Your SlideShare is downloading. ×
0
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Atti della Conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends

1,472

Published on

Atti della conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends

Atti della conferenza GENERAZIONE EOLICA “PULITA”: aspetti meccatronici/azionamentistici e trends

Published in: Business, Technology
1 Comment
2 Likes
Statistics
Notes
  • very interesting
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
1,472
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
21
Comments
1
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Luca Peretti - ABB Corporate Research, 2012-04-04“Clean“ wind power generationElectric/mechatronic aspects andtrends
  • 2. Overview  Presentations  The wind energy sector – a bird’s eye view  What is ”clean” wind energy?  Mechatronic aspects of wind turbines  Control aspects of wind turbines  Reflections  Soft conclusion© ABB GroupApril 4th, 2012 | Slide 2
  • 3. Presentations© ABB GroupApril 4th, 2012 | Slide 3
  • 4. Some about myself….  Born in Udine, Italy, in 1980  M.Sc. In Electronic Engineering, University of Udine (Italy), 2005  Ph.D. in Mechatronics and Industrial Systems, University of Padova in Vicenza (Italy), 2009  Post-doc, University of Padova in Vicenza (Italy), 2009-2010  Scientist, ABB Corporate Research, Västerås (Sweden), 2010-today  Member of the technical steering committee in the SWPTC  Member of reference group for Vindforsk projects  Member of the IET© ABB GroupApril 4th, 2012 | Slide 4
  • 5. ABB – a multinational corporation Power and automation technologies  ~133,600 employees in about 100 countries  2011 revenue: $ 38 billion  Formed in 1988, merger of Swiss and Swedish engineering companies  Predecessors founded in 1883 (ASEA) and 1891 (Brown Boveri)  Publicly owned company with head office in Switzerland© ABB Group April 4th, 2012 | Slide 5
  • 6. ABB offersDivisional structure and portfolio Discrete Power Systems Low Voltage Process Power Products Automation and Products Automation Motion $9.9 billion $7.6 billion $8.0 billion $4.9 billion $7.6 billion  ultrahigh, high and  electricals, • machines  contactors  control systems medium voltage automation and • motors  instrumentation and application- products (switchgear, control for power • drives  panels specific capacitors, …); generation • robotics  softstarters automation  distribution  transmission solutions for automation; systems and process  transformers substations industries  network management Based on 2011 revenues© ABB GroupApril 4th, 2012 | Slide 6
  • 7. Innovation: key to ABB’s competitivenessConsistent R&D investment  More than $1 billion invested annually in R&D*  Approx. 6,000 scientists and engineers  Collaboration with approx. 70 universities  MIT (US), Tsinghua (China), KTH Royal Institute of Technology (Sweden), Indian Institute of Science (Bangalore), ETH (Switzerland), Karlsruhe (Germany), … * Comprises non-order related R&D and order-related development© ABB GroupApril 4th, 2012 | Slide 7
  • 8. ABB Corporate R&D – globally distributed SECRC - Västerås (Oslo) CHCRC - Baden-Dättwil DECRC - Ladenburg PLCRC - Krakow USCRC - Raleigh INCRC - Bangalore CNCRC - Beijing and Shanghai Power Technologies Automation Technologies© ABB GroupApril 4th, 2012 | Slide 8
  • 9. ABB Corporate Research, VästeråsResources: brains and muscles  Approx. 260 Employees  240 Scientists and engineers  135 Ph.D.  Power Technologies labs  High Voltage  High Power  Motor/machines test benches  Power electronics test benches c  Insulation systems and materials  Automation Technologies labs  Mechatronics  Communications  Technology Support labs  Chemistry  Mechanics© ABB GroupApril 4th, 2012 | Slide 9
  • 10. Wind energy sector A bird’s eye view on the market and (ABB’s) technologies© ABB GroupApril 4th, 2012 | Slide 10
  • 11. Wind energy sectorGrowing… ? From: http://www.wwindea.org/home/index.php?option=com_content&task=view&id=345&Itemid=43  China number 1, and growing  Very politically-driven market (financial crisis has a big impact)  Germany’s very ambitious plans are interesting… (but already behind schedule) (http://www.thenational.ae/thenationalconversation/industry-insights/energy/german- wind-energy-plans-in-the-doldrums)© ABB GroupApril 4th, 2012 | Slide 11
  • 12. Offshore windMainly a European challenge so far From [1]© ABB GroupApril 4th, 2012 | Slide 12
  • 13. Offshore wind in Europe From [1] From [1]  Lot of plans, few installations done  Offshore is still a small percentage  Technological reasons behind it?© ABB GroupApril 4th, 2012 | Slide 13
  • 14. ABB contribution to renewable energyComponent supplier for wind power Offering to wind turbine manufacturers:  Generators and motors  LV and MV converters  LV and MV switchgears  Transformers  Control and protections  Low voltage products  Full life cycle management to all products delivered Sales to wind farm owners, operators or developers:  Sub-stations  Transformers  Grid connections  AC and HVDC underground and sea  Cables  System studies  Full life cycle management to all products delivered© ABB GroupApril 4th, 2012 | Slide 14
  • 15. Generators for different drive train conceptsA complete coverage Doubly-fed induction machine (±30% speed) Squirrel-cage induction machine (0-100% speed) Permanent magnet machine (0-100% speed) Permanent magnet DD machine (0-100% speed)© ABB Group From [6]April 4th, 2012 | Slide 15
  • 16. Induction generators Fixed-speed generators  Generator directly coupled to the grid  From single- to two-speed, air- and water-cooling, cast iron and welded housings  Typical rated speed 1000 – 1500 rpm, 4 – 6 poles  Normally powers from 1 MW to 2 MW Doubly-fed generators  Direct on-line stator and a wound rotor connected to the grid using a frequency converter, torque and speed ranges limited by the converter power rating  Typical rated speed 1000 – 1500 rpm, 4 – 6 poles  Normally powers from 1,5 MW to 5 MW Full-speed generators  Welded modular construction  Fully controlled with variable speed, reactive power supply  High power quality and efficiency for the end user  Typical rated speed 1000 – 1500 rpm, 4 - 6 poles  Normally powers from 2 MW to 5 MW© ABB Group From [7]April 4th, 2012 | Slide 16
  • 17. Synchronous (PM) generators Low-speed generators  Integration of turbine and generator.  Simple and robust low speed rotor design with no separate excitation or cooling system  High efficiency, simple and robust, lowest maintenance demand, maximum reliability  Typical rated speed 14 – 30 rpm, multi-pole  Normally powers from 1,5 MW to 3 MW Medium-speed generators  Slow speed system, single-stage gearbox.  Same simple and robust low speed rotor design with no separate excitation or cooling system  High power with small space requirement  High efficiency, simple and robust, low maintenance demand  Typical rated speed 120 – 450 rpm, multi-pole  Normally powers from 1 MW to 7 MW High-speed generators  Mechanically similar to the doubly-fed type with smaller space requirements  Highest power density with well-proven, high speed gear solution  High efficiency, no slip rings, low maintenance demand  Typical rated speed 1000 – 2000 rpm, 4 to 8 poles  Normally powers from 2 MW to 5 MW© ABB Group From [7]April 4th, 2012 | Slide 17
  • 18. Low-voltage (<1 kV) drives: ABB ACS800 family ACS800-77LC - 0,6 to 3,3 MW ACS800-87LC - 1, 5 to 6 MW ACS800-67LC - 1,7 to 3,8 MW  Robust grid code compliance  Robust grid code compliance  Small and light weight  Nacelle or tower installation  Compact size, back-to-back configuration  Lowest harmonics and highest efficiency at rated point  Redundant configuration  Optimized for tower base installation available at higher ratings© ABB Group From [6]April 4th, 2012 | Slide 18
  • 19. Medium voltage (~3 kV) drives: ABB PCS6000 family  2011-08-23: first order from Global Tech I project (400 MW offshore wind farm, 110km north-west of Cuxhaven, Germany)  80 wind turbines (Multibrid) of 5 MW each - provided by AREVA  $ 30 millions from AREVA Wind to provide 5MW-MV drives© ABB Group From [6,8]April 4th, 2012 | Slide 19
  • 20. What is “clean” wind energy? ...or the “behind the scene” aspect© ABB GroupApril 4th, 2012 | Slide 20
  • 21. “Clean” energyIs it this...? From: http://www.cbc.ca/news/pointofview/WindTurbine.jpg From: http://www.greenpeace.org/eu-unit/Global/eu- unit/image/2011%20pix/December%202011/turbine%20on%20the%20beach.jpg From: http://www.bettergeneration.co.uk/images/stories/blog/wind-eolic-turbine-in-hands.jpg© ABB GroupApril 4th, 2012 | Slide 21
  • 22. “Clean” energy...or this? From: http://graphics8.nytimes.com/images/2010/11/08/opinion/08rfd-image1/08rfd- image1-custom2.jpg From: http://andysrant.typepad.com/.a/6a01538f1adeb1970b0154361c515e970c-500wi From: http://www.cbc.ca/gfx/images/news/photos/2011/07/07/li-rare-earth-mine-620rtxu1.jpg© ABB GroupApril 4th, 2012 | Slide 22
  • 23. Mechatronics aspects ...or wind turbines from the view of a power electronics engineer (no grid aspects included)© ABB GroupApril 4th, 2012 | Slide 23
  • 24. Wind turbines structuresHow did we get here Picture from [2]© ABB GroupApril 4th, 2012 | Slide 24
  • 25. Growing and growing…Foreseen problems? Picture from [2]© ABB GroupApril 4th, 2012 | Slide 25
  • 26. Inside a wind turbineThe real mechatronic application Picture from [2]  The turbine rotor rotates at low speed – approx. 5 rpm nominal  Depending on the drive train concept, the generator rotates either at low (15 rpm), medium-(300- 400 rpm) or high (1000-1800 rpm) speed© ABB GroupApril 4th, 2012 | Slide 26
  • 27. A true mechatronic vision is needed Material Electrics Electronics Mechanics Civil science Maximum efficiency control Light-weight Foundations materials for offshore  Results in each field stimulate Flexible blades design and benefit all other fields Design of Grid-fault larger generators compensation  Interdisciplinary exchange control and circulation of ideas is New essential Reliable generator electrical concepts contacts Mechanical Vibration vibration damping damping algorithms© ABB GroupApril 4th, 2012 | Slide 27
  • 28. Let’s start: cost breakdown of a wind turbine Picture from [2]  Generator and power converter do not account for much of the cost… (so far)  The gearbox is indeed quite a big part of it© ABB GroupApril 4th, 2012 | Slide 28
  • 29. The gearboxOne of the most unknown things ever (for electrical guys) From: http://www.designnews.com/document.asp?doc_id=230485 From: http://eetweb.com/wind/gearbox-failure-fig1.jpg  Mature product trying to enter a new market  One or more stages between the turbine rotor and the electric generator (epicyclical or parallel axis type)  Mechanical multi-body simulations are performed by suppliers (but not available)  Source of noise (and failures)  Today, closer interaction with turbine manufacturers© ABB GroupApril 4th, 2012 | Slide 29
  • 30. Noise from the gearbox  There might be some vibrations (mesh frequency and maybe others)  What happens during normal operation? And during a fault? From: S. Li, D. Jiang, M. Zhao, "Experimental investigation and analysis for gearbox fault", Proc. of the World Non-Grid-Connected Wind Power and Energy Conference (WNWEC), Nanjing, China, Nov. 5th-7th, 2010.© ABB GroupApril 4th, 2012 | Slide 30
  • 31. The mechanical drive train  A classic mechanical engineering work  Quite different structures for different concepts (direct-drive, gearbox-based)  Surprisingly (or not?), few information available for high-frequency behaviour (above 100 Hz)  There might be some resonances... what happens when they are hit? 𝑑𝜔 𝑟𝑜𝑡 1 𝑑𝜙 = 𝜏 𝑟𝑜𝑡 − 𝜙𝐾 𝑠𝑕𝑎𝑓𝑡 − 𝐵 𝑑𝑡 𝐽 𝑟𝑜𝑡 𝑑𝑡 𝑠𝑕𝑎𝑓𝑡 𝑑𝜔 𝑔𝑒𝑛 1 1 𝑑𝜙 = −𝜏 𝑔𝑒𝑛 + 𝜙𝐾 𝑠𝑕𝑎𝑓𝑡 + 𝐵 𝑑𝑡 𝐽 𝑔𝑒𝑛 𝑁 𝑑𝑡 𝑠𝑕𝑎𝑓𝑡 𝑑𝜙 1 = 𝜔 𝑟𝑜𝑡 − 𝜔 𝑑𝑡 𝑁 𝑔𝑒𝑛 From: J. D. Grunnet, M. Soltani, T. Knudsen, M. From: J. Sopanen, V. Ruuskanen, J. Nerg, J. Kragelund, T. Bak, “Aeolus toolbox for dynamic wind Pyrhönen, "Dynamic torque analysis of a wind farm model, simulation and control”, Proceedings of turbine drive train including a direct-driven the European Wind Energy Conference and permanent magnet generator", IEEE Trans. Ind. Exhibition (EWEC) 2010, 20th-23rd April 2010, El., vol. 58, no. 9, Sept. 2011. Warsaw, Poland.© ABB GroupApril 4th, 2012 | Slide 31
  • 32. The (twisting) tower…  Side-to-side and fore-aft oscillations: impact on power generation Side-to-side oscillations: The sideways oscillation of the tower causes an oscillating angular deflection of the nacelle and thereby superimposes an apparent oscillation in the rotating magnetic flux. This leads to a corresponding power fluctuation. From: T. Thiringer, J.-Å. Dahlberg, "Periodic pulsations from a three-bladed wind turbine", IEEE Trans. En. Conv., vol. 16, no. 2, Jun. 2001 Fore-aft oscillations: Change of the equivalent wind speed over the rotor: change of torque contribution from the wind source. 1 𝑣3 𝑟𝑜𝑡 Torque produced on the shaft: 𝜏 𝑟𝑜𝑡 = 𝜌𝐴 𝑟𝑜𝑡 𝐶 𝑝 𝜆, 𝛽 2 𝜔 𝑟𝑜𝑡© ABB GroupApril 4th, 2012 | Slide 32
  • 33. The nature adds some wind effects Wind shear and tower shadow effects Variation of the wind field with the height Disturbance related to tower presence From: D. S. L. Dolan, P. W. Lehn, “Simulation Model of wind turbine 3p torque oscillations due to wind shear and tower shadow”, IEEE Trans. En. Conv., vol. 21, no. 3, Sept. 2006  That’s what individual pitch control is used for! http://www.geograph. org.uk/photo/754033© ABB GroupApril 4th, 2012 | Slide 33 Pitch systems
  • 34. Designing the best generator…the PMSG case  Let’s not consider issues like size or weight or mounting procedures  Cogging torque (for synchronous generators) could be an issue Q: number of slots p: pole pairs +∞ 𝜏 𝑐𝑜𝑔 𝜗 𝑚 = 𝑇 𝑘 sin 𝑘𝑁 𝑝 𝑄𝜗 𝑚 + 𝜑 𝑘𝑁 𝑝 𝑘=1 2𝑝 𝑁𝑝 = 𝐻𝐶𝐹 𝑄, 2𝑝 From: N. Bianchi, S. Bolognani, “Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors”, IEEE Trans. Ind. Appl., vol. 38, no. 5, Sept./Oct. 2002, pp. 1259-1265.© ABB GroupApril 4th, 2012 | Slide 34
  • 35. Designing the best generator…the PM case  Best design for cogging torque reduction, but not elimination From: J. Sopanen, V. Ruuskanen, J. Nerg, J. Pyrhönen, "Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent magnet generator", IEEE Trans. Ind. El., vol. 58, no. 9, Sept. 2011.© ABB GroupApril 4th, 2012 | Slide 35
  • 36. The grid…why should it be perfect?  Weak grids could introduce voltage asymmetries  Issue for doubly-fed generators (a superimposed 2nd-harmonic torque is generated) ± 2% voltage unbalance ± 10,1% torque unbalance ± 8,7% stator current unbalance ± 0,5% DC-bus voltage unbalance ±7,8% stator active power unbalance From: L. Xu, Y. Wang, "Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions", IEEE Trans. Pow. Syst., vol. 22, no. 1, Feb. 2007© ABB GroupApril 4th, 2012 | Slide 36
  • 37. Put it all together An engineering miracle that it actually works …but how do the components affect the turbine reliability? ReliaWind Project: http://www.reliawind.eu/ EU funding within the frame of the European Union’s Seventh Framework Programme for RTD (FP7) 450 wind-farm months’ worth of data 350 onshore wind turbines operating for varying lengths of time 35,000 downtime events ”old type” turbines (probably no direct-drive concepts)© ABB GroupApril 4th, 2012 | Slide 37
  • 38. Reliability & maintenance aspectsReliaWind project – turbine failure rate From: http://www.reliawind.eu/files/file-inline/110502_Reliawind_Deliverable_D.1.3ReliabilityProfilesResults.pdf© ABB GroupApril 4th, 2012 | Slide 38
  • 39. Reliability & maintenance aspectsReliawind project - downtime From: http://www.reliawind.eu/files/file-inline/110502_Reliawind_Deliverable_D.1.3ReliabilityProfilesResults.pdf© ABB GroupApril 4th, 2012 | Slide 39
  • 40. Reliability & maintenance aspectsPrevious studies From: http://www.reliawind.eu/files/file-inline/110502_Reliawind_Deliverable_D.1.3ReliabilityProfilesResults.pdf© ABB GroupApril 4th, 2012 | Slide 40
  • 41. Interpreting the reliability figures...  Converters’ reliability should be improved  Pitch control is also very sensitive  Gearbox impact: to be further analysed (lot of effort from manufacturers reported)  We should also don’t forget the scheduled maintenance (i.e. change of the oil in the gearbox) Do we gain something by changing the drive train concept?  High-speed, medium-speed or low-speed generators?  With or without gearbox?© ABB GroupApril 4th, 2012 | Slide 41
  • 42. Drive train conceptsThe different approaches  Traditional concept: high-speed generator with gearbox  low raw material and investment costs  high full-load efficiency of the drive train  higher failure rate for high-speed components (e.g. high-speed shaft and generator bearing)  Direct-drive concept: low-speed generator, no gearbox  no fast rotating parts, maybe higher reliability  higher partial load efficiency  more raw materials  Medium-speed concept: medium-speed generator, reduced-stage gearbox  Tries to combine the two above ?© ABB GroupApril 4th, 2012 | Slide 42
  • 43. Magnets’ price variabilityUp and downs – direct impact on generators’ price Picture from: http://aussiemagnets.com.au/pages/Rare-Earth-Magnet-Price-Increases.html Picture from: http://www.metal-pages.com/metalprices/neodymium/  Rare-earth materials’ price is going up and down  China dominates the market  Future?© ABB GroupApril 4th, 2012 | Slide 43
  • 44. Control aspects Mainly converter ones, not pitch control ones© ABB GroupApril 4th, 2012 | Slide 44
  • 45. The general picturePitch control and generator control  Pitch control and torque control;  Pitch control: PLC level (turbine manufacturer);  Torque control: frequency converter (supplier)  Power references are accepted as well for the torque control;  Speed-power-torque relationships based on turbine and generator characteristics;  There is one drawback from the electric drive point of view. Where? Picture from [2]© ABB GroupApril 4th, 2012 | Slide 45
  • 46. The two cases: DFIG and PMSG  DFIG: converter connected to the rotor windings, slip rings  Stator connected to the grid  Smaller converter size (roughly 30% of the rated power) Picture from [2]  PMSG: grid/generator interaction only through the converter  Bigger size of the converter (rated power) Picture from [2]© ABB GroupApril 4th, 2012 | Slide 46
  • 47. A conventional speed-power curve Picture from [2]© ABB GroupApril 4th, 2012 | Slide 47
  • 48. The importance of the limitationsThe PMSG case Picture from [3]© ABB GroupApril 4th, 2012 | Slide 48
  • 49. The importance of the limitationsThe DFIG case Picture from [4]© ABB GroupApril 4th, 2012 | Slide 49
  • 50. Grid-codes compliance • Static and dynamic requirements to be fulfilled by a wind power installation • Static requirements: voltage and power control, power quality (THD, flicker) • Dynamic requirements: dynamic behavior under grid disturbance (fault ride- through, FRT) Picture from [3]© ABB GroupApril 4th, 2012 | Slide 50
  • 51. Fault ride-through capabilities Turbine connected during temporary faults. Requirements:  voltage dip length  behaviour with a balanced (symmetrical) dip  behaviour with an unbalanced (unsymmetrical) dip. Depending on the country, the wind turbine:  has to stay connected to the power system for a certain time  may not take power from the power system  must produce capacitive reactive current as much as required.© ABB GroupApril 4th, 2012 | Slide 51 Picture from [3]
  • 52. Reflections (Technical) tendencies and expectations on the turbine side© ABB GroupApril 4th, 2012 | Slide 52
  • 53. Challenge 1 – The scaling of generators Coping with: increased weight? Increased disturbances and vibrations? PM availability? It is not only a raw material problem; it is also a production capacity issue. Drive train Concept comparisons (3MW reference) Speed Full Low Speed Full Medium Speed Full High Converter (LSFC) - concept Converter (MSFC) Converter (HSFC) Direct drive Low Speed Full Drive train Medium Speed Full High Speed Full Converter (LSFC) - Typical size concept Converter (MSFC) Converter (HSFC) Direct drive 70 tons 20 tons 8 tons Relative Typical size Production 70 tons 20 tons 8 tons capacity 4,5 1,5 1 Relative need Production (450%) (150%) (100%) Per unit capacity 4,5 1,5 1 need (450%) (150%) (100%) Efficiency Per unit at nominal 95,1% 98,2% 97,7% load Efficiency at nominal Relative 95,1% 98,2% 97,7% load Magnet weight 10 2,5 1 Relative Magnet weight 10 2,5 1 © ABB Group April 4th, 2012 | Slide 53
  • 54. Challenge 2: the offshore • Harsher conditions in offshore • Wind AND waves effects! • Water depth, soil stiffness: significant effect on the fatigue load/bending • Indirect effects on the drive train (vibrations) • Control may have a bigger role From: J. Sheng, S. Chen, "Fatigue Load Simulation for Foundation Design of Offshore Wind Turbines Due to Combined Wind and Wave Loading“, Proc. of the Non-Grid-Connected Wind Power and energy Conference (WNWEC), Nanjing, China, Nov. 5th-7th,2010.© ABB GroupApril 4th, 2012 | Slide 54
  • 55. Challenge 3: maintenancehttp://www.flightglobal.com/blogs/aircraft-pictures/assets_c/2009/01/Eurocopter-EC135.html http://images.pennnet.com/articles/pe/cap/cap_0705pe-dsc06925.jpg  Do we design with maintenance in mind?  What does the offshore challenge require?  How a different drive train topology affect maintenance? http://www.rope-access-photos.com/picture/number395.asp © ABB Group April 4th, 2012 | Slide 55
  • 56. Challenge 4 – Cold climate  Research to enhance power production in cold regions  Blades do play a big role  New materials, new concepts needed  Condition monitoring (not only for blades...)  Converters, generators could be affected by altitude From: Ø. Byrkjedal - Kjeller Vindteknikk, “Detailed national mapping of icing”, Seminar on wind energy aerodynamics - icing and de-icing of WT blades, KTH, Sept. 5, 2011 - Chalmers, Sept. 6, 2011, https://document.chalmers.se/workspaces/chalmers/energi-och-miljo/vindkraftstekniskt/icing-de-icing/oyvind_byrkjedal© ABB GroupApril 4th, 2012 | Slide 56
  • 57. Do not limit the fantasyAirborne turbines? Savonius style Twind http://en.wikipedia.org/wiki/Airborne_wind_turbine Aerogenerator X KiteGen© ABB GroupApril 4th, 2012 | Slide 57 http://www.windpower.ltd.uk/index.html http://kitegen.com/press/kiwicarusel_hd_logo.jpg
  • 58. Soft conclusion To ease the listeners before the discussion© ABB GroupApril 4th, 2012 | Slide 58
  • 59. ABB support to academiaThe right time for knowledge From: http://www.chalmers.se/ee/swptc-en© ABB GroupApril 4th, 2012 | Slide 59
  • 60. SWPTC partners Universities  Chalmers University of Technology Industries  ABB  DIAB  GE Wind  Göteborgs Energi  Marström Composite  SKF Sweden  Triventus Energiteknik  WindVector Municipal/Regional/Government  Region Västra Götaland  Swedish Energy Agency© ABB GroupApril 4th, 2012 | Slide 60
  • 61. SWPTC’s direct-drive wind turbine in GöteborgMain technical data Picture from Göteborg’s harbour From: http://www.goteborgenergi.se/Foretag/Projekt_och_etableringar/Fornyelsebar_energi/Vindkraft/I_drift/Goteborg_Wind_Lab© ABB GroupApril 4th, 2012 | Slide 61
  • 62. Time-lapse video  http://www.youtube.com/watch?v=jHn1n2tdnRc© ABB GroupApril 4th, 2012 | Slide 62
  • 63. Thank you! Picture from: http://blog.luciolepress.com/2010/08/05/funny-photo-a-sheep-a-wind-turbine-and-a-rainbow-in-germany.aspx© ABB GroupApril 4th, 2012 | Slide 63
  • 64. References 1. “Wind in our Sails - The coming of Europes offshore wind energy industry”, EWEA report, November 2011, http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Offshore_report_web_01.pdf 2. ABB Technical application papers no. 13, ”Wind power plants”, ABB document 1SDC007112G0201 - 10/2011 - 4.000. 3. "ABB wind turbine converters - System description and start-up guide, ACS800-77LC wind turbine converters (840 to 3180 kW)", ABB document 3AFE68802237 Rev B EN 2010-10-25. 4. ABB wind turbine converters- System description and start-up guide, ACS800-67LC wind turbine converters, ABB document 3AUA0000059432 Rev A (EN) 2011-01-14 5. "ABB wind turbine converters - Firmware manual - Grid-side control program for ACS800 wind turbine converters", ABB document 3AUA0000075077 Rev B EN 2011-05-26 6. “Products and services for wind turbines - Electrical drivetrain solutions and products for turbine subsystems”, ABB document 3AUA0000080942 REV A 18.5.2010 #14995 7. “Wind turbine generators - Reliable technology for all turbine applications”, ABB brochure 9AKK104735 EN 04-2009 Piirtek#14426 8. “Medium voltage for wind power PCS 6000 - full-scale converters up to 9 MVA”, ABB document 3BHS275725 E01© ABB GroupApril 4th, 2012 | Slide 64

×