Your SlideShare is downloading. ×
0
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Choas Theory3
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Choas Theory3

1,347

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,347
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
80
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CHAOS Strange Attractors and Lorenz Equations
  • 2. Definitions <ul><li>Chaos – study of dynamical systems (non-periodic systems in motion) usually over time </li></ul><ul><li>Attractor – a set of points in phase space toward which neighboring points asymptotically approach within a basin of attraction </li></ul><ul><li>- an attractor can be a point, curve, manifold </li></ul><ul><li> or a complicated set of fractals known as a strange attractor </li></ul>
  • 3. <ul><li>Strange Attractor – an attractor that exhibits sensitive dependence on initial conditions; they usually have fractal structure (infinite detail). </li></ul><ul><ul><li>There are several types of strange attractors including: </li></ul></ul><ul><ul><ul><li>Chua – used in electronic circuitry. </li></ul></ul></ul><ul><ul><ul><li>Duffing – used in nonlinear oscillators. </li></ul></ul></ul><ul><ul><ul><li>R össler – used in chemical kinetics. </li></ul></ul></ul><ul><ul><ul><li>Ikeda – involved in the turbulence of trails of smoke. </li></ul></ul></ul><ul><ul><ul><li>Lorenz – used in atmospheric convection. </li></ul></ul></ul>Definitions &amp; Applications of Attractors
  • 4. Applications of Attractors Chua Duffing Lorenz R össler Ikeda
  • 5. Edward Lorenz <ul><li>an American mathematician and meteorologist, and is the first contributor to the chaos theory and inventor of the strange attractor notion in 1963. </li></ul><ul><li>Discovered that minute variations in initial weather parameters led to grossly divergent weather patterns </li></ul><ul><li>Coined the term “butterfly effect” </li></ul>
  • 6. <ul><li>The Lorenz Attractor is based on three differential equations, three constants, and three initial conditions. The attractor represents the behavior of gas at any given time, and its condition at any given time depends upon its condition at a previous time. </li></ul>Lorenz Attractor
  • 7. <ul><li>Although originally developed to study the upper atmosphere, the Lorenz equations have since been used in the study of batteries, lasers, and even the simple chaotic waterwheel. </li></ul>The Lorenzian Waterwheel
  • 8. Lorenz Equations
  • 9. The Variables <ul><li>x – refers to the convective flow. </li></ul><ul><li>y – refers to the horizontal temperature distribrution. </li></ul><ul><li>z – refers to the vertical temperature distribution. </li></ul>
  • 10. The Constants <ul><li>σ – sigma refers to the ratio of viscoscity to thermal conductivity. </li></ul><ul><li>ρ – rho refers to the temperature difference between the top and bottom of a given slice. </li></ul><ul><li>β – beta refers to the ratio of the width to the height. </li></ul>
  • 11. Behavior <ul><li>Chaotic behavior can only be found in systems of equations with three or more variables. </li></ul><ul><li>Within the Lorenz system, there are three things that make the system chaotic. </li></ul><ul><ul><li>Equations </li></ul></ul><ul><ul><li>Initial Values </li></ul></ul><ul><ul><li>Constants </li></ul></ul><ul><ul><ul><li>If the ρ constant is below a certain value, then there will be no chaotic behavior, and the graph will converge. </li></ul></ul></ul>
  • 12. The Butterfly Effect ^ x solution with respect to time. ^ y solution with respect to time. « z solution with respect to time.
  • 13. Proof for Bounded System <ul><li>(x) dx/dt = (- σ x+ σ y)(x) </li></ul><ul><li>(y) dy/dt = ( ρ x-y-xz) (y) </li></ul><ul><li>(z n ) dz n /dt = (- β (z n + ρ + σ )+xy) (z n ) </li></ul><ul><li> ^{z n =z- ρ - σ } </li></ul><ul><li> {z=z n + ρ + σ } </li></ul><ul><li>½dx 2 /dt = - σ x 2 + σ xy </li></ul><ul><li>½dy 2 /dt = ρ xy-y2-xy(zn+ ρ + σ ) </li></ul><ul><li>½dz n 2 /dt = - β z n 2 - βρ z n - βσ z n +xyz n </li></ul>
  • 14. Proof Cont. <ul><li>½d(x 2 +y 2 +z n 2 )/dt = - σ x 2 -y 2 - β z n 2 - β z n ( ρ + σ ) </li></ul><ul><li>a 2 +b 2 ≥ 2ab </li></ul><ul><li>2ab » -z n (√ β -1)(√1/ β -1) β ( ρ + σ ) </li></ul><ul><li>a 2 +b 2 » z n 2 ( β -1)+( β 2 ( ρ + σ ) 2 /4( β -1)) </li></ul><ul><li>½d(x 2 +y 2 +z n 2 )/dt = - σ x 2 -y 2 -z n 2 + </li></ul><ul><li>( β 2 ( ρ + σ ) 2 /4( β - 1)) </li></ul>
  • 15. Proof Cont. <ul><li>- σ x 2 -y 2 -z n 2 ≤ -(x 2 +y 2 +z n 2 ) | σ |&gt;1 </li></ul><ul><li>- σ x 2 -y 2 -z n 2 ≤ - σ (x 2 +y 2 +z n 2 ) | σ |&lt;1 </li></ul><ul><li>R(t) = x 2 +y 2 +z n 2 </li></ul><ul><li>d(R(t))/dt = -2R(t)+2( ( β 2 ( ρ + σ ) 2 /4( β - 1)) </li></ul><ul><li>R’+2R= ε </li></ul>
  • 16. Proof Finale <ul><li>R = ε te -2t +ce -2t </li></ul><ul><li>R » c t = 0 </li></ul><ul><li>R » 0 t » infinity </li></ul>
  • 17. The End

×