SlideShare a Scribd company logo

Introduction to Deep Learning, Keras, and TensorFlow

This meetup was recorded in San Francisco on Jan 9, 2019. Video recording of the session can be viewed here: https://youtu.be/yG1UJEzpJ64 Description: This fast-paced session starts with a simple yet complete neural network (no frameworks), followed by an overview of activation functions, cost functions, backpropagation, and then a quick dive into CNNs. Next, we'll create a neural network using Keras, followed by an introduction to TensorFlow and TensorBoard. For best results, familiarity with basic vectors and matrices, inner (aka "dot") products of vectors, and rudimentary Python is definitely helpful. If time permits, we'll look at the UAT, CLT, and the Fixed Point Theorem. (Bonus points if you know Zorn's Lemma, the Well-Ordering Theorem, and the Axiom of Choice.) Oswald's Bio: Oswald Campesato is an education junkie: a former Ph.D. Candidate in Mathematics (ABD), with multiple Master's and 2 Bachelor's degrees. In a previous career, he worked in South America, Italy, and the French Riviera, which enabled him to travel to 70 countries throughout the world. He has worked in American and Japanese corporations and start-ups, as C/C++ and Java developer to CTO. He works in the web and mobile space, conducts training sessions in Android, Java, Angular 2, and ReactJS, and he writes graphics code for fun. He's comfortable in four languages and aspires to become proficient in Japanese, ideally sometime in the next two decades. He enjoys collaborating with people who share his passion for learning the latest cool stuff, and he's currently working on his 15th book, which is about Angular 2.

1 of 67
Download to read offline
Intro to Deep Learning and
TensorFlow
H2O Meetup 01/09/2019
Metis San Francisco
Oswald Campesato
ocampesato@yahoo.com
Highlights/Overview
 intro to AI/ML/DL/NNs
 Hidden layers/Initialization/Neurons per layer
 cost function/gradient descent/learning rate
 Dropout rate
 Activation function
 Linear Regression
 What are CNNs
 Filters/ReLU/MaxPooling
 Keras and CNNs
 TensorFlow 1.x
The Data/AI Landscape
Use Cases for Deep Learning
computer vision
speech recognition
image processing
bioinformatics
social network filtering
drug design
Recommendation systems
Bioinformatics
Mobile Advertising
Many others
NN 3 Hidden Layers: Classifier
NN: 2 Hidden Layers (Regression)

Recommended

TensorFlow and Keras: An Overview
TensorFlow and Keras: An OverviewTensorFlow and Keras: An Overview
TensorFlow and Keras: An OverviewPoo Kuan Hoong
 
Deep learning with tensorflow
Deep learning with tensorflowDeep learning with tensorflow
Deep learning with tensorflowCharmi Chokshi
 
Introduction to Deep learning
Introduction to Deep learningIntroduction to Deep learning
Introduction to Deep learningleopauly
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...Simplilearn
 
An introduction to Deep Learning
An introduction to Deep LearningAn introduction to Deep Learning
An introduction to Deep LearningJulien SIMON
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networksSi Haem
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...Simplilearn
 

More Related Content

What's hot

Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)Yuta Niki
 
Tensorflow presentation
Tensorflow presentationTensorflow presentation
Tensorflow presentationAhmed rebai
 
Intro to deep learning
Intro to deep learning Intro to deep learning
Intro to deep learning David Voyles
 
Deep Learning: Application & Opportunity
Deep Learning: Application & OpportunityDeep Learning: Application & Opportunity
Deep Learning: Application & OpportunityiTrain
 
Introduction to Neural Networks
Introduction to Neural NetworksIntroduction to Neural Networks
Introduction to Neural NetworksDatabricks
 
Introduction To TensorFlow
Introduction To TensorFlowIntroduction To TensorFlow
Introduction To TensorFlowSpotle.ai
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksChristian Perone
 
Deep Belief Networks
Deep Belief NetworksDeep Belief Networks
Deep Belief NetworksHasan H Topcu
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work IIMohamed Loey
 
Neural networks and deep learning
Neural networks and deep learningNeural networks and deep learning
Neural networks and deep learningJörgen Sandig
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnnKuppusamy P
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...Simplilearn
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual IntroductionLukas Masuch
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep LearningMyungjin Lee
 
Convolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsKasun Chinthaka Piyarathna
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning TutorialAmr Rashed
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep LearningOswald Campesato
 

What's hot (20)

Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)
 
Tensorflow presentation
Tensorflow presentationTensorflow presentation
Tensorflow presentation
 
Intro to deep learning
Intro to deep learning Intro to deep learning
Intro to deep learning
 
Deep Learning: Application & Opportunity
Deep Learning: Application & OpportunityDeep Learning: Application & Opportunity
Deep Learning: Application & Opportunity
 
Introduction to Neural Networks
Introduction to Neural NetworksIntroduction to Neural Networks
Introduction to Neural Networks
 
Introduction to Transformer Model
Introduction to Transformer ModelIntroduction to Transformer Model
Introduction to Transformer Model
 
Introduction To TensorFlow
Introduction To TensorFlowIntroduction To TensorFlow
Introduction To TensorFlow
 
Deep learning
Deep learningDeep learning
Deep learning
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
 
Deep Belief Networks
Deep Belief NetworksDeep Belief Networks
Deep Belief Networks
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
 
Neural networks and deep learning
Neural networks and deep learningNeural networks and deep learning
Neural networks and deep learning
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
 
Deep learning
Deep learningDeep learning
Deep learning
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual Introduction
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep Learning
 
Convolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its Applications
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning Tutorial
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 

Similar to Introduction to Deep Learning, Keras, and TensorFlow

Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowOswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsOswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your BrowserOswald Campesato
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your BrowserOswald Campesato
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlowOswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLOswald Campesato
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and SparkOswald Campesato
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITiansAshish Bansal
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlowOswald Campesato
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep LearningOswald Campesato
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Oswald Campesato
 
Deep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowDeep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowOswald Campesato
 
Introduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowIntroduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowOswald Campesato
 

Similar to Introduction to Deep Learning, Keras, and TensorFlow (20)

H2 o berkeleydltf
H2 o berkeleydltfH2 o berkeleydltf
H2 o berkeleydltf
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGL
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep Learning
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
C++ and Deep Learning
C++ and Deep LearningC++ and Deep Learning
C++ and Deep Learning
 
Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)
 
Scala and Deep Learning
Scala and Deep LearningScala and Deep Learning
Scala and Deep Learning
 
Java and Deep Learning
Java and Deep LearningJava and Deep Learning
Java and Deep Learning
 
Deep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowDeep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlow
 
Angular and Deep Learning
Angular and Deep LearningAngular and Deep Learning
Angular and Deep Learning
 
Introduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowIntroduction to Deep Learning and Tensorflow
Introduction to Deep Learning and Tensorflow
 

More from Sri Ambati

Generative AI Masterclass - Model Risk Management.pptx
Generative AI Masterclass - Model Risk Management.pptxGenerative AI Masterclass - Model Risk Management.pptx
Generative AI Masterclass - Model Risk Management.pptxSri Ambati
 
AI and the Future of Software Development: A Sneak Peek
AI and the Future of Software Development: A Sneak Peek AI and the Future of Software Development: A Sneak Peek
AI and the Future of Software Development: A Sneak Peek Sri Ambati
 
LLMOps: Match report from the top of the 5th
LLMOps: Match report from the top of the 5thLLMOps: Match report from the top of the 5th
LLMOps: Match report from the top of the 5thSri Ambati
 
Building, Evaluating, and Optimizing your RAG App for Production
Building, Evaluating, and Optimizing your RAG App for ProductionBuilding, Evaluating, and Optimizing your RAG App for Production
Building, Evaluating, and Optimizing your RAG App for ProductionSri Ambati
 
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...Building LLM Solutions using Open Source and Closed Source Solutions in Coher...
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...Sri Ambati
 
Open-Source AI: Community is the Way
Open-Source AI: Community is the WayOpen-Source AI: Community is the Way
Open-Source AI: Community is the WaySri Ambati
 
Building Custom GenAI Apps at H2O
Building Custom GenAI Apps at H2OBuilding Custom GenAI Apps at H2O
Building Custom GenAI Apps at H2OSri Ambati
 
Applied Gen AI for the Finance Vertical
Applied Gen AI for the Finance Vertical Applied Gen AI for the Finance Vertical
Applied Gen AI for the Finance Vertical Sri Ambati
 
Cutting Edge Tricks from LLM Papers
Cutting Edge Tricks from LLM PapersCutting Edge Tricks from LLM Papers
Cutting Edge Tricks from LLM PapersSri Ambati
 
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...Sri Ambati
 
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...Sri Ambati
 
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...Sri Ambati
 
LLM Interpretability
LLM Interpretability LLM Interpretability
LLM Interpretability Sri Ambati
 
Never Reply to an Email Again
Never Reply to an Email AgainNever Reply to an Email Again
Never Reply to an Email AgainSri Ambati
 
Introducción al Aprendizaje Automatico con H2O-3 (1)
Introducción al Aprendizaje Automatico con H2O-3 (1)Introducción al Aprendizaje Automatico con H2O-3 (1)
Introducción al Aprendizaje Automatico con H2O-3 (1)Sri Ambati
 
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...Sri Ambati
 
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...Sri Ambati
 
AI Foundations Course Module 1 - An AI Transformation Journey
AI Foundations Course Module 1 - An AI Transformation JourneyAI Foundations Course Module 1 - An AI Transformation Journey
AI Foundations Course Module 1 - An AI Transformation JourneySri Ambati
 
ML Model Deployment and Scoring on the Edge with Automatic ML & DF
ML Model Deployment and Scoring on the Edge with Automatic ML & DFML Model Deployment and Scoring on the Edge with Automatic ML & DF
ML Model Deployment and Scoring on the Edge with Automatic ML & DFSri Ambati
 
Scaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOpsScaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOpsSri Ambati
 

More from Sri Ambati (20)

Generative AI Masterclass - Model Risk Management.pptx
Generative AI Masterclass - Model Risk Management.pptxGenerative AI Masterclass - Model Risk Management.pptx
Generative AI Masterclass - Model Risk Management.pptx
 
AI and the Future of Software Development: A Sneak Peek
AI and the Future of Software Development: A Sneak Peek AI and the Future of Software Development: A Sneak Peek
AI and the Future of Software Development: A Sneak Peek
 
LLMOps: Match report from the top of the 5th
LLMOps: Match report from the top of the 5thLLMOps: Match report from the top of the 5th
LLMOps: Match report from the top of the 5th
 
Building, Evaluating, and Optimizing your RAG App for Production
Building, Evaluating, and Optimizing your RAG App for ProductionBuilding, Evaluating, and Optimizing your RAG App for Production
Building, Evaluating, and Optimizing your RAG App for Production
 
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...Building LLM Solutions using Open Source and Closed Source Solutions in Coher...
Building LLM Solutions using Open Source and Closed Source Solutions in Coher...
 
Open-Source AI: Community is the Way
Open-Source AI: Community is the WayOpen-Source AI: Community is the Way
Open-Source AI: Community is the Way
 
Building Custom GenAI Apps at H2O
Building Custom GenAI Apps at H2OBuilding Custom GenAI Apps at H2O
Building Custom GenAI Apps at H2O
 
Applied Gen AI for the Finance Vertical
Applied Gen AI for the Finance Vertical Applied Gen AI for the Finance Vertical
Applied Gen AI for the Finance Vertical
 
Cutting Edge Tricks from LLM Papers
Cutting Edge Tricks from LLM PapersCutting Edge Tricks from LLM Papers
Cutting Edge Tricks from LLM Papers
 
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...
Practitioner's Guide to LLMs: Exploring Use Cases and a Glimpse Beyond Curren...
 
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...
Open Source h2oGPT with Retrieval Augmented Generation (RAG), Web Search, and...
 
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...
KGM Mastering Classification and Regression with LLMs: Insights from Kaggle C...
 
LLM Interpretability
LLM Interpretability LLM Interpretability
LLM Interpretability
 
Never Reply to an Email Again
Never Reply to an Email AgainNever Reply to an Email Again
Never Reply to an Email Again
 
Introducción al Aprendizaje Automatico con H2O-3 (1)
Introducción al Aprendizaje Automatico con H2O-3 (1)Introducción al Aprendizaje Automatico con H2O-3 (1)
Introducción al Aprendizaje Automatico con H2O-3 (1)
 
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...
From Rapid Prototypes to an end-to-end Model Deployment: an AI Hedge Fund Use...
 
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...
AI Foundations Course Module 1 - Shifting to the Next Step in Your AI Transfo...
 
AI Foundations Course Module 1 - An AI Transformation Journey
AI Foundations Course Module 1 - An AI Transformation JourneyAI Foundations Course Module 1 - An AI Transformation Journey
AI Foundations Course Module 1 - An AI Transformation Journey
 
ML Model Deployment and Scoring on the Edge with Automatic ML & DF
ML Model Deployment and Scoring on the Edge with Automatic ML & DFML Model Deployment and Scoring on the Edge with Automatic ML & DF
ML Model Deployment and Scoring on the Edge with Automatic ML & DF
 
Scaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOpsScaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOps
 

Recently uploaded

Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerSaiLinnThu2
 
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...Improving IT Investment Decisions and Business Outcomes with Integrated Enter...
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...Cprime
 
SKY Paradigms, change and cake: the steep curve of introducing new technologies
SKY Paradigms, change and cake: the steep curve of introducing new technologiesSKY Paradigms, change and cake: the steep curve of introducing new technologies
SKY Paradigms, change and cake: the steep curve of introducing new technologiesNeo4j
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1Inbay UK
 
Artificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeArtificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeJosh Gellers
 
AI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientAI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientKari Kakkonen
 
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptxGraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptxNeo4j
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Umar Saif
 
Geospatial Synergy: Amplifying Efficiency with FME & Esri
Geospatial Synergy: Amplifying Efficiency with FME & EsriGeospatial Synergy: Amplifying Efficiency with FME & Esri
Geospatial Synergy: Amplifying Efficiency with FME & EsriSafe Software
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Utilising Energy Modelling for LCSF and PSDS Funding Applications
Utilising Energy Modelling for LCSF and PSDS Funding ApplicationsUtilising Energy Modelling for LCSF and PSDS Funding Applications
Utilising Energy Modelling for LCSF and PSDS Funding ApplicationsIES VE
 
New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024ThousandEyes
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...DianaGray10
 
Pragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfPragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfinfogdgmi
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...SearchNorwich
 
Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Product School
 
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Product School
 

Recently uploaded (20)

Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
 
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...Improving IT Investment Decisions and Business Outcomes with Integrated Enter...
Improving IT Investment Decisions and Business Outcomes with Integrated Enter...
 
SKY Paradigms, change and cake: the steep curve of introducing new technologies
SKY Paradigms, change and cake: the steep curve of introducing new technologiesSKY Paradigms, change and cake: the steep curve of introducing new technologies
SKY Paradigms, change and cake: the steep curve of introducing new technologies
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1
 
Artificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeArtificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human Justice
 
AI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientAI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficient
 
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptxGraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
 
Geospatial Synergy: Amplifying Efficiency with FME & Esri
Geospatial Synergy: Amplifying Efficiency with FME & EsriGeospatial Synergy: Amplifying Efficiency with FME & Esri
Geospatial Synergy: Amplifying Efficiency with FME & Esri
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Utilising Energy Modelling for LCSF and PSDS Funding Applications
Utilising Energy Modelling for LCSF and PSDS Funding ApplicationsUtilising Energy Modelling for LCSF and PSDS Funding Applications
Utilising Energy Modelling for LCSF and PSDS Funding Applications
 
New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
 
Pragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfPragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdf
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
 
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
 
Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...
 
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
 

Introduction to Deep Learning, Keras, and TensorFlow

  • 1. Intro to Deep Learning and TensorFlow H2O Meetup 01/09/2019 Metis San Francisco Oswald Campesato ocampesato@yahoo.com
  • 2. Highlights/Overview  intro to AI/ML/DL/NNs  Hidden layers/Initialization/Neurons per layer  cost function/gradient descent/learning rate  Dropout rate  Activation function  Linear Regression  What are CNNs  Filters/ReLU/MaxPooling  Keras and CNNs  TensorFlow 1.x
  • 4. Use Cases for Deep Learning computer vision speech recognition image processing bioinformatics social network filtering drug design Recommendation systems Bioinformatics Mobile Advertising Many others
  • 5. NN 3 Hidden Layers: Classifier
  • 6. NN: 2 Hidden Layers (Regression)
  • 9. Euler’s Function (e: 2.71828. . .)
  • 14. Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))
  • 15. What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs
  • 16. Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = slope of the best-fitting line b = y-intercept of the best-fitting line
  • 17. Which is Good for Linear Regression?
  • 18. Linear Regression in 2D: example
  • 23. Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model
  • 24. Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)
  • 25. Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist
  • 30. Deep Neural Network: summary  input layer, multiple hidden layers, and output layer  nonlinear processing via activation functions  perform transformation and feature extraction  gradient descent algorithm with back propagation  each layer receives the output from previous layer  results are comparable/superior to human experts
  • 31. CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio Used in hybrid networks
  • 32. CNNs: Convolution, ReLU, and Max Pooling
  • 34. CNNs: Convolution Matrices (examples) Sharpen: Blur:
  • 35. CNNs: Convolution Matrices (examples) Edge detect: Emboss:
  • 36. CNNs: Max Pooling Example
  • 38. GANs: Generative Adversarial Networks Make imperceptible changes to images Can consistently defeat all NNs Can have extremely high error rate Some images create optical illusions https://www.quora.com/What-are-the-pros-and-cons- of-using-generative-adversarial-networks-a-type-of- neural-network
  • 39. GANs: Generative Adversarial Networks Create your own GANs: https://www.oreilly.com/learning/generative-adversarial-networks-for- beginners https://github.com/jonbruner/generative-adversarial-networks GANs from MNIST: http://edwardlib.org/tutorials/gan GANs and Capsule networks?
  • 40. CNN in Python/Keras (fragment)  from keras.models import Sequential  from keras.layers.core import Dense, Dropout, Activation  from keras.layers.convolutional import Conv2D, MaxPooling2D  from keras.optimizers import Adadelta  input_shape = (3, 32, 32)  nb_classes = 10  model = Sequential()  model.add(Conv2D(32,(3, 3),padding='same’, input_shape=input_shape))  model.add(Activation('relu'))  model.add(Conv2D(32, (3, 3)))  model.add(Activation('relu'))  model.add(MaxPooling2D(pool_size=(2, 2)))  model.add(Dropout(0.25))
  • 41. What is TensorFlow? An open source framework for ML and DL A “computation” graph Created by Google (released 11/2015) Evolved from Google Brain Linux and Mac OS X support (VM for Windows) TF home page: https://www.tensorflow.org/
  • 42. What is TensorFlow? Support for Python, Java, C++ Desktop, server, mobile device (TensorFlow Lite) CPU/GPU/TPU support Visualization via TensorBoard Can be embedded in Python scripts Installation: pip install tensorflow TensorFlow cluster: https://www.tensorflow.org/deploy/distributed
  • 43. TensorFlow Use Cases (Generic) Image recognition Computer vision Voice/sound recognition Time series analysis Language detection Language translation Text-based processing Handwriting Recognition
  • 44. Aspects of TensorFlow Graph: graph of operations (DAG) Sessions: contains Graph(s) lazy execution (default) operations in parallel (default) Nodes: operators/variables/constants Edges: tensors => graphs are split into subgraphs and executed in parallel (or multiple CPUs)
  • 45. TensorFlow Graph Execution Execute statements in a tf.Session() object Invoke the “run” method of that object “eager” execution is available (>= v1.4) included in the mainline (v1.7) Installation: pip install tensorflow
  • 46. What is a Tensor? TF tensors are n-dimensional arrays TF tensors are very similar to numpy ndarrays scalar number: a zeroth-order tensor vector: a first-order tensor matrix: a second-order tensor 3-dimensional array: a 3rd order tensor https://dzone.com/articles/tensorflow-simplified- examples
  • 47. TensorFlow “primitive types” tf.constant: + initialized immediately + immutable tf.placeholder (a function): + initial value is not required + can have variable shape + assigned value via feed_dict at run time + receive data from “external” sources
  • 48. TensorFlow “primitive types” tf.Variable (a class): + initial value is required + updated during training + maintain state across calls to “run()” + in-memory buffer (saved/restored from disk) + can be shared in a distributed environment + they hold learned parameters of a model
  • 49. TensorFlow: constants (immutable)  import tensorflow as tf  aconst = tf.constant(3.0)  print(aconst) # output: Tensor("Const:0", shape=(), dtype=float32)  sess = tf.Session()  print(sess.run(aconst)) # output: 3.0  sess.close()  # => there's a better way
  • 50. TensorFlow: constants import tensorflow as tf aconst = tf.constant(3.0) print(aconst) Automatically close “sess” with tf.Session() as sess:  print(sess.run(aconst))
  • 51. TensorFlow Arithmetic import tensorflow as tf a = tf.add(4, 2) b = tf.subtract(8, 6) c = tf.multiply(a, 3) d = tf.div(a, 6) with tf.Session() as sess: print(sess.run(a)) # 6 print(sess.run(b)) # 2 print(sess.run(c)) # 18 print(sess.run(d)) # 1
  • 52. TF placeholders and feed_dict import tensorflow as tf a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed_dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed_dict))
  • 53. TensorFlow: Simple Equation import tensorflow as tf # W and x are 1d arrays W = tf.constant([10,20], name='W') X = tf.placeholder(tf.int32, name='x') b = tf.placeholder(tf.int32, name='b') Wx = tf.multiply(W, x, name='Wx') y = tf.add(Wx, b, name='y') OR y2 = tf.add(tf.multiply(W,x),b)
  • 54. TensorFlow fetch/feed_dict with tf.Session() as sess: print("Result 1: Wx = ", sess.run(Wx, feed_dict={x:[5,10]})) print("Result 2: y = ", sess.run(y,feed_dict={x:[5,10],b:[15,25]}))  Result 1: Wx = [50 200]  Result 2: y = [65 225]
  • 55. Saving Graphs for TensorBoard import tensorflow as tf x = tf.constant(5,name="x") y = tf.constant(8,name="y") z = tf.Variable(2*x+3*y, name="z") init = tf.global_variables_initializer() with tf.Session() as session: writer = tf.summary.FileWriter("./tf_logs",session.graph) session.run(init) print 'z = ',session.run(z) # => z = 34 # launch: tensorboard –logdir=./tf_logs
  • 56. TensorFlow Eager Execution An imperative interface to TF Fast debugging & immediate run-time errors Eager execution is “mainline” in v1.7 of TF => requires Python 3.x (not Python 2.x)
  • 57. TensorFlow Eager Execution integration with Python tools Supports dynamic models + Python control flow support for custom and higher-order gradients Supports most TensorFlow operations => Default mode in TensorFlow 2.0 (2019) https://research.googleblog.com/2017/10/eager- execution-imperative-define-by.html
  • 58. TensorFlow Eager Execution import tensorflow as tf import tensorflow.contrib.eager as tfe tfe.enable_eager_execution() x = [[2.]] m = tf.matmul(x, x) print(m) # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
  • 59. What is tensorflow.js?  an ecosystem of JS tools for machine learning  TensorFlow.js also includes a Layers API  a library for building machine learning models  tools to port TF SavedModels & Keras HDF5 models  => https://js.tensorflow.org/
  • 60. What is tensorflow.js?  tensorflow.js evolved from deeplearn.js  deeplearn.js is now called TensorFlow.js Core  TensorFlow.js Core: a flexible low-level API  TensorFlow.js Layers: a high-level API similar to Keras  TensorFlow.js Converter: tools to import a TF SavedModel to TensorFlow.js
  • 61. async keyword keyword placed before JS functions For functions that return a Promise Trivial example: async function f() { return 1; }
  • 62. await keyword Works only inside async JS functions Trivial example: let value = await mypromise;
  • 63. async/await example async function f() { let promise = new Promise((resolve, reject) => { setTimeout(() => resolve("done!"), 1000) }); // wait till the promise resolves let result = await promise alert(result) } f()
  • 64. Tensorflow.js Samples 1) tfjs-example.html (linear regression) 2) js.tensorflow.org (home page) 3) https://github.com/tensorflow/tfjs-examples-master a)cd mnist-core b) yarn c) yarn watch
  • 65. Deep Learning and Art/”Stuff” “Convolutional Blending” images: => 19-layer Convolutional Neural Network www.deepart.io https://www.fastcodesign.com/90124942/this-google- engineer-taught-an-algorithm-to-make-train-footage- and-its-hypnotic
  • 66. About Me: Recent Books 1) TensorFlow Pocket Primer (WIP: TR?) 2) Python for TensorFlow (WIP: TR?) 3) C Programming Pocket Primer (2019) 4) RegEx Pocket Primer (2018) 5) Data Cleaning Pocket Primer (2018) 6) Angular Pocket Primer (2017) 7) Android Pocket Primer (2017) 8) CSS3 Pocket Primer (2016) 9) SVG Pocket Primer (2016) 10) Python Pocket Primer (2015) 11) D3 Pocket Primer (2015) 12) HTML5 Mobile Pocket Primer (2014) 13) jQuery Pocket Primer (2013)
  • 67. What I do (Training) Instructor at UCSC (Santa Clara): Machine Learning Introduction (01/18/2019) Deep Learning with TensorFlow (02/02/2019) Deep Learning with Keras (ETA 04/2019) Deep Learning with TensorFlow (ETA 05/2019) Reinforcement Learning Intro (ETA 05/2019) Deep Learning with TF 2 (ETA 07/2019) Introduction to NLP (ETA 07/2019) Adv DL & Deep RL (Survey) (ETA 07/2019) UCSC link: https://www.ucsc-extension.edu/certificate-program/offering/deep- learning-and-artificial-intelligence-tensorflow => Android for Beginners (multi-day workshops)