Your SlideShare is downloading. ×
0
 
<ul><li>Olympic weight lifter  </li></ul><ul><li>Olympic victory </li></ul><ul><li>Olympic achievement </li></ul>
<ul><li>Olympic weight lifter  </li></ul><ul><li>Olympic victory </li></ul><ul><li>Olympic achievement </li></ul>Descripti...
Itti & Koch,  2001 Bruce Tsotsos, 2009 Judd et al., 2009 Previous talk of the session
Liu et al, 2007
Grab-Cut, Rother et al., 2004
Our goal:  Convey the image content
Stas Goferman Lihi Zelnik-Manor Ayellet Tal
<ul><li>Principles for context-aware saliency </li></ul><ul><li>A saliency detection algorithm  </li></ul><ul><li>Applicat...
<ul><li>Principles for context-aware saliency </li></ul><ul><li>A saliency detection algorithm  </li></ul><ul><li>Applicat...
<ul><li>Following perceptual properties </li></ul>
<ul><li>Local low-level factors </li></ul><ul><ul><li>Contrast </li></ul></ul><ul><ul><li>Color </li></ul></ul><ul><ul><li...
<ul><li>Global considerations </li></ul><ul><ul><li>Maintain unique features </li></ul></ul>Hou & Zhang, 2007
<ul><li>Local & global </li></ul><ul><ul><li>Should be multi-scale </li></ul></ul>Liu et al, 2007
<ul><li>Visual organization (Gestalt) </li></ul><ul><ul><li>Few centers of gravity </li></ul></ul><ul><ul><li>Position is ...
<ul><li>High-level </li></ul><ul><ul><li>Faces </li></ul></ul><ul><ul><li>Objects </li></ul></ul><ul><ul><li>People </li><...
Our result
Our result Local Walther  & Koch, 2006 Global Hou & Zhang, 2007 Local + global Liu et al, 2007
<ul><li>The steps of our algorithm </li></ul>
<ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance    salient </li></ul>salient Not salient
<ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance    salient </li></ul>
<ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance    salient </li></ul>Euclidean distance between colors of pat...
<ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance    salient </li></ul>salient high
<ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Similar patches both near and far Not salient
<ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Similar patches near Salient
<ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Normalized Euclidean distance between positions of...
<ul><li>Distance between a pair of patches: </li></ul>
<ul><li>Distance between a pair of patches: </li></ul>salient High
<ul><li>Distance between a pair of patches: </li></ul>salient High for K most similar
K most similar patches at scale  r
 
<ul><li>Salient at: </li></ul><ul><ul><li>Multiple scales    foreground </li></ul></ul><ul><ul><li>Few scales    backgro...
<ul><li>Principle 3: </li></ul><ul><ul><li>Few centers of gravity </li></ul></ul>Context
<ul><li>Foci =  </li></ul><ul><li>Include distance map  </li></ul>X
<ul><li>Realizing Principles 1,2,3 at multiple scales </li></ul>
<ul><li>Principle 4: </li></ul><ul><ul><li>Faces </li></ul></ul><ul><ul><li>Objects </li></ul></ul><ul><ul><li>… </li></ul...
<ul><li>Single-scale saliency </li></ul><ul><li>Multiple scales </li></ul><ul><li>Final saliency </li></ul>X
<ul><li>… </li></ul>
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Walther  & Koch, 2006 Hou & Zhang, 2007 Our result
Database of Hou & Zhang
Liu et al, 2007 Our result
<ul><li>Image retargeting </li></ul><ul><li>Collage </li></ul>
Seam Carving Our result
Seam Carving Our result
Seam Carving Our result
 
 
 
 
<ul><li>New definition:  Context-aware saliency </li></ul><ul><li>Algorithm: Based on 4 perceptual principles </li></ul><u...
<ul><li>… </li></ul>
Upcoming SlideShare
Loading in...5
×

CVPR2010: Context-aware saliency detection

798

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
798
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
23
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "CVPR2010: Context-aware saliency detection"

  1. 2. <ul><li>Olympic weight lifter </li></ul><ul><li>Olympic victory </li></ul><ul><li>Olympic achievement </li></ul>
  2. 3. <ul><li>Olympic weight lifter </li></ul><ul><li>Olympic victory </li></ul><ul><li>Olympic achievement </li></ul>Description based on “salient” pixels only
  3. 4. Itti & Koch, 2001 Bruce Tsotsos, 2009 Judd et al., 2009 Previous talk of the session
  4. 5. Liu et al, 2007
  5. 6. Grab-Cut, Rother et al., 2004
  6. 7. Our goal: Convey the image content
  7. 8. Stas Goferman Lihi Zelnik-Manor Ayellet Tal
  8. 9. <ul><li>Principles for context-aware saliency </li></ul><ul><li>A saliency detection algorithm </li></ul><ul><li>Applications: </li></ul><ul><ul><li>Image retargeting </li></ul></ul>
  9. 10. <ul><li>Principles for context-aware saliency </li></ul><ul><li>A saliency detection algorithm </li></ul><ul><li>Applications: </li></ul><ul><ul><li>Image retargeting </li></ul></ul><ul><ul><li>Collages </li></ul></ul>
  10. 11. <ul><li>Following perceptual properties </li></ul>
  11. 12. <ul><li>Local low-level factors </li></ul><ul><ul><li>Contrast </li></ul></ul><ul><ul><li>Color </li></ul></ul><ul><ul><li>… </li></ul></ul>Walther & Koch, 2006
  12. 13. <ul><li>Global considerations </li></ul><ul><ul><li>Maintain unique features </li></ul></ul>Hou & Zhang, 2007
  13. 14. <ul><li>Local & global </li></ul><ul><ul><li>Should be multi-scale </li></ul></ul>Liu et al, 2007
  14. 15. <ul><li>Visual organization (Gestalt) </li></ul><ul><ul><li>Few centers of gravity </li></ul></ul><ul><ul><li>Position is important!! </li></ul></ul>Our foci
  15. 16. <ul><li>High-level </li></ul><ul><ul><li>Faces </li></ul></ul><ul><ul><li>Objects </li></ul></ul><ul><ul><li>People </li></ul></ul><ul><ul><li>… </li></ul></ul>Judd et al, 2009 Low-level With face detection
  16. 17. Our result
  17. 18. Our result Local Walther & Koch, 2006 Global Hou & Zhang, 2007 Local + global Liu et al, 2007
  18. 19. <ul><li>The steps of our algorithm </li></ul>
  19. 20. <ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance  salient </li></ul>salient Not salient
  20. 21. <ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance  salient </li></ul>
  21. 22. <ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance  salient </li></ul>Euclidean distance between colors of patches at p i & p j
  22. 23. <ul><li>Principles 1-2: </li></ul><ul><li>Unique appearance  salient </li></ul>salient high
  23. 24. <ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Similar patches both near and far Not salient
  24. 25. <ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Similar patches near Salient
  25. 26. <ul><li>Principle 3: </li></ul><ul><li>Position is important! </li></ul>Normalized Euclidean distance between positions of p i & p j
  26. 27. <ul><li>Distance between a pair of patches: </li></ul>
  27. 28. <ul><li>Distance between a pair of patches: </li></ul>salient High
  28. 29. <ul><li>Distance between a pair of patches: </li></ul>salient High for K most similar
  29. 30. K most similar patches at scale r
  30. 32. <ul><li>Salient at: </li></ul><ul><ul><li>Multiple scales  foreground </li></ul></ul><ul><ul><li>Few scales  background </li></ul></ul>Scale 1 Scale 4
  31. 33. <ul><li>Principle 3: </li></ul><ul><ul><li>Few centers of gravity </li></ul></ul>Context
  32. 34. <ul><li>Foci = </li></ul><ul><li>Include distance map </li></ul>X
  33. 35. <ul><li>Realizing Principles 1,2,3 at multiple scales </li></ul>
  34. 36. <ul><li>Principle 4: </li></ul><ul><ul><li>Faces </li></ul></ul><ul><ul><li>Objects </li></ul></ul><ul><ul><li>… </li></ul></ul>Excluded from this talk
  35. 37. <ul><li>Single-scale saliency </li></ul><ul><li>Multiple scales </li></ul><ul><li>Final saliency </li></ul>X
  36. 38. <ul><li>… </li></ul>
  37. 39. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  38. 40. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  39. 41. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  40. 42. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  41. 43. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  42. 44. Walther & Koch, 2006 Hou & Zhang, 2007 Our result
  43. 45. Database of Hou & Zhang
  44. 46. Liu et al, 2007 Our result
  45. 47. <ul><li>Image retargeting </li></ul><ul><li>Collage </li></ul>
  46. 48. Seam Carving Our result
  47. 49. Seam Carving Our result
  48. 50. Seam Carving Our result
  49. 55. <ul><li>New definition: Context-aware saliency </li></ul><ul><li>Algorithm: Based on 4 perceptual principles </li></ul><ul><li>Applications </li></ul>salient Not salient
  50. 56. <ul><li>… </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×