Successfully reported this slideshow.
Your SlideShare is downloading. ×

PayPal's Fraud Detection with Deep Learning in H2O World 2014

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 25 Ad

PayPal's Fraud Detection with Deep Learning in H2O World 2014

Download to read offline

PayPal's Fraud Detection with Deep Learning in H2O World 2014 -
Flexible Deployment, Seamlessly with Big Data, Accuracy and Responsive support.

- Powered by the open source machine learning software H2O.ai. Contributors welcome at: https://github.com/h2oai
- To view videos on H2O open source machine learning software, go to: https://www.youtube.com/user/0xdata

PayPal's Fraud Detection with Deep Learning in H2O World 2014 -
Flexible Deployment, Seamlessly with Big Data, Accuracy and Responsive support.

- Powered by the open source machine learning software H2O.ai. Contributors welcome at: https://github.com/h2oai
- To view videos on H2O open source machine learning software, go to: https://www.youtube.com/user/0xdata

Advertisement
Advertisement

More Related Content

Slideshows for you (20)

Similar to PayPal's Fraud Detection with Deep Learning in H2O World 2014 (20)

Advertisement

More from Sri Ambati (20)

Recently uploaded (20)

Advertisement

PayPal's Fraud Detection with Deep Learning in H2O World 2014

  1. 1. Fraud Prevention Using Deep Learning Venkatesh Ramanathan H2O World 2014 November 19, 2014
  2. 2. Outline( About(PayPal( Fraud(Preven3on(@(PayPal( Fraud(Preven3on(Dilemma(&(Solu3on((Deep(Learning)( Experimental(Setup( Results( Conclusions(
  3. 3. About PayPal Unmatched CompetitiveAdvantage +150M Active Digital Wallets Deep Relationships Core Competency In Risk Global Platform with Huge Momentum 4321 143M 2013 2012 123M
  4. 4. PAYMENT CODE WEARABLE TECH QR scanning that generates a payment code for easy check out Fully able to integrate with existing POS systems; no rip & replace Available in select markets today Payments on any type of mobile device Available in select markets today About PayPal Innovative leader in payment…
  5. 5. Fraud(Preven3on(@(PayPal( StateDofDthe(art(feature(engineering,( machine(learning(and(sta3s3cal( models( Highly(scalable(and(mul3Dlayered( infrastructure(soIware(( Superior(team(of(data(scien3sts,( researchers,(financial(and( intelligence(analysts(
  6. 6. Fraud(Preven3on(@(PayPal( • Employs(stateDofDthe(art(machine(learning(and( sta3s3cal(models(to(flag(fraudulent(behavior(upDfront( • More(sophis3cated(algorithms(aIer(transac3on(is( complete( Transac3on( Level( • Monitor(account(level(ac3vity(to(iden3fy(abusive( behavior( • Abusive(paPern(include(frequent(payments,(suspicious( profile(changes( Account(Level( • Monitor(accountDtoDaccount(interac3on( • Frequent(transfer(of(money(from(several(accounts(to( one(central(account(( Network(Level(
  7. 7. Fraud(Preven3on(Dilemma( Fraudsters(are(becoming(increasingly(smarter(and( adap3ve( Need(costDeffec3ve(solu3ons(that(can(model( complex(aPack(paPerns(not(previously(observed((( Need(scalable(and(computa3onally(efficient( predic3on(models(
  8. 8. Fraud(Preven3on(Dilemma( Solu3on:(Deep(Learning( • Helps(to(unearth(lowDlevel(complex(abstrac3ons( • Helps(to(learn(complex(highly(varying(func3ons(not( present(in(the(training(examples( • Widely(employed(for(image,(video(processing(and(object( recogni3on( Why(Deep( Learning?( • Highly(scalable( • Superior(performance( • Flexible(deployment( • Work(seamlessly(with(other(big(data(frameworks( • Simple(interface( Why(H2O?(
  9. 9. Experiment( •  Dataset( –  160(million(records( –  1500(features((150(categorical)( –  0.6TB(compressed(in(HDFS( •  Infrastructure( –  800(node(Hadoop((CDH3)(cluster( •  Decision( –  fraud/notDfraud(
  10. 10. Experiment( R( H2O( Mapper( HDFS( HDFS( •  Setup( –  800(node(Hadoop( (CDH3)(cluster( –  R(as(a(client( H2O( Mapper( •  H2O(cloud(forma3on( failed( –  H2O(mapper(needs( memory(upfront( –  Cluster(capacity( limita3ons(
  11. 11. Experiment( R( H2O( Cloud( HDFS( HDFS( •  Setup( –  800(node(Hadoop( (CDH3)(cluster( –  5(node(H2O(cloud((24( CPUs;(144GB(RAM)( –  R(as(a(client( H2O( Cloud( •  Import(failed( –  Data(snappy( compressed(
  12. 12. Experiment( R( H2O( Cloud( HDFS( HDFS( •  Setup( –  800(node(Hadoop( (CDH3)(cluster( –  5(node(H2O(cloud((24( CPUs;(144GB(RAM)( –  R(as(a(client( –  GZIP’ed(data( H2O( Cloud( •  Import(too(slow( –  1GB/hour( –  Not(parallelized(
  13. 13. Experiment( R( H2O( Cloud( HDFS( HDFS( •  Setup( –  800(node(Hadoop((CDH3)( cluster( –  5(node(H2O(cloud((24( CPUs;(144GB(RAM)( –  R(as(a(client( –  GZIP’ed(data( –  Cliff’s(fix((1(GB(from(1( hour(to(10(minutes)( H2O( Cloud( •  Deep(Learning(failed( –  Skipping(rows(if(it(had( missing(values( –  99%(of(rows(had(missing( values(
  14. 14. Experiment( R( H2O( Cloud( HDFS( HDFS( •  Setup( –  800(node(Hadoop((CDH3)( cluster( –  5(node(H2O(cloud((24( CPUs;(144GB(RAM)( –  R(as(a(client( –  GZIP’ed(data( –  Cliff’s(fix((1(GB(from(1( hour(to(10(minutes)( –  Arno’s(fixes( H2O( Cloud( •  Deep(Learning(slow(
  15. 15. Experiment( R( H2O( Cloud( HDFS( HDFS( •  Setup( –  800(node(Hadoop((CDH3)( cluster( –  5(node(H2O(cloud((24( CPUs;(144GB(RAM)( –  R(as(a(client( –  GZIP’ed(data( –  Cliff’s(fix((1(GB(from(1( hour(to(10(minutes)( –  Arno’s(fixes(&(sugges3ons( –  Reduced(data( •  10(million(rows((60%( training;(20%(valida3on;( 20%(test)( H2O( Cloud(
  16. 16. Experimental(Design( Parameter' Range' #(of(hidden(layers( (2,(4,(6,(8( #(of(neurons( 200,(300,(400,(500,(600,(700( ac3va3on(func3on( Rec3fier;(Tanh;(Maxout;(Rec3fierWithDropout( feature(subset( All,(subset1(–(subset7( test(data(set( All,(week4(–(week8( L1/L2(regulariza3on( 0(D(1( epoch( 500( 10(million(rows/1500(features((60%(training;(20%(valida3on;(20%(test)( ((
  17. 17. Results( #'of'hidden'layers' (Rec6fier,'2'layer,'200'neurons,' 500'epoch,''L1/L2'='0)' Area'Under'ROC'Curve'(AUC)' ' 2( 0.762( 4( 0.821( 6( 0.839( 8' 0.839' How(much(depth(is(required?( Best( performance( with(6(layers(
  18. 18. Results( How(much(depth(is(required?( Best( performance( with(600( neurons( #(of(hidden(layersD6(
  19. 19. Results( Ac6va6on'func6on' (6'layers;'600'neurons)' AUC' Tanh( 0.801( Rec3fier( 0.856( Maxout( 0.826( Rec6fierWithDropout' 0.865' Which(ac3va3on(func3on(produces(best(result?( Best(performance( with( Rec3fierWithDropout(
  20. 20. Results( Feature'subset' AUC' subset1( 0.836( subset2( 0.847( subset3' 0.849' subset4( 0.844( subset5( 0.834( subset6( 0.786( subset7' 0.751' Which(subset(of(features(produces(best(result?( Best(performance( with(subset3;( Worst(for(subset7( (2/3rd(less(feature)(
  21. 21. Results( Epoch:'500' Hidden:'2'layers' Neurons:'200'each'layer' Subset7' ' AUC' Epoch:'500' Hidden:'6'layers' Neurons:'600'each'layer' Subset7' ' AUC' 0.751( 0.86( Can(deep(network(improve(subset7?( 11%(improvement(in( performance((with( 1/3rd(of(the(feature( set(
  22. 22. Results( Test'Set' AUC' Week(4( 0.856( Week(8( 0.861( Week(12( 0.852( Week(16( 0.858( Week(20( 0.853( Is(deep(learning(temporally(robust?( Performance(within( 1%(difference(upto(20( weeks(
  23. 23. Conclusions( •  Deep(Learning(using(H2O(is(beneficial(for(payment(fraud( preven3on( –  Network(architecture(D(6(layers(with(600(neurons(each(performed(the( best( –  Ac3va3on(func3on((D(Rec3fierWithDropout(performed(the(best( –  Improved(performance(with(limited(feature(set(&(a(deep(network( (11%(improvement(with(a(third(of(the(original(feature(set,(6(hidden( layers,(600(neurons(each)( –  Robust(to(temporal(varia3ons(
  24. 24. Conclusions( •  Lessons(learned(in(using(H2O( –  Slow(import(process(( –  Issues(with(compressed(data,(missing(values,(sparse(data( –  Require(knowledge(of(performance(knobs( –  Fantas3c(support(from(H2O(team( •  Next(Steps( –  Mul3Dclass(classifica3on( –  Produc3onalize(
  25. 25. Thank(You!(

×