Your SlideShare is downloading. ×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Doug Miles (Director of AIIM Market Intelligence) presentation on Big Data at AIIM Roadshow 2012

1,128

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,128
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Download free from:www.aiim.org/research
  • 2. Big Data is not just “more data.” ‐‐Thornton May
  • 3. Consideration Systems of Record Systems of EngagementFocus Transactions InteractionsGovernance Command & Control CollaborationCore Elements Facts & Commitments Ideas & NuancesValue Single Source of Truth Discovery & DialogStandard Accurate & Complete Immediate & AccessibleContent Authored CommunalPrimary Record Type Documents ConversationsSearchability Easy HardUsability User is trained User “knows” Accessibility Regulated & Contained Ad Hoc & OpenRetention Permanent TransientPolicy Focus Security (Protect Assets) Privacy (Protect Users)
  • 4. The New Normal • The vast majority of the world’s information is  unstructured. • Unstructured information growing 15X faster  than structured. • Raw computing power growing so fast that an  off‐the‐shelf box approaching the computing  power of a super computer 5 years ago. • “Democratization” of information access.4 Source = Understanding Big Data:  Analytics for Enterprise Class Hadoop and Streaming Data
  • 5. We are moving from the Systems of Record era in which our focus was on high‐value information assets to the Systems of Engagement era in which volume and complexity and variety and velocity are increasing dramatically.
  • 6. Prepare for extreme information management.
  • 7. Value of Information per Unit to Organization HIGH DENSITY Systems of Record 1 Managed via Structured traditional BI Information and Data i.e., “data” WarehousingOriginal concept – Freeform Dynamics
  • 8. Value of Information per Unit to Organization HIGH Value/Byte Systems of Record 1 Managed via Structured traditional BI Information and Data i.e., “data” Warehousing 2Unstructured Currently Information unmanagedi.e., “content” Managed in  ECM & ERM  systemsOriginal concept – Freeform Dynamics
  • 9. Opportunity Considered overall, to what degree does your organization exploit its  information assets for analysis and decision making purposes? 0% 20% 40% 60% 80% 100% Structured data Unstructured data 5 Fully 4 3 2 1‐Poorly Unsure Source:  Online survey of Register readers, 122 respondents, first half of November 2011,  Freeform Dynamics9
  • 10. Value of Information per Unit to Organization HIGH Value/Byte LOW Value/Byte Systems of Record Systems of Engagement 1 3 BIG DATA Managed via Structured traditional BI  Internet of things – e.g., climate Information and Data  data, transaction records, phone i.e., “data” Warehousing GPS data – intelligent,  interconnected, and everywhere Volume, Velocity, Variety, Complexity 2 2.5 quintillion bytes/dayUnstructured Currently  4Information unmanaged BIG CONTENTi.e., “content” Social, images, audio, video, text,  Managed in  office apps, web traffic, print  ECM & ERM  streams, email, documents systemsOriginal concept – Freeform Dynamics
  • 11. Irrational thinking • Get rid of as much as  • Save everything that  you can: you can: – Litigation risk – Might need it “someday” – Compliance risk – Potential aggregated value – Storage cost – Disposition uncertainty High Value/Byte Low Value/Byte11
  • 12. Metadata Extraction INFORMATIONEnrich unstructured content and link it to structured data  to find “WHAT” and “WHY”
  • 13. • All AIIM research free to  download at: www.aiim.org/research• Citation and reference  welcome and encouraged  – just link back to the  report.• Thank you to all the  companies that sponsor  our research and allow us  to make it available for  free to users.
  • 14. Some highlights… • Despite everything, ECM still relatively  immature. • Ditto Search. • Clear understanding that we have too much  data, not enough analysis. • Awareness/use cases still early, but emerging. • There is a sense of something “big” out there. ©AIIM 2011 1414
  • 15. ECM Maturity How would you best describe management of the unstructured content in your  organization? 0% 5% 10% 15% 20% 25% 30% 35% 40% Somewhat chaotic 61% still have a  degree of content  Organized, but not well indexed or chaos controlled Key content is quite well managed in its own repositories We have document/content management in place across some areas We have content management/ECM in place across most areas ©AIIM 2012 N=33915
  • 16. Search Maturity How good is your ability to search across your key content? (Pick highest  capability) 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 80% have no  We have disparate content stores and only extended search  basic search tools across multiple  We have search tools within discrete repositories repositories We have enterprise search/unified search capability across departmental content We have enterprise search/unified search capability across the organization ©AIIM 2012 N=33716
  • 17. Analysis and BI Issues Which two of the following would you choose to describe your biggest data  analysis and BI issues? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% Too much data, not enough analysis Either no tools, or  We dont have any standardized alalysis tools poor tools. We need better linkage between data sets Need better  We can only access structured data sources (unified) access to  We cannot link textual data with transactional multiple data  data sources. Were not capturing the data we need The data is there but our tools can t make sense of it Our tools are too complex and need specialists By the time we get the data, it’s too late to act ©AIIM 2012 N=33017
  • 18. Unstructured Datasets Are there large unstructured or semi‐structured data repositories (ie, text, rich  media, etc.) in your business that you would like to analyze, monitor or query ‐ as  opposed to search/retrieve? 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Most popular are  Document repositories/ECM the basic ones – Email maybe some  PowerPoints, spreadsheets, PDFs, XML, etc. SharePoint crossover  Web behaviors, click streams “search/analyze.” External/public social media Voice, video, image But 30‐50%  Publically available or open content files interested in a  Internal social media wide range of  Text communications channels (SMS, IM) other applications. Print stream archives Already do Would like to Not really thought about it NA/Dont know ©AIIM 2012 N=30018
  • 19. Content Analytics Have you considered analyzing any of the following document or content types to  extract longer‐term business intelligence or solve problems? 0% 20% 40% 60% 80% 100% 68% would like to  Comments from forms for suggestions/feedback analyze comment  Help desk logs, CRM reports, fields from forms. Incident reports, claims, witness statements Incident reports  Web forums, blogs, ratings/reviews and case notes  Publically available or open data sets quite widely useful. Case notes, professional assessments, medical… Video and audio records Print‐streams  External subscription data sets largely untapped as  Lab notes, trials, surveys yet Patents, court proceedings, scientific journals Printstreams and electronic statements Already do Would like to Not really thought about it NA/Dont know ©AIIM 2012 N=25919
  • 20. Analytic Techniques What type of analysis would you like to do/already do on unstructured data? 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Web‐tracking,  Keywords/phrases within text Trends/Patterns fraud prevention,  Content categorization or migration geo‐correlation   Web tracking and brand analysis  Predictive analysis/modeling most popular now. Policy breach, illegality Cross relation with demographics, etc. Fraud prevention Predictive  Incident prediction modelling, policing,  Expertise identification Geo‐correlation demographic  Sentiment analysis correlation and  Brand analysis incident prediction  Recommendation engine set to grow. Image/video recognition Copyright detection Already do Would like to Not really thought about it NA/Dont know ©AIIM 2012 N=27020
  • 21. Sentiment Analysis ‐ BankingBig Data Apps – Sentiment Analysis ©AIIM 2011 21
  • 22. Real‐Time Analytics Have you considered analyzing any of the following to extract live or near‐time  business intelligence? 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Machine data and  System logs, failure messages logs popular now, Incoming customer communication streams but also widely  desired. Helpdesk/service‐desk conversations Web logs, click‐streams Help‐desk and web  Media channels, news feeds logs now, but  External social streams (eg, Twitter) future interest in  Outgoing print/media streams all inbound  Competitor web and social sites customer content,  Geo‐location from mobile but less so for  external social... CCTV/audio Already do Would like to Not really thought about it NA/Dont know ©AIIM 2012 N=26022
  • 23. Analytic Techniques How valuable would it be/is it to your business if you could do the kinds of analysis  suggested above? Not that useful,  3% 56% would find it  Hugely valuable,  18% “very valuable”  Useful, 13% or “hugely  valuable” (18%)  to be able to  carry out  sophisticated  analytics on  Valuable, 28% unstructured  Very valuable,  38% content. ©AIIM 2012 N=27623
  • 24. Killer Application If you had an analytics tool that could work across your unstructured content, or  link your structured and unstructured data, what would be the “killer  application(s)” for your type of business? (Please write "not disclosed" if  necessary). 85% took  Described, 25% advantage of the  offer not to  disclose how they  might utilize a big  data application  in their business  to competitive  advantage. Not‐Disclosed,  85% ©AIIM 2012 N=17824
  • 25. Competitive Advantage Based on your answer to the previous question, how would you rate the  usefulness of such an application to your business? Not that useful,  Nearly 70% can  7% Spectacular, 18% envisage a killer  application that  would be “very   Quite useful,  24% useful” or  “spectacular”  (18%) for their  business. Very useful, 51% ©AIIM 2012 N=179, excl 67 NA25
  • 26. Big Data Apps ‐ Minority Report “Pre‐cogs” predicting  events (murders) Face‐recognition  targeted billboards Starred Tom Cruise 2002 ©AIIM 2011 2626
  • 27. Revolutionary times The combination  of semantics and  the cost  structure of  cloud‐based  analytic tools is  revolutionary. Across industries Across  geographies27
  • 28. Revolutionary times The combination  This revolution  of semantics and  will once and for  the cost  all require new  structure of  approaches to  cloud‐based  managing  analytic tools is  unstructured  revolutionary. information  Across industries assets. Across  geographies28
  • 29. We need T‐Shaped Professionals  for this Revolution BROAD DEEP AIIM.org/certification AIIM.org/training White paper here – http://pages2.aiim.org/CIPWebPage_InfoProWP.html Free practice exam/assessment ‐‐ http://www.AIIM.org/CIP‐practice‐exam29
  • 30. AIIM Market Intelligence Current survey:  Solving the SharePoint Puzzle ‐ Chance to win an iPad www.aiimhost.com/survey • Download reports at: www.aiim.org/research  • Email:  doug.miles@aiim.org.uk • Blog:  ECM by Numbers • Twitter:  @dougmiles0030

×