Hp Uiuc Part2

704 views
623 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
704
On SlideShare
0
From Embeds
0
Number of Embeds
15
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Hp Uiuc Part2

    1. 1. Biorefinery of municipal and industrial wastes: a new paradigm in waste management leading to biofuels and secondary resources Héctor M. Poggi-Varaldo CINVESTAV-IPN, Dept. Biotechnology and Bioengineering, Environmental Biotechnology R&D Group, Mexico DF, Mexico hectorpoggi2001@gmail.com GBPANAT
    2. 2. Acknowledgements <ul><li>Ireri Robles-González, Karla Muñoz-Páez, Alessandro Carmona, Dra. I. Valdez-Vazquez, J. Acevedo-Benítez, Javier, Monserrat from the Environmental Biotechnology R&D Group of CINVESTAV </li></ul><ul><li>Prof. Elvira Ríos-Leal, Mr. Rafael Hernández-Vera, Dr. Fernando Esparza-García, from CINVESTAV </li></ul><ul><li>CINVESTAV for partial financial support </li></ul><ul><li>Dr. Franco Cecchi, Italy; Dr. Richard Sparling, Canada; Dr. Paolo Pavan, Italy </li></ul><ul><li>Agropark </li></ul>
    3. 3. Contents <ul><li>Notation </li></ul><ul><li>Introduction </li></ul><ul><ul><li>Oil and fossile fuels outlook and impact </li></ul></ul><ul><ul><li>Hydrogen advantages and production technologies </li></ul></ul><ul><li>Objective </li></ul><ul><li>Intermittently-vented SSAH from paper mill waste </li></ul><ul><li>Intermittently-vented SSAH from organic waste </li></ul><ul><li>Semi-continuous acidogenic SSAD </li></ul><ul><li>Conclusions and outlook </li></ul><ul><li>Biorefinery from organic wastes </li></ul>
    4. 4. Notation BES 2-bromoethanesulfonate A-SSAD acidogenic solid substrate anaerobic digestion HSP or tt heat shock preatreatment IV-SSAH intermittently vented and flushed, solid substrate anaerobic hydrogen generation M-SSAD methanogenic solid substrate anaerobic digestion P H , P m maximum amount of accumulated H 2 (or CH 4 ) (mmole/reactor) R i,H , R i,m initial rate of H 2 (or CH 4 ) accumulation (  mole/(reactor.h))
    5. 5. Introduction GBPANAT
    6. 6. World oil production Duncan and Youngquist, 1998 Panic button
    7. 7. World Primary Energy Demand Priddle, 2002
    8. 8. Pollution <ul><li>Fossil fuel combustion products are causing global problems: </li></ul><ul><li>greenhouse effect, </li></ul><ul><li>ozone layer depletion, </li></ul><ul><li>acid rain </li></ul><ul><li>other pollution effects </li></ul>
    9. 9. Renewable energy <ul><li>Sustainable and eco-friendly </li></ul><ul><li>Variety of primary energy sources available </li></ul><ul><ul><li>solar energy, </li></ul></ul><ul><ul><li>wind energy, </li></ul></ul><ul><ul><li>hydropower, </li></ul></ul><ul><ul><li>geothermal energy, </li></ul></ul><ul><ul><li>ocean currents, tidal and wave energy </li></ul></ul><ul><ul><li>biomass </li></ul></ul>
    10. 10. Fuel candidates <ul><li>None of the new primary energy sources can be used directly as a fuel </li></ul><ul><li>There are many candidates, such as </li></ul><ul><ul><li>synthetic gasoline </li></ul></ul><ul><ul><li>synthetic natural gas (methane) </li></ul></ul><ul><ul><li>Methanol/ethanol </li></ul></ul><ul><ul><li>and hydrogen </li></ul></ul>
    11. 11. <ul><li>The fuel of choice must satisfy the following conditions: </li></ul><ul><ul><li>Transportation </li></ul></ul><ul><ul><li>Versatile </li></ul></ul><ul><ul><li>High utilization efficiency </li></ul></ul><ul><ul><li>and use should be safe </li></ul></ul><ul><li>In addition, the resulting energy system must be environmentally compatible and economical. </li></ul>Veziroglu and Barbir, 1992
    12. 12. Hydrogen: the best fuel <ul><li>When we critically look at the fuel options under the criteria given above, it becomes clear that hydrogen appears to be the best fuel </li></ul>Veziroglu, 1987; Barbir et al. , 1990; Veziroglu and Barbir, 1992 (Hydrogen experts and advocates say so.....) To inhibition of methanoarchaea
    13. 13. Hydrogen <ul><li>Burning hydrogen produces only water with no CO, CO 2 , hydrocarbons or fine particles </li></ul><ul><li>H 2 + 1/2 O 2  H 2 O + 141.9 kJ/kg </li></ul>Yamin et al. , 2000
    14. 14. Hydrogen production <ul><li>Hydrogen can be produced </li></ul><ul><ul><li>Chemically or thermo-chemically </li></ul></ul><ul><ul><li>electrochemically </li></ul></ul><ul><ul><li>as a by-product of oil/coal processing </li></ul></ul><ul><ul><li>by using microorganisms </li></ul></ul>
    15. 15. Biological production of hydrogen <ul><li>Three main systems to obtain hydrogen with microorganisms </li></ul><ul><ul><li>Photochemical from water: </li></ul></ul><ul><ul><ul><li>Algae 1 </li></ul></ul></ul><ul><ul><ul><li>Photosynthetic bacteria 2 </li></ul></ul></ul><ul><ul><li>Dark fermentation from organic matter 3 : </li></ul></ul><ul><ul><ul><li>Facultative anaerobes </li></ul></ul></ul><ul><ul><ul><li>Obligate anaerobes </li></ul></ul></ul><ul><ul><li>Phototrophic fermentation from organic matter 3 : </li></ul></ul><ul><ul><ul><li>Non sulfur purple bacteria </li></ul></ul></ul>1.- Ike et al. , 1997; 2.- Melis and Happe, 2001; 3.- Nandi and Sengupta, 1998
    16. 16. Fermentative hydrogen production 1/2 <ul><li>Pure cultures </li></ul><ul><ul><li>Studies on microbial hydrogen production has been conducted mostly using pure cultures, either natural or genetically modified </li></ul></ul><ul><ul><li>costly organic substrates </li></ul></ul><ul><li>Disadvantages… </li></ul><ul><ul><li>cost, and cost, and cost </li></ul></ul>Asada et al. , 2000; Evvyernie et al. , 2000, 2001; Fabiano and Perego, 2002
    17. 17. Fermentative hydrogen production 2/2 <ul><li>Mixed cultures </li></ul><ul><ul><li>Hydrogen is a key intermediate in the anaerobic degradation of organic compounds </li></ul></ul><ul><ul><li>In these studies, hydrogen production resulted from the inhibition of methane fermentation </li></ul></ul><ul><li>Advantages </li></ul><ul><ul><li>H 2 may be recovered from wastewater or organic fraction of municipal solid wastes </li></ul></ul><ul><ul><li>no aseptic conditions required </li></ul></ul>Ueno et al. , 1996; Sparling et al. , 1997; Lay et al. , 1999; Mizuno et al. , 2000
    18. 18. Solid substrate anaerobic digestion (to be DASS is better than being SSAD) <ul><li>Methanogenic SSAD is an effective way of reclaiming paper mill sludge and other wastes, for obtaining: 1 </li></ul><ul><ul><li>CH 4 as a fuel </li></ul></ul><ul><ul><li>Soil amender or protein enrichments from the digested solids </li></ul></ul><ul><li>Yet, CH 4 or CO 2 as its combustion product are greenhouse gases 2 </li></ul>1.- Poggi-Varaldo et al. , 1997 a, b, 1999, 2002; 2.- Dickinson and Cicerone, 1986
    19. 19. Hydrogen and anaerobic digestion Sparling et al ., 1997; Brock ,1997; Chidthaisong & Conrad, 2000; Nagar-Anthal, 1996 Methanogenesis Acidogenesis Hidrólisis Hydrolysis Acetate Polymers (polysaccharides, lipids, proteins) Monomers (sugars, organic acids, aminoacids) Inhibitor <ul><li>Chemical </li></ul><ul><li>BES </li></ul><ul><li>Lumazine </li></ul><ul><li>Acetylene </li></ul><ul><li>Physical or Phys-chem </li></ul><ul><li>pH </li></ul><ul><li>Thermal treatment </li></ul>
    20. 20. To Merits To IV-SSAH OFMSW To metabolites A-SSAD
    21. 21. Inhibiting methanoarchaea in methanogenic solid substrate anaerobic digesters <ul><li>Hydrogen might be produced from organic wastes using microorganisms from M-SSAD, suppressing the activity of hydrogenotrophic methanogens with inhibitors such as: </li></ul><ul><ul><li>chemicals: 2-bromoethanesulfonate (BES), acetylene, lumazine </li></ul></ul><ul><ul><li>heat-shock pretreatment (HSP) </li></ul></ul><ul><ul><li>acidogenic environment (low pH) </li></ul></ul>Sparling and Daniels, 1987; Sparling et al. , 1997; Valdez-Vázquez et al ., 2003
    22. 22. Solid waste in Mexico <ul><li>Municipal solid waste: 53 000 tonne/day </li></ul><ul><li>Industrial solid waste: 370 000 tonne/day </li></ul><ul><li>Pulp and paper industry solid waste: </li></ul><ul><li>500 000 tonne/year </li></ul><ul><li>Dumping sites, few landfills </li></ul>CNICP(1993), Poggi-Varaldo et al. (1997a)
    23. 23. Pulp and paper industry <ul><li>It ranks second in the list of industrial polluters in Mexico </li></ul><ul><li>An important proportion of the solid waste stream is dumped in sites which do not meet actual sanitary landfill design standards and environmental regulations </li></ul>
    24. 24. <ul><li>Objectives </li></ul>GBPANAT
    25. 25. <ul><li>T o review the research efforts of our Group on biological hydrogen production. This review concentrates on four areas: </li></ul><ul><li>(i) the study of batch, repeated fermentation of paper mill waste, </li></ul><ul><li>(ii) batch, repeated fermentation of the organic fraction of municipal solid wastes (OFMSW), and </li></ul><ul><li>(iii) the semi-continuous, acidogenic fermentation (A-SSAD) of the OFMSW </li></ul><ul><li>(iv) development of the concept of Biorefinery of Solid Wastes </li></ul>To A-SSAD
    26. 26. Intermittently-vented SSAH from paper mill waste GBPANAT
    27. 27. Objectives <ul><li>To determine the effect of the inhibitor of methanogenesis, i.e., acetylene (non specific), bromoethanesulphonate (BES), and oxygen on batch fermentation of paper mill waste </li></ul><ul><li>To evaluate the influence of venting and flushing with inert gas the headspace of reactors </li></ul><ul><li>Response variables: </li></ul><ul><li>maximum hydrogen production P H,max (mmole H 2 /reactor), </li></ul><ul><li>initial rate of hydrogen generation R i,H in each cycle of incubation (mmole H 2 / (reactor.h)) </li></ul>
    28. 28. 1.- Poggi-Varaldo et al. , 1997 a, 1999; 2.- Valdez-Vázquez, 2003; 3.- Sparling and Daniels, 1987 Waste office paper with 25% w/w dry matter content (80 g) glass juice bottles Anaerobic glove box… BES (25 mM) or Acetylene ( 1% v/v) 3 250ml 250ml 250ml Mesophilic, continuous M-SSAD Reactors 1, 2 These were autoclaved and stored until used 20 g of inoculum flushed with N 2 . Incubation at 37°C. paper paper paper H 2 Organic acids and solvents
    29. 29. 1.- Poggi-Varaldo et al. , 1997 a, 1999; 2.- Valdez-Vázquez, 2003; 3.- Sparling and Daniels, 1987 Waste office paper with 25% w/w dry matter content (80 g) Recycled glass juice bottles In the anaerobic glove box BES (25 mM) or Acetylene ( 1% v/v) 3 Mesophilic, continuous M-SSAD Reactors 1,2 These were autoclaved and stored until used. 20 g of inoculum Venting and flushing with N 2 . Incubation at 37°C. Organic acids H 2 Glass juice bottles with waste office paper Hydrogen production
    30. 30. Effect of 1% acetylene on CH 4 and H 2 production: Preliminary experiments <ul><li>A batch minireactor exposed to air at the start-up and spiked with acetylene. </li></ul><ul><ul><li>Hollow squares: CH 4 ; Black squares: H 2 </li></ul></ul><ul><li>In an non-exposed, non-inhibited batch minireactor </li></ul><ul><ul><li>Hollow circles: CH 4 ; Black circles: H 2 </li></ul></ul>CH 4 , non-inhibited culture CH 4 , inhibited culture H 2 , inhibited culture Acetylene
    31. 31. <ul><li>Acetylene was a very effective inhibitor of the methanogenesis and facilitated the hydrogen accumulation </li></ul><ul><li>Exposure of batch minireactors to air had a slight inhibitory effect on the methanogenic microflora. The effect was reversible: </li></ul><ul><li>it has been reported that methanogenic Archaea in anaerobic, methanogenic consortia can tolerate the exposure to O 2 , 1 and the protective effect increased with increasing concentrations of sucrose. 2 </li></ul>1.- Estrada-Vázquez et al. , 2001, 2002; 2.- Estrada-Vázquez et al., 2003
    32. 32. Intermittently vented solid substrate anaerobic hydrogen generation (IV-SSAH) <ul><li>Hollow circles: CH 4 from non-inhibited minireactors </li></ul><ul><li>Black circles: H 2 from minireactors spiked with BES </li></ul><ul><li>Black triangles: H 2 from minireactors spiked with acetylene </li></ul>N 2 N 2 N 2
    33. 33. Parameter
    34. 34. IV-SSAH 1/2 <ul><li>The plateau and initial rates of H 2 accumulation decreased in each subsequent cycle of incubation </li></ul><ul><li>Yet, the total cumulative H 2 harvested in the three cycles was nearly double than that in the first cycle alone </li></ul><ul><li>The total H 2 accumulated in the batch minireactors spiked with acetylene was slightly better than that corresponding to the minireactors spiked with BES </li></ul>
    35. 35. IV-SSAH 2/2 <ul><li>Venting and flushing the headspace with N 2 would have released the product inhibition effected by the H 2 on the activity of some fermentative microorganisms in the consortia (for instance, syntrophic bacteria) </li></ul>Brock and Madigan, 1991
    36. 36. Organic acids <ul><li>Another cause contributing to the biochemical inhibition might be the accumulation of organic acids </li></ul><ul><li>A conservatively low estimate of butyric (HBu) and acetic acid (HAc) final concentrations can be made based on the biochemical equations 1 and 2 in the latter Table </li></ul>To Table Biochemical Reactions
    37. 37. Organic acids <ul><li>We made the following simplifying assumptions: </li></ul><ul><ul><li>95% of the paper is degradable cellulose </li></ul></ul><ul><ul><li>cellulose is approximately equal to glucose </li></ul></ul><ul><ul><li>half of the consumed substrate is fermented according to Eq 1 and the other half to Eq. 2 </li></ul></ul><ul><ul><li>the H 2 harvested is directly related to consumed substrate </li></ul></ul>
    38. 38. Organic acids <ul><li>Final concentration of short chain volatile organic acids approx. </li></ul><ul><li>6 800 mg HAc/kg wet basis (34 000 mg HAc/kg dry initial substrate) </li></ul><ul><li>6 000 mg HBu/kg wet basis (25 000 HBu/kg dry inittal substrate) </li></ul><ul><li>can be expected in the solid phase at the end of the 3rd cycle </li></ul>
    39. 39. IV-SSAH merits with respect to other biological alternatives <ul><li>More cost-effective than processes working with pure microbial strains </li></ul><ul><li>More attractive than processes that ferment soluble carbohydrates to H 2 </li></ul><ul><li>No light is needed as compared to photobiological H 2 production </li></ul><ul><li>The inhibitor used (acetylene) is a cheap gas that will exit the bioreactor with the H 2 -rich gas stream </li></ul>
    40. 40. However… <ul><li>The kinetics of H 2 accumulation is slower than reported rates for liquid fermentation processes </li></ul><ul><li>There is a potential for lower H 2 yields than those of processes using pure cultures </li></ul><ul><li>There is an upper limit for the amount of H 2 that can be obtained via anaerobic fermentation of carbohydrates </li></ul>To table Biochem. Reactions
    41. 41. Intermittently-vented SSAH from organic waste GBPANAT
    42. 42. Objectives <ul><li>To determine the effect of: </li></ul><ul><ul><li>origin of inocula (from meso- and thermophilic methanogenic SSAD reactors; M and T, respectively), </li></ul></ul><ul><ul><li>inhibition of the methanogenesis (acetylene and heat shock pretreatment, Ac or tt, respectively), and </li></ul></ul><ul><ul><li>incubation temperature (37 o C and 55 o C, M and T, respectively) </li></ul></ul><ul><li>on batch fermentation of organic fraction of municipal solid waste </li></ul><ul><li>Response variables: </li></ul><ul><li>maximum hydrogen production P H,max (mmole H 2 /reactor), </li></ul><ul><li>initial rate of hydrogen generation R i,H (mmole H 2 /(reactor.h)), </li></ul><ul><li>lag time, and </li></ul><ul><li>accumulation of organic acids and solvents </li></ul>
    43. 43. 1.- Poggi-Varaldo et al. , 1997 a, 1999; 2.- Valdez-Vázquez, 2003; 3.- Sparling and Daniels, 1987 Organic fraction of MSW with 25% w/w dry matter content (80 g) glass juice bottles Anaerobic glove box… Heat-shock pretreatment or Acetylene ( 1% v/v) 3 250ml 250ml 250ml Meso- and thermophilic continuous M-SSAD Reactors 1, 2 These were autoclaved and stored until used 20 g of inoculum flushed with N 2 . Incubation at 37°C or 55 o C. H 2 Organic acids Solvents
    44. 45. Kinetics of H 2 production from organic fraction of municipal solid waste fermentation by anaerobic consortia: First cycle of incubation (a) heat-shock pretreated mini-reactors; (b) mini-reactors treated with acetylene; M mesophilic; T thermophilic.
    45. 46. Main effect of inhibition treatment on performance of first cycle of incubation tt: heat-shock pretreatment; Ac: acetylene; VOA volatile organic acids (sum of acetate, butyrate and propionate); solvents sum of acetone and ethanol
    46. 47. Main effect of incubation temperature on performance of first cycle of incubation M: mesophilic incubation; T: thermophilic incubation; VOA volatile organic acids (sum of acetate, butyrate and propionate); solvents sum of acetone and ethanol
    47. 48. Semi-continuous acidogenic SSAD GBPANAT
    48. 49. Objectives <ul><li>To evaluate the effect of the temperature regime (meso- and thermophilic ) on semi-continuous acidogenic SSAD of organic fraction of municipal solid waste </li></ul><ul><li>Response variables: </li></ul><ul><li>hydrogen percentage in biogas, </li></ul><ul><li>biogas productivity, </li></ul><ul><li>H 2 yield (NmL H 2 /gVS rem ), </li></ul><ul><li>organic acids and solvents concentrations in spent solids </li></ul>
    49. 50. 1.- Poggi-Varaldo et al. , 1997 a, 1999; 2.- Valdez-Vázquez, 2003; 3.- Sparling and Daniels, 1987 Organic fraction of MSW with 35% w/w dry matter content Mesophilic, continuous A-SSAD Reactors 1, 2 Biogas H 2 Spent solids: Organic acids and solvents Thermophilic continuous A-SSAD Reactors 1, 2 Biogas H 2 Spent solids: Organic acids and solvents
    50. 51. Reactors setup for semi-continuous hydrogen production
    51. 52. Typical performances of acidogenic, semi-continuous reactors fed with the organic fraction of municipal solid waste Black symbols: biogas productivity; hollow symbols: H 2 yield; squares: Thermophilic reactor 1; circles: Mesophilic reactor 1. The methane contents in both reactors were less than 0.5%. Thermophilic A-SSAD Mesophilic A-SSAD
    52. 53. Evolution of pH in acidogenic semi-continuous reactors fed with the organic fraction of municipal solid waste Black symbols: Thermophilic reactor 1; hollow symbols: Mesophilic reactor 1 Thermophilic A-SSAD Mesophilic A-SSAD
    53. 54. Average distribution of volatile organic acids and solvents in the spent solids of the acidogenic, solid substrate reactors fed with the organic fraction of municipal solid waste HAc HAc HBu HBu To Table
    54. 55. Comparison of biological hydrogen production from organic fraction of municipal solid waste by anaerobic cultures
    55. 56. <ul><li>Conclusions </li></ul>GBPANAT To Conclusions A-SSAD
    56. 57. <ul><li>Preliminary experiments: </li></ul><ul><li>Similar final H 2 productions were obtained for reactors spiked with acetylene and BES, although a slightly lower for the minireactors spiked with BES </li></ul><ul><li>O 2 as methanogenic inhibitor was not successful </li></ul><ul><li>Acetylene and BES OK. Acetylene has a lower cost than BES and does not accumulate in the solid materials </li></ul>
    57. 58. <ul><li>IV-SSAH from paper mill waste: </li></ul><ul><ul><li>Plateaux and initial rates of H 2 accumulation decreased in each subsequent incubation cycle </li></ul></ul><ul><ul><li>Total cumulative H 2 harvested in the three-cycle incubation was double than that in the first cycle alone (17 and 34 mmole/bottle) </li></ul></ul><ul><ul><li>Kinetics of H 2 accumulation is very slow </li></ul></ul><ul><ul><li>Acetylene and BES work OK as inhibitors of methanogenesis. Acetylene has a lower cost than BES and does not accumulate in the solid materials </li></ul></ul>
    58. 59. <ul><li>IV-SSAH from organic fraction of municipal solid waste: </li></ul><ul><ul><li>Acetylene was more effective than HSP </li></ul></ul><ul><ul><li>Incubation at 37 o C gave the highest hydrogen accumulation in the batch reactors </li></ul></ul><ul><ul><li>Origin of inocula did not have a significant effect on hydrogen production </li></ul></ul><ul><ul><li>Units with thermophilic inocula that were treated with HSP and thermophilic incubation gave the poorest hydrogen production in the first cycle, but interestingly, they somewhat improved the hydrogen production in the subsequent cycles </li></ul></ul>
    59. 60. <ul><li>Semi-continuous acidogenic SSAD of organic fraction of municipal solid waste: </li></ul><ul><ul><li>Higher p ercentage of H 2 in the biogas of thermophilic reactors than that in mesophilic ones (60 and 43%, respectively) </li></ul></ul><ul><ul><li>Hydrogen yield of the thermophilic A-SSAD was significantly higher than that of the mesophilic reactors (470 versus 150 NmL/gVS) </li></ul></ul><ul><ul><li>Higher concentrations of volatile organic acids in the spent solids of the thermophilic reactors than in the corresponding solids of the mesophilic units </li></ul></ul>
    60. 61. <ul><li>Our results point out to a feasible strategy for obtaining higher H 2 yields from the fermentation of industrial and municipal solid wastes, and a possible combination of waste treatment processes A-SSAD and M-SSAD </li></ul><ul><li>Useful products of this approach would be </li></ul><ul><ul><ul><ul><li>H 2 </li></ul></ul></ul></ul><ul><ul><ul><ul><li>organic acids and solvents </li></ul></ul></ul></ul><ul><ul><ul><ul><li>CH 4 </li></ul></ul></ul></ul><ul><ul><ul><ul><li>and anaerobic digestates that could be used as soil amenders or protein enrichments for animal feed </li></ul></ul></ul></ul>
    61. 62. Lo que vendrá (Tango, Astor Piazzolla) <ul><li>Biorefinery from </li></ul><ul><li>organic solid wastes </li></ul>Cuando el destino nos alcance…
    62. 63. Organic solid waste H 2 IV-SSAH or A-SSAD Spent solids Extracts Photo-heterotrophic fermentation Microbial fuel cells Electricity Downstream processing Acids Solvents M-SSAD CH 4 Animal feed Fertil- izer Adapted from Poggi-Varaldo, H.M. (2006) CH 4
    63. 64. Sustainable development in Mexico City = Biorefinery of solid wastes 1 ton OFMSW <ul><li>47 kW-h biohydrogen </li></ul><ul><li>1050 kW-h methane </li></ul><ul><li>50 to100 kg of organic acids and solvents </li></ul><ul><li>600 kg fertilizer </li></ul>Recyclables 0.3 ton
    64. 65. Biofuels from food or from wastes? <ul><li>In the world in which we live, each year millions of people die from the lack of food. </li></ul><ul><li>However, none dies for not having a car to drive. </li></ul><ul><li>Carlos Escamilla-Alvarado, Mexico, 2008 </li></ul>
    65. 66. First International Congress of Biotechnology and Bioengineering 1ICBB Mexico City, Mexico, CINVESTAV Novembre 5-7, 2008 [email_address]
    66. 67. 3rd International Meeting on Environmental Biotechnology and Engineering 3IMEBE Palma de Mallorca, Baleares Islands, Spain September 2008
    67. 68. Subjects: Microbial Ecology Molecular Biology Applications Soil Remediation Environmental Risk Assesm. Groundwater remediation Sustainable Development Phytoremediation Wastewater Treatment Solid and Hazardous Wastes Process Modelling and Control Environmental Chemistry Atmospheric pollution Information : [email_address] [email_address] www.cinvestav.mx/2IMEBE
    68. 69. <ul><li>Questions </li></ul><ul><li>and </li></ul><ul><li>Uncertainties </li></ul>GBPANAT [email_address]
    69. 70. <ul><li>Shadow </li></ul><ul><li>I am just the shadow </li></ul><ul><li>of my echo. </li></ul><ul><li>I go back and treasure </li></ul><ul><li>my yesterday, </li></ul><ul><li>and I abhor of tomorrow </li></ul><ul><li>and its treachery. </li></ul><ul><li>Yet, I fade away, </li></ul><ul><li>prisoner of a perverse game </li></ul><ul><li>of blind mirrors </li></ul><ul><li>and blind doors. </li></ul><ul><li>Now, I am just </li></ul><ul><li>a shiver </li></ul><ul><li>of the echo </li></ul><ul><li>of my shadow. </li></ul>Sombra Soy tan solo la sombra de mi eco. Regreso y me abrazo a aquel mi ayer, y abjuro horrorizdo del mañana y sus traiciones. Sin embargo, desaparezco prisionero de un perverso juego de espejos ciegos y puertas falsas. Ahora, soy tan solo un temblor del eco de mi sombra. HMP-V, Mexico, 2006
    70. 71. hectorpoggi2001@gmail.com
    71. 72. Despedida Farewell <ul><li>Me miro al espejo I look at myself in the mirror </li></ul><ul><li>y sólo veo but I can only see </li></ul><ul><li>la desnuda pared a mis espaldas. the bare wall behind me. </li></ul><ul><li>Me estremezco y me pregunto: I shiver and mutter: </li></ul><ul><li>¿quién llorará nuestras derrotas? Who will cry for our defeats? </li></ul><ul><li>¿quién soñará nuestros sueños? Who will dream our dreams? </li></ul><ul><li>¿quién peleará nuestras batallas? Who will fight our battles? </li></ul><ul><li>¿quién ganará nuestras victorias? Who will win our victories? </li></ul>HMP-V, March 2003

    ×