar tarjetas de crédito. En ella (podéis ver el vídeo aquí), al hablar sobre el software que utilizaban, decía: El programa informático lo había creado uno de los 21 detenidos, un ingeniero de nacionalidad liberiana. Con él descubrían los logaritmos que usa cada banco para crear sus tarjetas y averiguaban los números sin saber el nombre de los titulares. Se inventaban una identidad, y usaban la tarjeta para comprar todo este material a través de Internet Como bien dice Josu, se refería a algoritmos, cosa que no tiene mucho que ver con un logaritmo, salvo en que una palabra es anagrama de la otra. ¿Qué es un logaritmo? Un logaritmo es la operación inversa a la potenciación (o exponenciación). Supongo que la potenciación si es algo que todo el mundo conoce, pero por si acaso lo explico brevemente. Una potencia es una multiplicación repetida (al igual que una multiplicación es una suma repetida). Si quiero expresar, por ejemplo, 2x2x2x2x2, puedo hacerlo como 25. El 2 es la base, el factor que se multiplica, y el 5 es el exponente, el número de veces que se repite la multiplicación. En este caso, el resultado sería 32 (25=32). Pues bien, el logaritmo es la operación inversa, es decir, el logaritmo de un número es el exponente al que habría que elevar la base para obtener dicho número. En nuestro ejemplo, el logaritmo en base 2 de 32 es 5, es decir, log2(32)=5. Fijaos que no he dicho logaritmo a secas, sino logaritmo en base 2. Lógicamente, si queremos calcular el exponente al que hay que elevar una base para obtener el dato inicial, necesitamos especificar dicha base. Así, no es lo mismo el logaritmo en base 2 que en base 4. Si calculamos ambos sobre el número 256, tenemos que el logaritmo en base 2 es 8, dado que 28=256, y el logaritmo en base 4 es 4, ya que 44=256.
  2. 2. La función logaritmo se representa como logn, siendo n la base. Existen dos excepciones a esta nomenclatura. Una es el logaritmo en base 10, también llamado logaritmo decimal, que se representa simplemente como log. La otra excepción es el logaritmo en base e, también llamado logaritmo natural, o logaritmo neperiano (por John Napier, inventor de los logaritmos, del que podéis conocer más en el blog Historias de la Ciencia, también muy recomendable), que se representa como ln. ¿Base e? Sí, el número e es un número de gran importancia en matemáticas, aunque para hablar de él necesitaría un envío entero (y algún error en algún sitio, como excusa). ¿Y qué es un algoritmo? Pues un algoritmo es un conjunto finito de pasos para la resolución de un problema. Veamos un sencillo ejemplo. A todos nos enseñaron en el colegio a realizar multiplicaciones de números de varias cifras ¿verdad? Para ello poníamos uno encima del otro con el símbolo X a la izquierda y una raya debajo. Entonces multiplicábamos el dígito de la derecha del número de debajo, por el número de arriba, y anotábamos el resultado. Y para ello, lo hacíamos de derecha a izquierda, dígito a dígito, recurriendo a las tablas de multiplicar del 1 al 9 que nos hicieron memorizar de pequeños, y añadiendo las decenas del exceso de 10 de cada multiplicación a la siguiente (es decir, eso de me llevo una). Luego repetíamos el proceso con el siguiente dígito (del número de debajo), desplazando el resultado una posición a la izquierda. Una vez terminadas todas las multiplicaciones, sumabamos los resultados obtenidos, y teníamos el resultado final. Pues bien, esa forma mecánica de proceder, es un algoritmo. Así que un algoritmo y un logaritmo poco tienen que ver, salvo la similitud de las palabras, y que son cosas de mates (aunque hay quien define la palabra algortimo de forma mucho más genérica, sin relación con las matemáticas). Mejor respuesta - Elegida por la comunidad Los Logarimos se descubrieron cuando no existian computadoras ni calculadoras electronicas cientificas, para agilizar las operaciones, pues reducen las multiplicaciones sumas, y las divisiones a restas, las potencias a multiplicaciones y las raices a divisiones. Habí ya calculados de antemano tablas para usar, y el cálculo era rápido. Hoy creo no tienen aplicación a mano existiendo las coputadoras. Historia ]Joost Bürgi, un matemático y relojero suizo al servicio del duque de Hesse-
  3. 3. Kassel, concibió por vez primera los logaritmos. El método de logaritmos naturales fue propuesto inicialmente en 1614, en un libro intitulado Mirifici Logarithmorum Canonis Descriptio, escrito por John Napier (latinizado Neperus), Barón de Merchiston en Escocia, que nació cerca de 1550, y murió en 1617, cuatro años después de la publicación de su memorable invención. Este método contribuyó al avance de la ciencia, y especialmente de la astronomía, facilitando la realización de cálculos muy complejos. Antes del advenimiento de las calculadoras y computadoras, era constantemente usado en estadística, navegación, y otras ramas de la matemática aplicada. Además de su utilidad en el cómputo, los logaritmos también ocuparon un importante lugar en las matemáticas más avanzadas.
  4. 4. Logaritmos Autora: Silvia Sokolovsky Para poder entender este tema empecemos por un simple problema y veamos para que sirve estos ele matemáticos. "En un criadero de conejos cada hembra tiene cinco crías cada tres meses de gestación, si contamos a la cr pareja, indicar cuantos conejos habrá en cinco períodos de cría : 1er Período 2do Período 3er Período 4to Período 5to Período 5 5 + 5 = 10 10 + 5 = 15 15 + 5 = 20 20 + 5 = 25 ¿Qué hacemos para calcular la cantidad cada período?, sencillamente a la cantidad de crías del período anterior le sumamos cinco. Si llevamos estos datos a un par de ejes cartesianos de manera que los períodos se ubiquen sobre las ab cantidad de crías en las ordenadas, a partir del gráfico, podemos indicar la cantidad de crías que tendrían período. Siendo "x" el número de períodos y "C(x)" la cantidad de crías ¿Cómo expresaríamos con una ecuación la crías en función del tiempo (períodos)?. Los períodos sucesivos los encontramos sumando el anterior multiplicamos en número del período por cinco. C(x) = 5 x b) Supongamos que ahora analizamos un cultivo de bacterias, las que se reproducen cada 0,2 seg. (se div mitad). Completemos el cuadro de los primeros cinco períodos. 1er Período 2do Período 3er Período 4to Período 5to Período ¿Qué se hace para calcular la cantida
  5. 5. En este caso la ecuación matemática a la que responde la división de las bacterias es diferente a la anterior de los conejos. Sigamos utilizando a la x para indicar el número del período. En el primer período tenemos 2, en el segundo 2 . 2 = 22 , en el tercero 2 . 2 . 2 = 23, si generalizamos tenemos que en el período "n" el número de bacterias es 2 n. Así que la ecuación es: C(x) = 2x Volvamos al problema de los conejos. Si tenemos 125 crías ¿cuántos períodos han pasado? Utilizando la ecuación que encontramos: 5x = 125, despejemos, x = 125 / 5 = 25. Necesitamos 25 períodos. Si tenemos 512 bacterias ¿Cuántos períodos han pasado? Utilicemos la ecuación: 2x = 512 Evidentemente el problema se complica un poco. Para encontrar la respuesta a esta cuestión debemos hallar el exponente al que está elevado Primero recordemos algo de primer año: Cuando en primer año viste potencia se dijo que : "la base (a) elevada al exponente (b) nos da como resultado igual que multiplicar "b" veces "a" ab = a1. a2. a3. a4 ... ab = C ej: 7 3 = 7.7.7 = 343 Ahora estamos buscando el exponente al que está elevado, número que pusiste en la fórmula para hallar la cantidad de bacterias, para ello nos vemos obligados a buscar una operación matemática que no conocías, el logaritmo. Por definición : Log a C = b únicamente si a b = C (Se lee " logaritmo en base a de C ") De allí que para calcular el período en que tenemos 512 bacterias necesitamos conocer el exponente al que hemos elevado a "2". Entonces:
  6. 6. Ya que trabajamos con potencias vamos a descubrir las cuatro propiedades que deberemos aplicar de ahora en adelante en logaritmos. Resolvamos : 22.23.24 = 2 (2 + 3 + 4) = 2 9 El "producto de potencias de igual base" es una propiedad que nos indica que podemos sumar las potencias cuando operamos con multiplicaciones de este tipo. Como trabajamos con potencias al aplicar logaritmos, traslademos esta propiedad al tema que estamos tratando. Si tenemos una multiplicación y aplicamos logaritmos se transformará en este se trasformará en suma. En cuanto a la división, como las potencias se restan, al aplicar logaritmos se transforman en resta. Ej. x = a . b → log x = log a + log b x = a / b → log x = log a – log b Resolver :(a2 )3 = a2 . a2 . a2 = a2 + 2 + 2 = a 2 . 3 = a 6 Resumiendo:(a2 )3 = a2 . 3 = a6 En "potencia de potencia", las potencias se multiplican. Por eso, cuando aplicas logaritmo a un número elevado a una potencia, el exponente pasa multiplicando al logaritmo de la base. En cuanto a la raíz, que es una potencia fraccionaria, la fracción baja para multiplicar al logaritmo. La fracción es una división entre enteros, así que el denominador, en realidad, está dividiendo. Ej.: x = a b → log x = b . log a Logaritmos de base diez: Cuando escribimos la palabra "log" y no aclaramos de que
  7. 7. base se trata, se toma ( por convención o acuerdo) que la base es diez. En tu calculadora vas a encontrar una tecla que dice log. Esta tecla halla automáticamente el logaritmo de base diez. Log 2 = .................... En la mayoría de las calculadoras basta con poner el 2 y después apretar la tecla log. El resultado es la potencia a la que tienes que elevar a 10 para que te de 2. 10 ..... = 2 Si tenemos el valor del logaritmo y queremos saber el valor del número al que le hemos efectuado esta operación también utilizamos la calculadora: log .............. = 0,301029996 Para ello teclea este número en tu calculadora, aprieta Shift o 2ndf, según la calculadora que tengas (suele aparecer con otro color ), después la tecla log. Cambio de base: El concepto de cambio de base deriva de la definición de logaritmo. Pongamos un ejemplo para entender mejor el procedimiento. x = log2 32 (por definición de logaritmo) 2x = 32 (aplicamos logaritmo, recuerden que sucede con la potencia) x . log 2 = log 32 (despejamos x) x= Hemos cambiado la base del logaritmo que aplicamos a la operación trasformándola en una división del logaritmo de la base y el logaritmo del número. En este caso, al principio estaba en base dos y la cambiamos a base diez. Generalizando: Logaritmo Neperiano o Natural.
  8. 8. Los logaritmos son operaciones matemáticas ampliamente usadas, es por eso que los hallamos en las calculadoras científicas. Entre todos los números que se pueden emplear como base encontramos dos que son los más difundidos: a) Log (que ya lo hemos visto) b) La otra base es un valor constante denominado e (2,718281828) cuyo logaritmo, para diferenciarlo del anterior, se denomina logaritmo natural o neperiano. Se escribe ln. Por supuesto que para calcularlo también podemos utilizar la calculadora, basta con teclear el número y luego la tecla ln. Logaritmos de base diez: Cuando escribimos la palabra "log" y no aclaramos de que base se trata, se toma ( por convención o acuerdo ) que la base es diez. En tu calculadora vas a encontrar una tecla que dice ln. Esta tecla halla automáticamente el logaritmo de base e. Log 2 = ...... ( En la mayoría de las calculadoras basta con poner el 2 y después apretar la tecla ln ) El resultado es la potencia a la que tienes que elevar a e para que te de 2. e ..... = 2 Si tenemos el valor del logaritmo neperiano y queremos saber el valor del número al que le hemos efectuado esta operación también utilizamos la calculadora: ln ........ = 0,301029996 Para ello teclea este número en tu calculadora, aprieta Shift o 2ndf, según la calculadora que tengas ( suele aparecer con otro color ), después la tecla ln. Por supuesto no vamos a obtener los mismos resultados ya que la base cambió pero el manejo de la calculadora es el mismo. Antiguamente los logaritmos eran utilizados para resolver cuentas extremadamente grandes, con el advenimiento de la calculadora hoy se los utiliza para resolver ecuaciones solamente. Pero eso no quiere decir que se los utilice menos sino que se han agilizado los cálculos y ustedes no tienen que perder tiempo resolviendo cuentas. Función Logarítmica:
  9. 9. Son funciones donde el dominio debe ser mayor que cero, pues no existe el logaritmo de cero ni de un número negativo, el por que de dicha característica reside en el hecho que al elevar una base positiva nunca puede obtenerse como resultado un valor negativo ni menor de cero. Para hallar el dominio de la función conviene establecer una inecuación con la función afectada por el logaritmo (u(x) > 0) y despejar x. La solución de dicha inecuación será el dominio de la función (siempre y cuando no se encuentre una variable x por fuera del logaritmo). La imagen de la función abarca a todo el conjunto de los números reales. f(x) = ln ( u(x)) Dominio : u(x) > 0 Imagen: R. (reales) Función Exponencial: Aquí x es la potencia. f(x)= ax
  10. 10. El dominio de esta función es el conjunto de los números reales, cualquier real puede ser potencia. El problema lo encontramos en las bases, estas deben ser positivas, mayores que uno y distintas de cero. ¿Por qué sólo positivas? Para hallar la respuesta toma un valor negativo para a e intenta graficarlo, encontrarás varios problemas: a) todas las potencias pares darán resultados positivos, las potencias negativas conservarán el signo de la base, por lo que tendremos una sucesión de números positivos y negativos pero ningún cero de la función en medio; b) las potencias fraccionarias cuyo denominador sea par (raíces pares) no tendrán imagen. Como la base debe ser positiva, la imagen de la función está dada en los reales positivos, incluidos el cero. Así como la función logarítmica más utilizada es la del logaritmo neperiano (en base e), la función exponencial más usada será la de base e: f(x) = ex Para entender de donde proviene el valor de "e" necesitamos comprender el proceso de límite. Para ver el procedimiento, haz un clic aquuí. Logaritmo: ejercicios. Para qué sirven los logarítmos? Hace no muchos años, no había ordenadores, ni calculadoras, y por lo tanto multiplicar y dividir números grandes era una tarea árdua. Con los logarítmos las multiplicaciones se convierten en sumas, las divisiones en restas y la exponenciación en multiplicaciones, con lo que se facilitaban mucho las operaciones. Una vez obtenido el resultado se calculaba el antilogarítmo para obtener el numero real. Orígenes Los logaritmos se atribuyen a John Napier. Publicó su trabajo en 1614 en el libro Mirifici logarithmorum canonis descriptio.
  11. 11. Napier seguramente estudió las sucesiones de las potencias de un número y se percató que los productos y cocientes de dos números de dichas sucesiones son iguales a las potencias de las sumas o diferencias de los exponentes de dichos números (a^n.a^m = a^(n+m)). Napier llamó al principio a estos número artificiales, pero mas tarde se decidió por la unión de dos palabras griegas logos (razón) y arithmos (número).En 1617 publicó Logarithnmorum chilias prima (Logaritmos de los números 1 al 1000) y en 1624 publicó Arithmetica logarithmica.

×